1. Trang chủ
  2. » Luận Văn - Báo Cáo

Lecture biology (6e) chapter 21 campbell, reece

101 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 101
Dung lượng 1,23 MB

Nội dung

CHAPTER 21  THE GENETIC BASIS OF  DEVELOPMENT Section A: From Single Cell to Multicellular Organism Embryonic development involves cell division, cell differentiation, and  morphogenesis 2.  Researchers study development in model organisms to identify general  principles Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Introduction • The application of genetic analysis and DNA  technology to the study of development has brought  about a revolution in our understanding of how a  complex multicellular organism develops from a  single cell • For example, in 1995 Swiss researchers demonstrated that  a particular gene functions as a master switch that triggers  thedevelopmentoftheeyeinDrosophila ã Asimilargenetriggerseyedevelopmentinmammals ã Developmentalbiologistsarediscoveringremarkable similaritiesinthemechanismsthatshapediverse organisms Copyrightâ2002PearsonEducation,Inc.,publishingasBenjaminCummings ã WhilegeneticistswereadvancingfromMendels laws to an understanding of the molecular basis of  inheritance, developmental biologists were  focusing on embryology • Embryology is the study of the stages of development  leading from fertilized eggs to fully formed organism • In recent years, the concepts and tools of molecular  genetics have reached a point where a real  synthesis has been possible • The challenge is to relate the linear information in genes  to a process of development in four dimensions, three of  space and one of time Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings • In the development of most multicellular organisms,  a single­celled zygote gives rise to cells of many  different types • Each type has different structure and corresponding  function • Cells of similar types are organized into tissues,  tissues into organs, organs into organ systems, and  organ systems into the whole organism • Thus, the process of embryonic development must  give rise not only to cells of different types but to  higher­level structures arranged in a particular way  inthreedimensions Copyrightâ2002PearsonEducation,Inc.,publishingasBenjaminCummings 1.Embryonicdevelopmentinvolvescell division,celldifferentiation,and morphogenesis ã Anorganismarisesfromafertilizedeggcellasthe resultofthreeinterrelatedprocesses:celldivision, celldifferentiation,andmorphogenesis ã Fromzygotetohatchingtadpoletakesjustoneweek Fig.21.1 Copyrightâ2002PearsonEducation,Inc.,publishingasBenjaminCummings ã Celldivisionalonewouldproduceonlyagreatball ofidenticalcells ã Duringdevelopment,cellsbecomespecializedin structureandfunction,undergoingdifferentiation ã Different kinds of cells are organized into tissues  and organs • The physical processes of morphogenesis, the  “creation of form,” give an organism shape • Early events of morphogenesis lay out the basic  body plan very early in embryonic development • These include establishing the head of the animal embryo  ortherootsofaplantembryo Copyrightâ2002PearsonEducation,Inc.,publishingasBenjaminCummings ã Theoverallschemesofmorphogenesisinanimals andplantsareverydifferent ã Inanimals,butnotinplants,movementsofcellsand tissuesarenecessarytotransformtheembryo ã Inplants,morphogenesisandgrowthinoverallsizeare notlimitedtoembryonicandjuvenileperiods Copyrightâ2002PearsonEducation,Inc.,publishingasBenjaminCummings Fig.21.2 Copyrightâ2002PearsonEducation,Inc.,publishingasBenjaminCummings ã Apicalmeristems,perpetuallyembryonicregionsin thetipsofshootsandroots,areresponsibleforthe plantscontinualgrowthandformationofnew organs,suchasleavesandroots ã In animals, ongoing development in adults is  restricted to the differentiation of cells, such as  blood cells, that must be continually replenished • The importance of precise regulation of  morphogenesis is evident in human disorders that  result from morphogenesis gone awry • For example, cleft palate, in which the upper wall of the  mouth cavity fails to close completely, is a defect of  morphogenesis Copyrightâ2002PearsonEducation,Inc.,publishingasBenjaminCummings 2.Researchersstudydevelopmentinmodel organismstoidentifygeneralprinciples ã Whentheprimaryresearchgoalistounderstand broadbiologicalprinciplesưofanimalorplant developmentinthiscaseưtheorganismchosenfor studyiscalledamodelorganism ã Researchersselectmodelorganismsthatlendthemselves tothestudyofaparticularquestion ã Forexample,frogswereearlymodelsforelucidatingthe roleofcellmovementduringanimalmorphogenesis becausetheirlargeeggsareeasytoobserveand manipulate,andfertilizationanddevelopmentoccurs outsidethemothersbody Copyrightâ2002PearsonEducation,Inc.,publishingasBenjaminCummings ã A cell remains alive as long as the Ced­9 protein,  produced by the ced­9 gene (ced stands for cell  death) is active • Ced­9, the master regulator of apoptosis, blocks the  activation of Ced­4 (produced by ced­4) preventing it  from activating Ced­3 (produced by ced­3), a potent  protease • When the cell receives an external death signal,  Cedư9isinactivated,allowingbothCedư4andCedư 3tobeactive ã InnematodesCedư3isthechiefcaspase,themain proteasesofapoptosis Copyrightâ2002PearsonEducation,Inc.,publishingasBenjaminCummings ã Apoptosisisregulatednotatthelevelof transcriptionortranslation,butthroughchangesin theactivityofproteinsthatarecontinuallypresent inthecell Fig.21.18b Copyrightâ2002PearsonEducation,Inc.,publishingasBenjaminCummings ã Apoptosispathwaysinhumansandothermammals aremorecomplicated ã Researchonmammalshasrevealedaprominent roleformitochondriainapoptosis ã Signals from apoptosis pathways or others somehow  cause the outer mitochondrial membrane to leak,  releasing proteins that promote apoptosis • Still controversial is whether mitochondria play a  central role in apoptosis or only a subsidiary role • A cell must make a life­or­death “decision” by  somehow integrating both the “death” and “life”  (growth factor) signals that it receives Copyrightâ2002PearsonEducation,Inc.,publishingasBenjaminCummings ã Abuiltưincellsuicidemechanismisessentialto developmentinallanimals ã Similaritiesbetweentheapoptosisgenesinmammals andnematodesindicatethatthebasicmechanism evolvedearlyinanimalevolution ã Thetimelyactivationofapoptosisproteinsinsomecells functionsduringnormaldevelopmentandgrowthin bothembryosandadults ã Itispartofthenormaldevelopmentofthenervous system,normaloperationoftheimmunesystem,and normalmorphogenesisofhumanhandsandfeet Copyrightâ2002PearsonEducation,Inc.,publishingasBenjaminCummings ã Problemswiththecellsuicidemechanismmayhave healthconsequences,rangingfromminortoserious • Failure of normal cell death during morphogenesis of the  hands and feet can result in webbed fingers and toes • Researchers are also investigating the possibility that  certain degenerative diseases of the nervous system result  from inappropriate activation of the apoptosis genes • Others are investigating the possibility that some cancers  result from a failure of cell suicide which normally occurs  ifthecellhassufferedirreparabledamage,especially DNAdamage Copyrightâ2002PearsonEducation,Inc.,publishingasBenjaminCummings 7.Plantdevelopmentdependsoncell signalingandtranscriptionalregulation ã Becausethelastcommonancestorofplantsand animals,probablyasingleưcelledmicrobe,lived hundredsofmillionsofyearsago,theprocessof multicellulardevelopmentmusthaveevolved independentlyinthesetwolineages ã Therigidcellwallsofplantsmakethemovementof cellsandtissuelayersvirtuallyimpossible ã Plantmorphogenesisreliesmoreheavilyofdiffering planesofcelldivisionandonselectivecell enlargement Copyrightâ2002PearsonEducation,Inc.,publishingasBenjaminCummings ã Plant development, like that of animals, depends  on cell signaling (induction) and transcriptional  regulation • The embryonic development of most plants occurs  in seeds that are relatively inaccessible to study • However, other important aspects of plant  development are observable in plant meristems,  particularly the apical meristems at the tips of  shoots ã Thesegiverisetoneworgans,suchasleavesorthe petalsofflowers. Copyrightâ2002PearsonEducation,Inc.,publishingasBenjaminCummings ã Environmentalsignalstriggersignalưtransduction pathwaysthatconvertordinaryshootmeristemsto floralmeristems ã Afloralmeristemisabumpwiththreecelllayers,all ofwhichparticipateintheformationofaflowerwith fourtypesoforgans:carpels,petals,stamens,and sepals Fig.21.19a Copyrightâ2002PearsonEducation,Inc.,publishingasBenjaminCummings ã Toexamineinductionofthefloralmeristem, researchersgraftedstemsfromamutanttomato plantontoawildưtypeplantandthengrewnew plantsfromtheshootsatthegraftsites ã Plantshomozygousforthemutantallelefasciated(f) producesflowerswithanabnormallylargenumberof organs ã Thenewplantswerechimeras,organismswitha mixtureofgeneticallydifferentcells Copyrightâ2002PearsonEducation,Inc.,publishingasBenjaminCummings ã Some of the chimeras produced floral meristems in  which the three cell layers did not all come from  the same “parent.” • The number of organs per flower depends on genes  of the L3 (innermost) cell layer • This induced the L2 and L1 layers to form that number  of organs Fig. 21.19b Copyrightâ2002PearsonEducation,Inc.,publishingasBenjaminCummings ã Incontrasttogenescontrollingorgannumberin flowers,genescontrollingorganidentity(organ identitygenes)determinethetypesofstructure thatwillgrowfromameristem ã InArabidopsisandotherplants,organidentity genesareanalogoustohomeoticgenesinanimals ã Mutationscauseplantstructurestogrowinunusual places,suchascarpelsintheplaceofsepals ã Researcherhaveidentifiedandclonedanumberof floralidentitygenesandtheyarebeginningto determinehowtheyact. Copyrightâ2002PearsonEducation,Inc.,publishingasBenjaminCummings ã Viewedfromabove,themeristemcanbedivided intofourconcentriccircles,orwhorls,eachof whichdevelopsintoacircleofidenticalorgans ã Asimplemodelexplainshowthethreeclassesof genescandirecttheformationoffourorgantypes. ã Eachclassofgenesaffectstwoadjacentwhorls Copyrightâ2002PearsonEducation,Inc.,publishingasBenjaminCummings Fig.21.20a ã Usingnucleicacidfromclonedgenesasprobes, researchersshowedthatthemRNAresultingfrom thetranscriptionofeachclassoforganidentity geneispresentintheappropriatewhorlsofthe developingfloralmeristem ã Forexample,nucleicacidfromaCgenehybridized appreciablyonlytocellsinwhorls3and4 Copyrightâ2002PearsonEducation,Inc.,publishingasBenjaminCummings Fig.21.20b ã Themodelaccountsforthemutantphenotypeslacking activityinonegenewithoneaddition ã WhereAgeneactivityispresent,itinhibitsCandviceversa ã IfeitherAorCismissing,theothertakesitsplace Fig.21.20c Copyrightâ2002PearsonEducation,Inc.,publishingasBenjaminCummings ã Presumably,theorganidentitygenesareactingas master regulatory genes, each controlling the  activity of a battery of other genes that more  directly brings about an organ’s structure and  function • Like homeotic genes, organ identity genes encode  transcription factors that regulate other genes • Instead of the homeobox sequence in the the homeotic  genes in animals, the plant genes encode a different  DNAưbindingdomain ã Thissequenceisalsopresentinsometranscription factorsinyeastandanimals Copyrightâ2002PearsonEducation,Inc.,publishingasBenjaminCummings ... the target cell Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Fig.? ?21. 10b CHAPTER? ?21? ? THE GENETIC BASIS OF  DEVELOPMENT Section C: Genetic and Cellular Mechanisms of Pattern ... nucleotide pairs, has already been sequenced Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings CHAPTER? ?21? ? THE GENETIC BASIS OF  DEVELOPMENT Section B: Differential Gene Expression Different types of cells in an organism have the same DNA... Copyrightâ2002PearsonEducation,Inc.,publishingasBenjaminCummings Fig .21. 4 Copyrightâ2002PearsonEducation,Inc.,publishingasBenjaminCummings ã ThemouseMusmusculushasalonghistoryasa mammalian model of development • Much is known about its? ?biology,  including its genes

Ngày đăng: 28/06/2021, 15:58