1. Trang chủ
  2. » Luận Văn - Báo Cáo

Optimisation of sludge pretreatment by low frequency sonication under pressure = optimisation du prétraitement de boues par ultrasons à très basses fréquences et sous pression

200 18 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Cấu trúc

  • 01 - Bia-1

  • 02 - NoiDung-Giua

    • Foremost, I would like to express my sincere gratitude to my supervisors Prof. Henri DELMAS and Dr. Carine JULCOUR for the continuous support of my post-graduate work, for their patience, motivation, enthusiasm, and immense knowledge. Their guidance ...

    • In addition, I would like to say a big thank you to the jury – Prof. Evelyne GONZE, Prof. Jean Yves HIHN, Prof. Helène Carrère, Prof. Iordan NIKOV, Mr. Pascal TIERCE, Dr. Xavier LEFEBVRE - for the precious time reading my thesis and valuable construct...

    • I would like to acknowledge the financial support from the Ministry of Education and Training of Vietnam and Institut National Polytechnique of Toulouse (France).

    • INTRODUCTION

    • CHAPTER 1

    • LITERATURE REVIEW

      • 1.1. SLUDGE TYPES AND PROPERTIES

      • 1.2. BRIEF BACKGROUND OF SONICATION

      • 1.3. EVALUATION APPROACHES OF SLUDGE ULTRASONIC PRETREATMENT EFFICIENCY

        • 1.3.1. Physical change-based evaluation of sludge US pretreatment efficiency

          • 1.3.1.1. Particle size reduction

          • 1.3.1.2. Sludge mass reduction or solubilisation

          • 1.3.1.3. Dewaterability of sludge

          • 1.3.1.4. Settleability and Turbidity of sludge

          • 1.3.1.5. Microscopic examination of sludge

        • 1.3.2. Chemical change-based evaluation of sludge US pretreatment efficiency

          • 1.3.2.1. Degree of disintegration (DDCOD)

          • 1.3.2.2. Nucleic acid assessment

          • 1.3.2.3. Protein assessment

          • 1.3.2.4. The release of ammonia and soluble organic nitrogen assessment

          • 1.3.2.5. TOC assessment

        • 1.3.3. Biological change-based evaluation of sludge ultrasonic pretreatment efficiency

      • 1.4. OPTIMIZATION OF ULTRASONIC PRETREATMENT OF SLUDGE

        • 1.4.1. Ultrasonic frequency

        • 1.4.2. Temperature

        • 1.4.3. Hydrostatic Pressure

        • 1.4.4. Energy aspects

          • 1.4.4.1. Ultrasonic power

          • 1.4.4.2. Ultrasonic intensity

          • 1.4.4.3. Ultrasonic duration and specific energy input

        • 1.4.5. Sludge type, and total solid concentration of sludge

        • 1.4.6. pH of sludge

      • 1.5. CONCLUSIONS

    • CHAPTER 2

    • RESEARCH METHODOLOGY

      • 2.1. INTRODUCTION

      • 2.2. SLUDGE SAMPLES

      • 2.3. SONICATION APPARATUS

      • 2.4. ANALYTICAL METHODS

        • 2.4.1 Total solids (TS) and Volatile solids (VS)

        • 2.4.2 Chemical oxygen demand (COD) and the degree of sludge disintegration (DDCOD)

        • 2.4.3. Laser diffraction sizing analysis

        • 2.4.4. Microscope examination

        • 2.4.5. Biochemical methane potential (BMP)

        • 2.4.6. Rheology

    • CHAPTER 3

    • PRELIMINARY STUDY OF OPERATION PARAMETERS

      • 3.1. MATERIALS AND EXPERIMENTAL PROCEDURES

        • 3.1.1. Sludge samples

        • 3.1.2. Experimental procedures

      • 3.2. RESULTS AND DISCUSSION

        • 3.2.1. DDCOD evolution

          • 3.2.1.1. Effect of TS concentration

          • 3.2.1.2. Effect of stirrer speed

          • 3.2.1.3. Effect of temperature rise under “adiabatic” conditions (without cooling)

          • 3.2.1.4. Effect of sludge type

          • 3.2.1.5. Effect of alkaline addition prior to sonication

        • 3.2.2. Particle size reduction and evolution of sludge structures

          • 3.2.2.1 Analysis of laser diffraction measurements

          • 3.2.2.2 Analysis of sludge particle images

        • 3.2.3. Apparent viscosity and rheological behavior

        • 3.2.4 Solubilisation of organic fractions

      • 3.3. CONCLUSIONS

    • CHAPTER 4

    • EFFECT OF ULTRASOUND PARAMETERS ON SLUDGE PRETREATMENT BY ISOTHERMAL SONICATION

    • (POWER, INTENSITY, FREQUENCY)

      • 4.1. MATERIALS AND EXPERIMENTAL PROCEDURES

        • 4.1.1. Sludge samples

        • 4.1.2. Experimental procedures

      • 4.2. RESULTS AND DISCUSSION

        • 4.2.1. Effect of PUS on sludge disintegration

        • 4.2.2 Effect of IUS on sludge disintegration

        • 4.2.3. Effect of frequency on the efficacy of sludge sonication

        • 4.2.4. Effect of sequential isothermal sonication on sludge disintegration

      • 4.3. CONCLUSIONS

    • CHAPTER 5

    • EFFECT OF HYDROSTATIC PRESSURE

    • ON SLUDGE PRETREATMENT BY ISOTHERMAL SONICATION

      • 5.1. MATERIALS AND EXPERIMENTAL PROCEDURES

        • 5.1.1. Sludge samples

        • 5.1.2. Experimental procedures

      • 5.2. RESULTS AND DISCUSSION

        • 5.2.1. Effect of hydrostatic pressure on DDCOD for different ES values and sludge types

        • 5.2.2. Effect of US power and intensity on the optimal pressure and subsequent DDCOD

        • 5.2.3. Effect of very low frequency on the optimum pressure and subsequent DDCOD

      • 5.3. CONCLUSIONS

    • CHAPTER 6

    • OPTIMAL SONICATION FOR PRETREATMENT OF SLUDGE

      • 6.1. MATERIALS AND EXPERIMENTAL PROCEDURES

        • 6.1.1. Sludge samples

        • 6.1.2. Experimental procedures

      • 6.2. RESUTLS AND DISCUSSION

        • 6.2.1. Adiabatic sonication at atmospheric pressure

        • 6.2.2. Optimal pressure under adiabatic sonication

        • 6.2.3. Optimization of sludge sonication pretreatment

        • 6.2.4. Biochemical methane potential

      • 6.3. CONCLUSIONS

    • CONCLUSIONS

    • REFERENCES

    • APPENDICES

      • APPENDIX 1

      • APPENDIX 2

      • APPENDIX 3

      • APPENDIX 4

      • APPENDIX 5

      • APPENDIX 6

      • APPENDIX 7

      • APPENDIX 8

  • 03 - Le et al, 2013 (pressure)

  • 04 - Le et al, 2013 (pH)

  • 05 - Ab-Cuoi

  • Blank Page

  • Blank Page

Nội dung

Ngày đăng: 11/07/2021, 16:22

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN