44. Đề thi thử THPT QG 2021 - Toán - THPT Nguyễn Trãi - Hải Dương - L1 - có lời giải
SỞ GD & ĐT HẢI DƯƠNG KỲ THI THỬ TỐT NGHIỆP THPT LẦN KHỐI 12 TRƯỜNG THPT CHUYÊN NĂM HỌC 2020 – 2021 NGUYỄN TRÃI MƠN TỐN Thời gian làm bài: 90 phút không kể thời gian phát đề Câu 1: Hình khơng phải hình đa diện? A B C D Câu 2: Cho hàm số f x nghịch biến D Mệnh đề sau đúng? A f x1 với x1, x2 D x1 x2 f x2 B f x2 f x1 với x1, x2 D x1 x2 x2 x1 C f x1 f x2 với x1, x2 D x1 x2 D f x2 f x1 với x1, x2 D x1 x2 x2 x1 Câu 3: Tọa độ giao điểm M đồ thị hàm số y A ;0 B 2;0 Câu 4: Cho hàm số y f x có đạo hàm 2x với trục hồnh x2 C 0; 2 3 D 0; 2 \ 1 có bảng biến thiên Trang Tổng số tiệm cận ngang tiệm cận đứng đồ thị hàm số cho A B C D Câu 5: Họ nguyên hàm hàm số f x 5x x A 5x x C ln B 5x x C C 5x ln x2 C D 5x C ln Câu 6: Trong không gian Oxyz, cho hai điểm A 1;1; 1 B 2;3;2 Tọa độ vectơ AB A 1; 2; 3 B 1;2;3 C 3;4;1 D 1;2;1 Câu 7: Cho hình chóp S ABCD có đáy ABCD hình vng cạnh Biết SA vng góc với ABCD SA Thể tích khối chóp S ABCD A B C D Câu 8: Cho hàm số y x3 2x 1 có đồ thị C Hệ số góc tiếp tuyến với C điểm M 1;2 B 5 A 3 Câu 9: Cho biểu thức P x A P x C 25 D x5 , x Khẳng định sau đúng? 2 B P x Câu 10: Cho hàm số y f x liên tục C P x D P x \ x2 có bảng biến thiên sau: Mệnh đề sau đúng? A Hàm số có hai điểm cực đại, điểm cực tiểu B Hàm số có điểm cực đại, điểm cực tiểu C Hàm số có điểm cực đại, hai điểm cực tiểu D Hàm số có điểm cực đại, khơng có điểm cực tiểu Trang Câu 11: Tìm tất giá trị thực m để phương trình 2020 x m có nghiệm thực? A m B m C m D m Câu 12: Cho cấp số nhân un có u1 5, q Số hạng thứ cấp số nhân A 160 B 25 C 32 Câu 13: Cho hàm số y f x xác định, liên tục D 160 có bảng biến thiên sau: Số nghiệm phương trình f x A B C D C cos x x C D cos x x C Câu 14: Họ nguyên hàm hàm số f x sin x 4x A cos x x C B cos x x C Câu 15: Cho lăng trụ đứng ABC.A ' B ' C ' có đáy ABC vng cân A AB AC 2; cạnh bên AA ' Tính thể tích khối lăng trụ ABC.A ' B ' C ' A B 12 Câu 16: Cho hàm số y f x liên tục biến khoảng đây? A 1;0 B ;0 C D có đạo hàm f ' x x 13 x Hàm số y f x đồng C 3; D ; 1 Câu 17: Biết hàm số f x x3 3x2 9x 28 đạt giá trị nhỏ đoạn 0; 4 x0 Giá trị x0 bằng: A B C D Câu 18: Đường cong hình bên đồ thị bốn hàm số Hàm số hàm số nào? Trang A y x3 3x2 Câu 19: Đồ thị hàm số y B y x3 3x2 C y x3 3x2 D y x3 3x2 x 1 có đường tiệm cận đứng đường tiệm cận ngang? x A B C D C log2 a D 1 log2 a Câu 20: Với a số thực dương tùy ý log2 2a bằng: A 1 log2 a B 2log2 a Câu 21: Thể tích khối cầu có đường kính là: A 4 B 4 C D 32 Câu 22: Trong không gian Oxyz, điểm hình chiếu vng góc điểm A 3;2;4 mặt phẳng Oxy A P 3;2;0 B Q 3;0;4 C N 0;2;4 D M 0;0;4 Câu 23: Trong khơng gian Oxyz, góc hai vectơ j 0;1;0 u 1; 3;0 A 1200 B 300 C 600 D 1500 Câu 24: Tìm tập xác định hàm số y log 2020 3x x A D ;0 3; B D ;0 3; C D 0;3 D D 0;3 Câu 25: Trong không gian Oxyz, cho mặt cầu S : x 1 y z 1 Bán kính mặt cầu S A 18 B C D Câu 26: Cho hình lăng trụ tứ giác ABCD.A ' B ' C ' D ' có cạnh đáy a, cạnh bên a Tính cơsin góc hai mặt phẳng ABCD ABC ' ? Trang B A 300 Câu 27: Cho hàm số y C 600 D bx c ( a a, b, c ) có đồ thị hình bên Khẳng định đúng? xa A a 0, b 0, c ab B a 0, b 0, c ab C a 0, b 0, c ab D a 0, b 0, c ab Câu 28: Cho F x ax bx c e2x nguyên hàm hàm số f x 2020 x 2022 x 1 e2 x khoảng ; Tính T a 2b 4c A T 1012 B T 2012 Câu 29: Cho hàm số f x xác định A 3ln B 2ln C T 1004 D T 1018 1 , f Giá trị f 1 \ thỏa mãn f ' x 3x 3 C 3ln D 12ln Câu 30: Cho hình nón có bán kính đáy chiều cao Tính diện tích xung quanh hình nón A 12 B 9 C 30 D 15 Câu 31: Cho phương trình cos x sin x 1 * Bằng cách đặt t sin x 1 t 1 phương trình * trở thành phương trình sau đây? Trang A 2t B 2t C 2t t D 2t t Câu 32: Tìm tập xác định D hàm số y x x \ 0 A D B D 3; \ 3 C D D D Câu 33: Tìm tập nghiệm S bất phương trình ln x A S 1;1 B S 1;0 Câu 34: Tìm nguyên hàm hàm số f x C S 1;1 \ 0 D S 0;1 3x A dx ln 3x C 3x B C dx ln 3x C 3x D dx ln 3x C 3x 2 dx 3x ln 3x C Câu 35: Một cột có hình dạng hình bên (gồm khối nón khối trụ ghép lại) Chiều cao đo ghi hình, chu vi đáy 20 3p cm Thể tích cột A 13000 p cm B 5000 p cm Câu 36: Gọi S tập nghiệm phương trình log C 15000 p cm x log x 3 D 52000 p cm Tổng phần tử S a b (với a , b số nguyên) Giá trị biểu thức Q ab A B C Câu 37: Cho hình chóp tam giác có cạnh bên D a 21 mặt bên tạo với mặt đáy góc 600 Tính thể tích V khối chóp A V a3 B V a3 21 32 C V a3 D V a3 21 96 Câu 38: Cho tứ diện ABCD có AB 2, cạnh lại Khoảng cách hai đường thẳng AB CD bằng: A 13 B C D 11 Trang Câu 39: Trong năm 2020 (tính đến hết ngày 31/12/2020), diện tích rừng trồng tình A 1200 Giả sử diện tích rừng trồng tỉnh A năm tăng 6% so với diện tích rừng trồng năm liền trước Kể từ sau năm 2020, năm năm dầu tiên tỉnh A có diện tích rừng trồng năm đạt 1600 ha? A 2043 Câu 40: Cho B 2025 f x dx e e2 x A x2 C 2x C 2024 x C Khi f x dx x x B 4e x2 C Câu 41: Cho n số nguyên dương cho D 2042 C 4e x C log 2020 x log 20202 x log 20203 x D e log 2020n x x 2 x C 4 210 log 2020 x với x dương, x Tính giá trị biểu thức P 3n A P 16 B P 61 C P 46 D P 64 Câu 42: Trong khơng gian cho hình chóp S ABCD có đáy ABCD hình thang vng A D với AB AD 2, CD 1, cạnh bên SA SA vuông góc với đáy Gọi E trung điểm AB Tính diện tích Smc mặt cầu ngoại tiếp hình chóp S.BCE A Smc 41 B Smc 14 C Smc 41 D Smc 14 x có đồ thị C Gọi A, B xA xB điểm C mà tiếp tuyến A, B x 1 song song với AB 2 Tích xA xB Câu 43: Cho hàm số y A 2 B C D Câu 44: Bác thợ hàn dùng kim loại dài m để uốn thành khung cửa sổ có dạng hình vẽ Gọi r bán kính nửa đường trịn Tìm r (theo mét) để diện tích tạo thành đạt giá trị lớn A m B 0,5 m C m 4 D m 4 Câu 45: Cho hình lăng trụ ABC.A ' B ' C ' có AA ' 13a, tam giác ABC vuông C ABC 300 , góc cạnh bên CC ' mặt đáy ABC 600 Hình chiếu vng góc B ' lên mặt phẳng ABC trùng với trọng tâm tam giác ABC Thể tích khối tứ diện A ' ABC theo a Trang 33 39a3 A 13a3 B 99 13a3 C 27 13a3 D x 1 x x 1 y e x 2021 3m ( m tham số thực) có đồ thị x x 1 x C2 Có số nguyên m thuộc 2021;2020 để C1 C2 cắt điểm phân Câu 46: Cho hai hàm số y C1 biệt? A 2694 B 2693 C 4041 D 4042 Câu 47: Cho hàm số f x Hàm số y f ' x có bảng biến thiên sau: Bất phương trình f x e x m với x 1;1 A m f 1 e B m f 0 C m f 0 D m f 1 e Câu 48: Cho hình chóp S ABCD có đáy ABCD hình bình hành tích V Gọi M điểm thuộc SM Mặt phẳng chứa AM cắt hai cạnh SB, SD P Q Gọi V ' cạnh SC cho SC SP SQ V' x; y; x; y 1 , Khi tỉ số thể tích S APMQ; đạt giá trị nhỏ nhất, tìm giá trị tổng SB SD V x y A B C D Câu 49: Tổ lớp học có 13 học sinh gồm học sinh nam có bạn A, học sinh có bạn B xếp ngẫu nhiên vào 13 ghế hàng ngang để dự lễ sơ kết học kì Tính xác suất để xếp bạn nữ gần có bạn nam, đồng thời bạn A khơng ngồi cạnh bạn B? Trang A 6453 B 1287 C 6435 D 1278 Câu 50: Cho hàm số F x có F 0 Biết y F x nguyên hàm hàm số y f x có đồ thị hình vẽ Số điểm cực trị hàm số G x F x x A B C D -HẾT -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Trang ĐÁP ÁN 1-C 2-D 3-A 4-A 5-A 6-B 7-D 8-D 9-D 10-B 11-B 12-D 13-D 14-C 15-A 16-A 17-C 18-C 19-A 20-A 21-B 22-A 23-D 24-C 25-C 26-B 27-B 28-A 29-B 30-D 31-B 32-C 33-C 34-D 35-A 36-D 37-A 38-D 39-B 40-C 41-D 42-D 43-C 44-C 45-B 46-C 47-B 48-A 49-C 50-D HƯỚNG DẪN GIẢI CHI TIẾT Câu 1: Chọn C Mỗi cạnh hình đa diện cạnh chung mặt hình đa diện Câu 2: Chọn D Câu 3: Chọn A Hoành độ giao điểm đồ thị hàm số với trục hoành nghiệm phương trình 2x 3 x Tọa x2 độ giao điểm M ;0 Câu 4: Chọn A Tập xác định D \ 1 Tiệm cận đứng x 1 lim f x , lim f x x 1 x 1 Trang 10 Ta có y ' c ab x a Dựa vào đồ thị ta thấy hàm số nghịch biến khoảng xác định, c ab Câu 28: Chọn A Xét F x 2020 x 2022 x 1 e x dx du 4040 x 2022 dx u 2020 x 2022 x Đặt 2x 2x dv e dx v e Do F x 1 2020 x 2022 x 1 e2 x 4040 x 2022 e x dx C 2 Đặt I 4040 x 2022 e2 x dx du 4040dx u1 4040 x 2022 Đặt 2x 2x dv1 e dx v1 e Do I 1 4040 x 2022 e2 x 2020 e2 x dx 4040 x 2022 e2 x 1010e2 x 2020 x 1 e2 x 2 F x 1 2020e2 x 2022 x 1 e2 x 2020 x 1 e2 x C 2 1 1010 x 2e2 x 1011xe2 x e2 x 1010 xe2 x e x C 2 1010 x 2e2 x xe2 x e2 x C 1010 x x 1 e2 x C Theo đề bài, ta có a 1010, b 1, c 1, C Vậy T 1010 1012 Câu 29: Chọn B Ta có: f x f ' x dx dx ln 3x C 3x Vì: f 0 C f x ln 3x 1 Vậy: f 1 ln 2ln Trang 15 Câu 30: Chọn D Ta có: SD 5, diện tích xung quanh hình nón: Sxq Rl 15 Câu 31: Chọn B Ta có: cos x sin x 1 2sin x sin x 2sin x sin x Đặt: t sin x 1 t 1 Phương trình trở thành: 2t t 2t t Câu 32: Chọn C Điều kiện: x x x Vậy tập xác định: D \ 3 Câu 33: Chọn C x x 1;1 \ 0 Ta có ln x x 1 x Vậy tập nghiệm bất phương trình S 1;1 \ 0 Câu 34: Chọn D Ta có dx d 3x 1 ln 3x C ln 3x C 3x 3 3x Câu 35: Chọn A Ta có chu vi đáy 20 3p nên bán kính đáy cột r 20 p 10 p 2 10 p 12000 p Thể tích phần khối trụ V1 r h1 40 2 10 p 1000 p Thể tích phần khối nón V2 r h2 10 3 Trang 16 Vậy thể tích cột V V1 V2 13000 p cm Câu 36: Chọn D 2 x x Điều kiện phương trình cho x x Ta có log x 2 log x 3 2log x log x 3 2 2 2 log2 2x 2 log2 x 3 log2 x 2 x 3 x x 3 2 x2 8x x x 3 x x 2 x x 3 2 2 x n 2 x2 8x x l x x x n Vậy tổng nghiệm phương trình cho Suy a 4, b Q ab Câu 37: Chọn A Gọi H , I trung điểm đoạn thẳng AB, BC ABC nên AI BC S ABC hình chóp tam giác nên SBC cân S , SI BC SBC ABC BC SI BC AI BC SBC , ABC SI , AI SIA 60 Trang 17 Gọi AI CH O O trọng tâm ABC S ABC hình chóp tam giác nên SO ABC O Trong SOI vng O , ta có tan 600 SO SO OI tan 600 AI AI OI 3 Áp dụng định lý pytago vào SAO vuông O ta có 2 a 21 SA SO AO AI AI 3 2 21a 3 AI AI 3a AI 3a SO AI 3a a 9 3 Mà AI SABC AI 3a BC BC 2a 3 1 AI BC 3a.2a 3a 2 1 a3 Vậy VS ABC SO.S ABC a 3.a 3 Câu 38: Chọn D Gọi M , N trung điểm cạnh AB, DC BM 1 AB 2 Trang 18 ACD, BCD có độ dài cạnh nên AN BN Khi MN AB ABC ABD CM DM MN CD Vậy khoảng cách hai đường thẳng AB CD MN Áp dụng định lý pytago vào tam giác vuông MNB ta có: MN MB2 BN MN BN MB2 12 1 11 Câu 39: Chọn B Trong năm 2020, diện tích rừng trồng tình A T 1200 Trong năm 2021, diện tích rừng trồng tình A T1 T 6%T T 1 6% Trong nam 2022, diện tích rừng trồng tình A T2 T1 6%T1 T1 1 6% T 1 6% … Trong năm 2020 n, diện tích rừng trồng tỉnh A Tn T 1 6% n Khi đó, diện tích rừng trồng đạt 1600 Tn 1600 T 1 6% 1600 1200.1,06n 1600 n n log1,06 4,94 nmin Vậy năm 2025 năm tỉnh A có diện tích rừng trồng năm đạt 1600 Câu 40: Chọn C Ta có f x dx e 2x x C f x e x x C ' 2e x x t 1 Đặt x t suy f x f t 2e t Khi f x 2e Ta có x x x 1 x f x dx 2e x dx 4e x C Câu 41: Chọn D Ta có log 2020 x log 2020 x log 20202 x log 2020 x log 20203 x log2020 x log 2020n x n log2020 x 210 log 2020 x 210 log2020 x Trang 19 n 210 log 2020 n log 2020 x n 210 n n 1 n 20 210 n2 n 420 n 21 Vì n số nguyên dương nên n 20 Vậy P 3n 64 Câu 42: Chọn D Tứ giác AECD có AE / /CD, AE CD AD AE nên tứ giác AECD hình chữ nhật CE AB Lại có SA ABCD SA CE CE SE CE SE CE SEB Ta có CE EB Trang 20 Gọi N tâm đường tròn ngoại tiếp tam giác ESB Từ E dựng đường thẳng d song song với CE d SEB d trục đường tròn ngoại tiếp tam giác ESB Gọi M trung điểm CE Trong mặt phẳng CE; d dựng đường trung trực đoạn thẳng CE Đường thẳng cắt d I Vì I d nên IE IS IB Vì I thuộc đường trung trực đoạn CE nên IC IE IE IS IB IC Vậy I tâm mặt cầu ngoại tiếp hình chóp S.BCE Tứ giác INEM hình chữ nhật IE IN NE ME NE Xét tam giác SEB có SB SA2 SB2 2; SE SA2 AE 5; BE cos SEB SE EB SB 2 sin SEB 2.SE.EB 5 Theo định lí sin tam giác SEB ta có EN Do IE EN ME EN SB sin SEB EN 10 CE 14 4 Vậy diện tích Smc mặt cầu ngoại tiếp hình chóp S.BCE Smc 4 IE 14 Câu 43: Chọn C Hàm số y x 1 x 1 x 1 \ 1 Tập xác định: D Ta có: y ' x 1 Gọi xA m; xB n ( m n m : n 1) y A m n ; yB m 1 n 1 * Tiếp tuyến A song son với tiếp tuyến B m 1 n 1 m n m n (loaïi) 2 m 1 n 1 m n m n Trang 21 n m * AB 2 AB m n 8 m 1 n 1 2 m n m n mn m n 1 2 m n 4mn m n 4mn mn m n 1 Thay m n vào 1 ta được: 4mn mn 2 4mn mn 1 4mn 4 mn 1 mn 1 8 2 mn 1 mn 1 mn 2nm 1 2nm mn mn 2mn 2mn mn mn xA xB 2 Vậy tích xA.xB Câu 44: Chọn C Vì kim loại dài m nên ta có: 2h 2r r h 2r r 1 2r r 4 r 4r Diện tích khung cửa sổ S r 2rh r 2r 2 2 Xét hàm số S r 4 r 4r khoảng 0; S ' r r r 4 r 4 Bảng biến thiên: Ta có: max S S (thỏa mãn) 0;2 4 4 Vậy với r diện tích tạo thành đạt giá trị lớn 4 Câu 45 (VD): Trang 22 Phương pháp: - Chứng minh CC '; ABC BB '; ABC 600 , xác định góc đường thẳng mặt phẳng góc đường thẳng hình chiếu mặt phẳng - Sử dụng tỉ số lượng giác góc nhọn tam giác vng tính B ' G, BM ( M trung điểm AC ) - Đặt BC x, tính MC theo x - Áp dụng định lí Pytago tam giác vng BCM tìm x theo a - Tính VA ' ABC B ' G.SABC Cách giải: Ta có CC '/ / BB ' CC '; ABC BB '; ABC 600 Vì B ' G ABC nên GB hình chiếu vng góc B ' B lên ABC BB '; ABC BB '; BG B ' BG 600 Xét tam giác vuông BB ' G ta có: BB ' AA ' 13a B ' G BB '.sin600 a 39 BG BB '.cos600 a 13 BM 3a 13 BG 2 Đặt BC x AC BC.tan 300 x x MC AC Áp dụng định lí Pytago tam giác vng BMC ta có: BM MC BC 2 3a 13 x x Trang 23 117a 13x2 12 x2 27a2 x 3a BC AC 3a 1 9a Nên SABC AC.BC 3a.3a 2 1 9a 9a3 13 Vậy VA' ABC B ' G.SABC a 39 3 2 Chọn B Câu 46 (VDC): Phương pháp: - Cơ lập m, để phương trình dạng f x m - Khảo sát lập BBT hàm số f x , từ suy m thỏa mãn Cách giải: TXĐ: D \ 0; 1; 2 Xét phương trình hồnh độ giao điểm: x 1 x x 1 e x 2021 3m x x 1 x x 1 x x 1 x e 3m 2021 x x 1 x Xét f x x 1 x x 1 x e x x 1 x f ' x 1 e x 0x D 2 x x 1 x Bảng biến thiên: Trang 24 Dựa vào bảng biến thiên ta thấy đồ thị hàm số cắt điểm phân biệt 3m 2021 m 2018 Kết hợp điều kiện đề ta có: 672 m 2020 m 2020; 2019; 2018; ;2020 Vậy có 4041 giá trị thỏa mãn Chọn C Câu 47: Chọn B f x e x m, x 1;1 f x e x m, x 1;1 2 Xét g x f x e x 1;1 + Lập bảng biến thiên hàm số y f x 1;1 Ta có Max f x f 1;1 + Khi x 1;1 x 0;1 e x 1; e Max e x 1 2 1;1 Suy Max g x g f 1;1 Vậy m f x e x , x 1;1 m f Câu 48: Chọn A Trang 25 Do ABCD hình bình hành, A, M , Q, P đồng phẳng Nên ta có: SB SD SC SA 1 1 SP SQ SM SA x y SB SD SC SA 1 1 V ' SP SQ SM SA x y Ta có: xy SB SD SC SA 1 V .3.1 SP SQ SM SA x y Áp dụng bất đẳng thức Cauchy: Đẳng thức xảy 1 V' xy x y V xy 1 x y x y x y Chứng minh công thức sử dụng phía trên: Cho hình chóp S ABCD có đáy hình bình hành; hình chóp tứ giác S.A ' B ' C ' D ' có A ', B ', C ', D ' nằm cạnh SA, SB, SC , SD Đặt x SA SB SC SD ,y ,z ,t SA SB ' SC ' SD ' Khi ta có: x z y t 1 VS A' B 'C ' D x y z t VS ABCD xyzt 2 Chứng minh (1) Chứng minh x z y t Trang 26 Kẻ AK / / A ' C ', K SO CJ / / A ' C ', J SO Ta có Và SA SK SA ' SI SC SJ SA SC SK SJ SK SJ SO OK SO OJ 2SO 1 SC ' SI SA ' SC ' SI SI SI SI SI (do AK / /CJ OK OA OK OJ ) OJ OC Tương tự ta tính Từ 1 , suy ra: (2) Chứng minh: Ta có SB SD 2SO SB ' SD ' SI 2 SA SC SB SD x z y t SA ' SC ' SB ' SD ' VS A' B 'C ' D ' x y z t VS ABCD xyzt VS A' B 'C ' D ' VS A'C ' D ' VS A 'C ' B ' SA ' SC ' SD ' SA ' SC ' SB ' VS ABCD 2VS ACD 2VS ACB SA SC SD SA SC SB SA ' SC ' SB ' SD ' 1 1 y t x y z t (do x z y t ) SA SC SB SD x z y t xyzt xyzt Câu 49: Chọn C Để cho tiện lập luận, ta đánh số 13 ghế theo thứ tự từ đến 13 Ta có số phần tử khơng gian mẫu n 13! 6227020800 Xét biến cố H: “xếp bạn nữ gần có bạn nam, đồng thời bạn A không ngồi cạnh bạn B” Xét biến cố K: “xếp bạn nữ gần có bạn nam” Xét biến cố G: “xếp bạn nữ gần có bạn nam, đồng thời bạn A ngồi cạnh bạn B” Ta tính số phần tử biến cố K sau: Trang 27 - Xếp bạn nữ vào ghế có số 1, 4, 7, 10, 13 có 5! cách xếp - Xếp bạn nam vào ghế lại có 8! cách xếp Do n K 5!.8! Ta tính số phần tử biến cố G sau: Trường hợp 1: Bạn B xếp ghế có số 13 - Xếp bạn nữ B vào ghế có số 13 có cách xếp - Xếp bạn nữ lại vào ghế có số 4, 7, 10, 13 (nếu bạn B xếp ghế số 1) vào ghế có số 1, 4, 7, 10 (nếu bạn B xếp ghế số 13) có 4! cách xếp - Xếp bạn nam A vào ngồi cạnh bạn B có cách xếp - Xếp bạn nam vào ghế cịn lại có 7! cách xếp Trường hợp 2: Bạn B xếp ghế có số 4, 10 - Xếp bạn nữ B vào ghế có số 4, 10 có cách xếp - Xếp bạn nữ cịn lại vào ghế có số 1, 7, 10, 13 (nếu bạn B xếp ghế số 4) vào ghế có số 1, 4, 10, 13 (nếu bạn B xếp ghế số 13) ghế có số 1, 4, 7, 13 (nếu B xếp ghế số 10) có 4! cách xếp - Xếp bạn nam A vào ngồi cạnh bạn B có cách xếp - Xếp bạn nam vào ghế cịn lại có 7! cách xếp Do n G 2.4!.7! 3.4!.2.7! Từ suy n H n K n G 5!.8! 2.4!.7! 3.4!.2.7! 3870720 Vậy xác suất cần tìm p H nH 3870720 n 6227020800 6435 Câu 50: Chọn D Xét hàm số H x F x6 x3 Ta có H ' x x5 F ' x6 3x x f x 3x 3x 2 x f x 1 , x H ' x x f x 1* Xét hàm số h x x3 f x có h ' x x f x6 12 x3 f ' x6 Dựa vào đồ thị ta thấy f ' x với x 0, h ' x với x Mặt khác lim h x , lim h x Vậy * x x0 ( x0 0, f x6 0, x ) x x Bảng biến thiên H x : Trang 28 Từ suy bảng biến thiên G x H x sau: Dựa vào bảng biến thiên, ta thấy G ' x đổi dấu lần nên hàm số G x F x x có điểm cực trị Trang 29 ... không giải thích thêm Trang ĐÁP ÁN 1-C 2-D 3-A 4-A 5-A 6-B 7-D 8-D 9-D 10-B 11-B 12-D 13-D 14-C 15-A 16-A 17-C 18-C 19-A 20-A 21-B 22-A 23-D 24-C 25-C 26-B 27-B 28-A 29-B 30-D 31-B 32-C 33-C 34-D... 25-C 26-B 27-B 28-A 29-B 30-D 31-B 32-C 33-C 34-D 35-A 36-D 37-A 38-D 39-B 40-C 41-D 42-D 43-C 44-C 45-B 46-C 47-B 48-A 49-C 50-D HƯỚNG DẪN GIẢI CHI TIẾT Câu 1: Chọn C Mỗi cạnh hình đa diện cạnh... ghế có số 13 - Xếp bạn nữ B vào ghế có số 13 có cách xếp - Xếp bạn nữ lại vào ghế có số 4, 7, 10, 13 (nếu bạn B xếp ghế số 1) vào ghế có số 1, 4, 7, 10 (nếu bạn B xếp ghế số 13) có 4! cách xếp -