Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 30 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
30
Dung lượng
296,85 KB
Nội dung
Bài ging N T S 1 Trang 72 Chng 4 T HP 4.1.KHÁI NIM CHUNG Các phn t logic AND, OR, NOR, NAND là các phn t logic c bn còn c gi là h t hp n gin. Nh vy, h t hp là h có các ngõ ra là các hàm logic theo ngõ vào, u này ngha là khi mt trong các ngõ vào thay i trng thái lp tc làm cho ngõ ra thay i trng thái ngay ( nu qua thi gian tr ca các phn t logic) mà không chu nh hng ca trng thái ngõ ra trc ó. Xét mt h t hp có n ngõ vào và có m ngõ ra (hình 4.1), ta có: y 1 = f(x 1 , x 2 , ., x n ) y 2 = f(x 1 , x 2 , ., x n ) . y m = f(x 1 , x 2 , ., x n ) Nh vy, s thay i ca ngõ ra y j (j = 1 ÷ m) theo các bin vào xi (i = 1 ÷ n) là tu thuc vào ng trng thái mô t hot ng ca h t hp. c m c bn ca h t hp là tín hiu ra ti mi thi m ch ph thuc vào giá tr các tín hiu vào thi m ó mà không ph thuc vào giá tr các tín hiu ngõ ra thi m trc ó. Trình t thit k h t hp theo các bc sau : 1. yêu cu thc t ta lp bng trng thái mô t hot ng ca mch (h t hp). 2. Dùng các phng pháp ti thiu ti thiu hoá các hàm logic. 3. Thành lp s logic (Da vào phng trình logic ã ti gin). 4. Thành lp s h t hp. Các mch t hp thông dng: - ch mã hoá - gii mã - ch chn kênh - phân ng - ch so sánh - ch s hc v v 4.2. MCH MÃ HOÁ & MCH GII MÃ 4.2.1. Khái nim: ch mã hoá (ENCODER) là mch có nhim v bin i nhng ký hiu quen thuc vi con ngi sang nhng ký hiu không quen thuc con ngi. Ngc li, mch gii mã (DECODER) là ch làm nhim v bin i nhng ký hiu không quen thuc vi con ngi sang nhng ký hiu quen thuc vi con ngi. t p x 2 x n y 1 y 2 y m Hình 4.1 x 1 Chng 4. H t hp Trang 73 4.2.2. Mch mã hoá (Encoder) 1. Mch mã hoá nh phân Xét mch mã hóa nh phân t 8 sang 3 (8 ngõ vào và 3 ngõ ra). S khi ca mch c cho trên hình 4.2. Trong ó: - x 0 , x 1 , ., x 7 là 8 ng tín hiu vào - A, B, C là 3 ngõ ra. ch mã hóa nh phân thc hin bin i tín hiu ngõ vào thành mt t mã nh phân tng ng ngõ ra, c th nh sau: 0 → 000 3 → 011 6 → 100 1 → 001 4 → 100 7 → 111 2 → 010 5 → 101 Chn mc tác ng (tích cc) ngõ vào là mc logic 1, ta có bng trng thái mô t hot ng a mch : x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 C B A 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 Gii thích bng trng thái: Khi mt ngõ vào trng thái tích cc (mc logic 1) và các ngõ vào còn li không c tích cc (mc logic 0) thì ngõ ra xut hin t mã tng ng. C th là: khi ngõ vào x0=1 và các ngõ vào còn li bng 0 thì t mã ngõ ra là 000, khi ngõ vào x1=1 và các ngõ vào còn li bng 0 thì t mã nh phân ngõ ra là 001, v v Phng trình logic ti gin: A = x 1 + x 3 + x 5 + x 7 B = x 2 + x 3 + x 6 + x 7 C= x 4 + x 5 + x 6 + x 7 8 → 3 x 0 x 2 x 7 C B A Hình 4.2 S khi mch mã hóa nh phân t 8 sang 3 Bài ging N T S 1 Trang 74 logic thc hin mch mã hóa nh phân t 8 sang 3 (hình 4.3): Biu din bng cng logic dùng Diode (hình 4.4): Nu chn mc tác ng tích cc ngõ vào là mc logic 0, bng trng thái mô t hot ng ca ch lúc này nh sau: x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 C B A 0 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 Phng trình logic ti gin : A = x 1 + x 3 + x 5 + x 7 = 7531 xxxx B = x 2 + x 3 + x 6 + x 7 = 7632 xxxx C = x 4 + x 5 + x 6 + x 7 = 7654 xxxx Hình 4.3 Mch mã hóa nh phân t 8 sang 3 x1 C x2 x5 x7 B x3 x6x4 A x 1 x 2 x 3 x 4 x 5 x 6 x 7 B A C Hình 4.4 Mch mã hóa nh phân t 8 sang 3 s dng diode Chng 4. H t hp Trang 75 mch thc hin cho trên hình 4.5 2. Mch mã hoá thp phân ng trng thái mô t hot ng ca mch : x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 D C B A 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 Phng trình logic ã ti gin: A = x 1 + x 3 + x 5 + x 7 + x 9 B = x 2 + x 3 + x 6 + x 7 C = x 4 + x 5 + x 6 + x 7 D = x 8 + x 9 Biu din bng s logic (hình 4.7) Hình 4.5 Mch mã hóa nh phân 8 sang 3 ngõ vào tích cc mc 0 B x4x2 x7 A x6x5x1 C x3 10 → 4 x 0 x 1 x 9 C B A D Hình 4.6 S khi mch mã hóa t 10 sang 4 Bài ging N T S 1 Trang 76 Biu din s này bng cng logic s dng Diode c cho trên hình 4.8 3. Mch mã hoá u tiên Trong hai mch mã hoá ã xét trên, tín hiu u vào tn ti c lp tc là không có tình hung có 2 tín hiu tr lên ng thi tác ng mc logic 1 (nu ta chn mc tích cc ngõ vào là mc logic 1), thc tây là tình hung hoàn toàn có th xy ra, do ó cn phi t ra vn u tiên. n u tiên: Khi có nhiu tín hiu vào ng thi tác ng, tín hiu nào có mc u tiên cao n thi m ang xét sc u tiên tác ng, tc là nu ngõ vào có u tiên cao hn bng 1 x 1 B ACD x 8 x 9 x 2 x 4 x 5 x 6 x 7 x 3 Hình 4.8 Hình 4.7 S mch mã hóa thp phân t 10 → 4 x1 x3 A C x5 x6x2 x9x8x4 B C x7 D Chng 4. H t hp Trang 77 trong khi nhng ngõ vào có u tiên thp hn nu bng 1 thì mch s to ra t mã nh phân ng i ngõ vào có u tiên cao nht. Xét mch mã hoá u tiên 4 → 2 (4 ngõ vào, 2 ngõ ra) (hình 4.9). bng trng thái có th vit c phng trình logic các ngõ ra A và B: A = x 1 . 3 x 3 x. 2 x + = 3 x 2 x. 1 x + B = 3 x 2 x 3 x 3 x. 2 x +=+ logic: hình 4.10. Mt s vi mch mã hóa u tiên thông dng: 74LS147, 74LS148. 4.2.3. Mch gii mã (Decoder) 1. Mch gii mã nh phân Xét mch gii mã nh phân 2 → 4 (2 ngõ vào, 4 ngõ ra) nh trên hình 4.11 Chn mc tích cc ngõ ra là mc logic 1. x 0 1 x x x x 1 0 1 x x x 2 0 0 1 x x 3 0 0 0 1 B 0 0 1 1 A 0 1 0 1 ng trng thái x 0 x 2 x 3 x 1 B A 4 → 2 Hình 4.9 B x1 A x3x2 Hình 4.10 S logic mch mã hóa u tiên 4 → 2 Bi ging N T S 1 Trang 78 Phng trỡnh logic ti gin v s mch thc hin A.By 0 = A.By 1 = A.By 2 = B.Ay 3 = Biu din bng cng logic dựng Diode. Trng hp chn mc tớch cc ngừ ra l mc logic 0 (mc logic thp) ta cú s khi mch gii mó c cho trờn hỡnh 4.14. Phng trỡnh logic: A.BABy 0 =+= .ABABy 1 =+= ABAB 2 y =+= B.AAB 3 y =+= y 0 1 0 0 0 y 1 0 1 0 0 y 2 0 0 1 0 y 3 0 0 0 1 B 0 0 1 1 A 0 1 0 1 Baớng traỷng thaùi mọ taớ hoaỷt õọỹng cuớa maỷch Hỡnh 4.11 Mch gii mó 2 sang 4 y 0 y 2 y 3 y 1 B A 2 4 y 0 y 1 y 2 y 3 B B A A +E c Hỡnh 4.13. Mch gii mó 2 4 dựng diode A B y 0 y 1 y 2 y 3 2 4 y 0 0 1 1 1 y 1 1 0 1 1 y 2 1 1 0 1 y 3 1 1 1 0 B 0 0 1 1 A 0 1 0 1 ng trng thỏi Hỡnh 4.14. Mc tớch cc ngừ ra l mc thp Chng 4. H t hp Trang 79 mch thc hin: 2. Mch gii mã thp phân a. Gii mã èn NIXIE èn NIXIE là loi èn n t loi Katod lnh (Katod không c nung nóng bi tim èn), có u to gm mt Anod và 10 Katod mang hình các s t 0 n 9. khai trin ca èn c cho trên hình 4.16: khi ca mch gii mã dèn NIXIE Chn mc tích cc ngõ ra là mc logic 1, lúc ó bng trng thái hot ng ca mch nh sau: y0 y2 y1 x2x1 y3 Hình 4.15. Mch gii mã 2 → 4 vi ngõ ra mc tích cc thp AB 0 1 2 3 4 5 6 7 8 9 Anod Hình 4.16. S khai trin ca èn NIXIE C B y 0 y 1 y 9 4 → 10 A D Hình 4.17. S khi mch gii mã èn NIXIE Bài ging N T S 1 Trang 80 D C B A y 0 y 1 y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 Phng trình logic: ABCDy 0 = ABCDy 1 = ABCDy 2 = BACDy 3 = ABCDy 4 = ABCDy 5 = ACBDy 6 = CBADy 7 = ABCDy 8 = ABCDy 9 = thc hin mch gii mã èn NIXIE c cho trên hình 4.18 và 4.19: y1 y5 y2 y3 y6 B y8 y7 D y0 y9 y4 C A Hình 4.18. S thc hin bng cng logic Chng 4. H t hp Trang 81 b. Gii mã èn LED 7 n èn LED 7 n có cu to gm 7 n, mi n là 1 èn LED. Tu theo cách ni các Kathode (Catt) hoc các Anode (Ant) ca các LED trong èn, mà ngi ta phân thành hai loi: LED 7 n loi Anode chung: LED 7 n loi Kathode chung : V CC D C B A D C B A y 0 y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 Hình 4.19. S thc hin dùng diode a b c d e f g K Hình 4.21. LED 7 n loi Kathode chung a c d e b f g a b c d e f g A Hình 4.20. LED 7 n loi Anode chung [...].. .Bài gi ng NT S 1 Trang 82 ng v i m i lo i LED khác nhau ta có m t m ch gi i mã riêng S LED 7 n nh sau: A a b c d e f g ch gi i mã LED 7 n (4→7) B C D Hình 4.22 S kh i c a m ch gi i mã kh i m ch gi i mã... ng chính t c 1: d = CBA + DC BA + CBA Ph DC BA ng trình logic c a ngõ ra e: ng chính t c 2: e = (B + A)(C + A) ng chính t c 1: e = CB + A d DC BA 00 00 01 11 10 0 1 0 0 e DC BA 00 00 01 11 10 0 1 1 0 Bài gi ng Ph NT S 1 Trang 84 ng trình logic c a ngõ ra f: ng chính t c 2: f DC BA 00 f = (A + B)(B + C)(A + B + C)D = ABD + ACD + BC D ng chính t c 1: 00 01 11 10 f = BA + DCA + DCB Ph ng trình logic c... x 01 0 0 0 1 11 x x x x 10 1 0 x x = (C + A ⊕ B)(A + B + C + D) Ph ng trình logic c a ngõ ra e: ng chính t c 1: e = A B + C A ng chính t c 2: e = A ( C + B) = A C + A B e DC BA 00 00 01 11 10 1 0 0 1 Bài gi ng Ph NT S 1 Trang 86 ng trình logic c a ngõ ra f: ng chính t c 1: f DC BA 00 f = D+ C B + B A + C A ng chính t c 2: 00 01 11 10 f = ( B + A )( D+C+ A )(C+ B ) = D +BC +A C + A B Ph ng trình logic... logic tích c c (m c 1 ho c m c 0) thì kênh d li u vào có cùng ch s v i ngõ vào u khi n ó s c k t n i v i ngõ ra Trên hình 4.25 bi u di n m ch ch n kênh v i s l ng ngõ vào u khi n b ng s l ng kênh vào Bài gi ng NT S 1 Trang 88 N u ch n m c tích c c c a các ngõ vào ho t ng c a m ch nh sau: u khi n là m c logic 1, ta có b ng tr ng thái mô t x1 x2 x3 x4 y 4→1 c1 c2 c3 c4 Hình 4.25 M ch ch n kênh v i s... ngõ ra d li u t ng ng có cùng ch s v i ngõ vào u khi n ó s c i v i ngõ vào d li u chung x Ví d : c1 = 1 → x = y1 c2 = 1 → x = y2 c3 = 1 → x = y3 c4 = 1 → x = y4 y1 x 1→4 c4 c3 c2 c1 Hình 4.28 y2 y3 y4 Bài gi ng NT S 1 Trang 90 Lúc ó b ng tr ng thái ho t ng c a m ch: c1 1 0 0 0 c2 0 1 0 0 c3 0 0 1 0 c4 0 0 0 1 y1 X 0 0 0 y2 0 X 0 0 y3 0 0 X 0 y4 0 0 0 X Ph ng trình logic và s logic c cho trên hình 4.29:... m ch so sánh nhi u bit 4.4.3 M ch so sánh nhi u bit ch có 8 ngõ vào và 3 ngõ ra, th c hi n so sánh 2 s nh phân 4 bít A (a3a2a1a0) và B (b3b2 b1 b0) Có hai ph ng pháp th c hi n m ch so sánh nhi u bít: Bài gi ng NT S 1 Trang 92 - Th c hi n tr c ti p - Th c hi n m ch so sánh nhi u bít trên c s m ch so sánh 1 bít Chúng ta l n l t xét t ng ph ng pháp 1 Ph ng pháp tr c ti p Ta có b ng tr ng thái ho t a3... a2>b2 a1=b1 a0b0 a3b3 a2=b2 a1b1 a0=b0 1 2 5 3 4 1 1 3 2 Y 2 5 3 1 3 4 2 1 Y 2 5 3 4 1 1 3 2 Y 2 5 3 1 3 4 2 1 2 5 3 4 Hình 4.33 Th c hi n m ch so sánh nhi u bít theo cách tr c ti p Bài gi ng 2 Ph NT S 1 Trang 94 ng pháp xây d ng trên c s m ch so sánh 1 bit ( a < b ) = y1 a 2→3 ( a = b ) = y2 b c3 c2 c1 a>b a=b ( a > b ) = y3 a . Bài ging N T S 1 Trang 72 Chng 4 T HP 4.1.KHÁI NIM CHUNG Các phn. → 3 x 0 x 2 x 7 C B A Hình 4.2 S khi mch mã hóa nh phân t 8 sang 3 Bài ging N T S 1 Trang 74 logic thc hin mch mã hóa nh phân t