(Luận văn thạc sĩ) tia trắc địa yếu trong không gian các thế vị kahler và lớp e(x,w)

63 6 0
(Luận văn thạc sĩ) tia trắc địa yếu trong không gian các thế vị kahler và lớp e(x,w)

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH Nguyễn Thị Tuyết Như TIA TRẮC ĐỊA YẾU TRONG KHÔNG GIAN CÁC THẾ VỊ K𝑨̈HLER VÀ LỚP 𝜺(𝑿, 𝝎) LUẬN VĂN THẠC SĨ TOÁN HỌC Thành phố Hồ Chí Minh -2019 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH Nguyễn Thị Tuyết Như TIA TRẮC ĐỊA YẾU TRONG KHÔNG GIAN CÁC THẾ VỊ K𝑨̈HLER VÀ LỚP 𝜺(𝑿, 𝝎) Chun ngành : Tốn giải tích Mã số : 8460102 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC : TS NGUYỄN VĂN ĐÔNG Thành phố Hồ Chí Minh -2019 ▲❮■ ❈❆▼ ✣❖❆◆ ❍å❝ ✈✐➯♥ ①✐♥ ❝❛♠ ✤♦❛♥ ✤➙② ❧➔ ❝æ♥❣ tr➻♥❤ ♥❣❤✐➯♥ ❝ù✉ ❝õ❛ r✐➯♥❣ ❤å❝ ✈✐➯♥✳ ▲✉➟♥ ✈➠♥ ✤÷đ❝ ❤♦➔♥ t❤➔♥❤ ❜ð✐ ❝→ ♥❤➙♥ ữợ sỹ ữợ ổ t t ỵ ❝→❝ ❦➳t q✉↔ tr➼❝❤ ❞➝♥✱ sû ❞ö♥❣ tr♦♥❣ ❧✉➟♥ ✈➠♥ ữủ ỗ ố t ró r ố ỗ t ♥➠♠ ✷✵✶✾ ❍å❝ ✈✐➯♥ t❤ü❝ ❤✐➺♥ ◆❣✉②➵♥ ❚❤à ❚✉②➳t ◆❤÷ ▲❮■ ❈⑩▼ ❒◆ ▲✉➟♥ ✈➠♥ ✤÷đ❝ ❤♦➔♥ t❤➔♥❤ t↕✐ tr÷í♥❣ sữ ố ỗ ữợ sỹ ữợ ổ ♥➔②✱ tỉ✐ ①✐♥ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ s➙✉ s➢❝ tợ ữớ t t tổ r➜t ♥❤✐➲✉ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣ ✈➔ t❤ü❝ ❤✐➺♥ ❧✉➟♥ ✈➠♥✳ ❚ỉ✐ ①✐♥ ❝❤➙♥ t❤➔♥❤ ❝→♠ ì♥ ✤➳♥ ỵ t ổ tr ỗ tớ sỷ õ õ ỵ ❦✐➳♥ ❣✐ó♣ ❧✉➟♥ ✈➠♥ ✤÷đ❝ ❤♦➔♥ ❝❤➾♥❤ ❤ì♥✳ ❚ỉ✐ ①✐♥ ❝→♠ ì♥ t➜t ❝↔ ❝→❝ t❤➛②✱ ❝ỉ ✤➣ ♥❤✐➺t t➻♥❤ ❣✐↔♥❣ ❞↕②✱ tr✉②➲♥ ✤↕t ❦✐➳♥ t❤ù❝ ✈➔ ❣✐ó♣ ✤ï tỉ✐ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣✳ ❚ỉ✐ ①✐♥ ❝→♠ ì♥ ỵ t ổ tr Pỏ trữớ ữ ố ỗ ✤➣ t↕♦ ✤✐➲✉ ❦✐➺♥ t❤✉➟♥ ❧đ✐ ❝❤♦ tỉ✐ ❤♦➔♥ t❤➔♥❤ ❝❤÷ì♥❣ tr➻♥❤ ❤å❝ t➟♣ ✈➔ t❤ü❝ ❤✐➺♥ ❧✉➟♥ ✈➠♥ ♥➔②✳ ❳✐♥ ❝→♠ ì♥ ❝→❝ ❛♥❤ ❝❤à✱ ❝→❝ ❜↕♥ ❤å❝ ✈✐➯♥ ♥❣➔♥❤ t♦→♥ ✤➣ ✤ë♥❣ ✈✐➯♥ ❣✐ó♣ ✤ï tỉ✐ ✈➔ ❝â ỵ õ õ tr q tr t ❧✉➟♥ ✈➠♥✳ ❉♦ tr➻♥❤ ✤ë ✈➔ t❤í✐ ❣✐❛♥ ❝â ❤↕♥ ❝õ❛ ❜↔♥ t❤➙♥ ♥➯♥ ❧✉➟♥ ✈➠♥ ❦❤æ♥❣ tr→♥❤ ❦❤ä✐ s❛✐ sât✳ ❚ỉ✐ r➜t ♠♦♥❣ ♥❤➟♥ ✤÷đ❝ sü ❝❤➾ ❜↔♦ ✈➔ õ ỵ tứ qỵ t ổ t ỡ ố ỗ ❈❤➼ ▼✐♥❤✱ ♥❣➔② ✷✼ t❤→♥❣ ✵✾ ♥➠♠ ✷✵✶✾ ❍å❝ ✈✐➯♥ t❤ü❝ ❤✐➺♥ ◆❣✉②➵♥ ❚❤à ❚✉②➳t ◆❤÷ ▼ư❝ ❧ư❝ ▼ð ✤➛✉ ✶ ✶ ❑✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à ✹ ✶✳✶ ✶✳✷ P❤➨♣ t➼♥❤ ✈✐ ♣❤➙♥ tr➯♥ ✤❛ t↕♣ ❦❤↔ ✈✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹ ✶✳✶✳✶ ✹ ✣❛ t↕♣ ❦❤↔ ✈✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✶✳✷ ✣❛ t↕♣ ❘✐❡♠❛♥♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻ ✶✳✶✳✸ ❈→❝ ❞↕♥❣ ✈✐ ♣❤➙♥ tr➯♥ ✤❛ t↕♣ ❦❤↔ ✈✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻ ✶✳✶✳✹ ❉á♥❣ tr➯♥ ❝→❝ ✤❛ t↕♣ ❦❤↔ ✈✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✵ ✶✳✶✳✺ ✣↕♦ ❤➔♠ ♥❣♦➔✐ ✈➔ t➼❝❤ ♥❣♦➔✐ ❝õ❛ ❞á♥❣ tr➯♥ ✤❛ t↕♣ ❦❤↔ ✈✐ ✳ ✶✶ P❤➨♣ t➼♥❤ ✈✐ ♣❤➙♥ ♣❤ù❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✷ ✶✳✷✳✶ ✣❛ t↕♣ ♣❤ù❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✷ ✶✳✷✳✷ ❉↕♥❣ ✈✐ ♣❤➙♥ tr➯♥ ✤❛ t↕♣ ♣❤ù❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✸ ✶✳✷✳✸ ✶✳✷✳✹ ❉á♥❣ tr➯♥ ✤❛ t↕♣ ♣❤ù❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✻ ỏ ữợ tr t ự ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ăr t t t ỏ ữợ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✽ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✾ ✷ ❚r➢❝ ✤à❛ ②➳✉ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ❝→❝ t❤➳ ăr tr ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✷ ✷✳✷ ❈→❝❤ ỹ ữợ tr rtss ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✹ ✷✳✸ P❤✐➳♠ ❤➔♠ ♥➠♥❣ ❧÷đ♥❣ ❆✉❜✐♥✲▼❛❜✉❝❤✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✺ ✷✳✹ ❈❤✉➞♥ t➢❝ ❤â❛ tr➢❝ ✤à❛ ②➳✉ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ tr ợ ữủ (X, ω) ✷✾ ✸✹ ε(X, ω) ✸✳✶ ▲ỵ♣ ✸✳✷ ❈→❝❤ ①➙② ❞ü♥❣ t✐❛ tr➢❝ ✤à❛ ②➳✉ ✸✳✸ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✺ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✶ ă ✳ ❚✐❛ tr➢❝ ✤à❛ ②➳✉ ❝õ❛ ❘♦ss ✈➔ ❲✐tt✲◆②str♦ ✹✶ ✸✳✷✳✷ ▼ët ❝→❝❤ ①➙② ❞ü♥❣ ❝→❝ t✐❛ tr➢❝ ✤à❛ ②➳✉ ❝õ❛ ❚❛♠→s ❉❛r✈❛s ✹✺ P❤➨♣ ❜✐➳♥ ✤ê✐ ▲❡❣❡♥❞r❡ ♥❣÷đ❝ ❝õ❛ ♠ët t✐❛ tr➢❝ ✤à❛ ②➳✉ ✈➔ ε(X, ω) ✹✾ ❑➳t ❧✉➟♥ ✺✸ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ✺✹ ❉❆◆❍ ▼Ö❈ ❈⑩❈ I tỷ ỗ t Ck ổ ❝→❝ ❤➔♠ ❦❤↔ ✈✐ k C s (Ω, R) ❚➟♣ ❤đ♣ ❝→❝ ❤➔♠ t❤✉ë❝ ❧ỵ♣ Cs TX,a ❑❤ỉ♥❣ ❣✐❛♥ t✐➳♣ ①ó❝ ❝õ❛ ❦❤ỉ♥❣ ❣✐❛♥ ∗ TX,a ❑❤ỉ♥❣ ❣✐❛♥ ✤è✐ t✐➳♣ ①ó❝ ∗ TX , TX P❤➙♥ t❤ỵ t✐➳♣ ①ó❝ ❝õ❛ TX = ∪x∈X TX,x |I| p ∗) TX p− du ✣↕♦ ❤➔♠ ♥❣♦➔✐ ❝õ❛ ♠ët u ✈➔ a Cs v p− ❞↕♥❣ t❤✉ë❝ ❧ỵ♣ Cs u p HdR (M ) ố ỗ tr psL ỷ p (X) ❑❤æ♥❣ ❣✐❛♥ Dp (K) ❑❤æ♥❣ ❣✐❛♥ ❝♦♥ ❝õ❛ Dp (X) Dp (X) := ∪K Dp (K) (Dp (X)) ✣è✐ ♥❣➝✉ tỉ♣ỉ ❝õ❛ ❝♦❞✐♠M ✣è✐ ❝❤✐➲✉ ❝õ❛ O(Ω) ❚➟♣ ❤đ♣ ❝→❝ ❤➔♠ ❝❤➾♥❤ ❤➻♥❤ tr➯♥ (X) t↕✐ ❞↕♥❣ ✈✐ ♣❤➙♥ t❤✉ë❝ ❧ỵ♣ ❚➼❝❤ ♥❣♦➔✐ ❝õ❛ p,q X ∗ =∪ ∗ TX x∈X TX,x ✈➔ ❑❤æ♥❣ ❣✐❛♥ ❝õ❛ ●✐→ ❝õ❛ ω X u ∧ vv s✉✉♣u tr➯♥ I ✣ë ❞➔✐ ❝õ❛ C s (X, ❧➛♥ ✈ỵ✐ ❝→❝ ✤↕♦ ❤➔♠ ❧✐➯♥ tư❝ M psL (u) = supx∈L max|I|=p,|α|≤s |Dα uI (x)| p C ∞ (X, ∗) TX εp (X) ✤÷đ❝ tr❛♥❣ ❜à tỉ♣ỉ ①→❝ ✤à♥❤ ❜ð✐ ♥û❛ ❝❤✉➞♥ ✈ỵ✐ ❝→❝ ♣❤➛♥ tû ❝â ❣✐→ ❝♦♠♣❛❝t tr♦♥❣ Dp (X) M ❚➟♣ ❤ñ♣ ❝→❝ ❞↕♥❣ ✈✐ ♣❤➙♥ ❦✐➸✉ Ω (p, q) d, δ, δ ❈→❝ t♦→♥ tû ✈✐ ♣❤➙♥ ♥❣♦➔✐ P SH(Ω) ❚➟♣ ❤ñ♣ ❝→❝ ỏ ữợ tr Hua ss ự ❝õ❛ ■♠z P❤➛♥ ↔♦ ❝õ❛ ❘❡z P❤➛♥ t❤ü❝ ❝õ❛ P SH(X, ω) ❚➟♣ ❤ñ♣ ❝→❝ ❤➔♠ u z z ω ỏ ữợ K psL su q ❤â❛ ♥û❛ ❧✐➯♥ tö❝ tr➯♥ ❝õ❛ Sα,β Sα,β = {s ∈ C : α < ❘❡s < β} C ∞ (X) ❚➟♣ ❤đ♣ ❝→❝ ❤➔♠ trì♥ tr➯♥ H ❑❤ỉ♥❣ ❣✐❛♥ ❝→❝ t❤➳ ✈à trì♥ tr➯♥ u X X ✣↕♦❤↕♣ ❤✐➺♣ ❜✐➳♥ AM (.) P❤✐➳♠ ❤➔♠ ❆✉❜✐♥ ▼❛❜✐❝❤✐ u(u0 , u1 ) ✣♦↕♥ tr➢❝ ✤à❛ ②➳✉ ♥è✐ ε(X, ω) ▲ỵ♣ ♥➠♥❣ ❧÷đ♥❣ ❈❛♣ω (.) ❉✉♥❣ ❧÷đ♥❣ ▼♦♥❣❡✲❆♠♣❡r❡ P (b0 ) P (b0 ) = sup{ψ ≤ b0 : ψ ∈ P SH(X, ω)}; P (b0 , b1 ) P (b0 , b1 ) = P (min{b0 , b1 }) = sup{ψ ≤ min{b0 , b1 }|ψ ∈ P SH(X, ω)} P[ψ] (φ) ❇❛♦ ❝õ❛ φ u0 ✈➔ u1 ✤è✐ ✈ỵ✐ ❝→❝ ❦✐➸✉ ❦➻ ❞à ❝õ❛ ψP[ψ] (φ) = usc (limD→+∞ P (ψ + D, φ)) ▼ð ✤➛✉ (X n , ω) sỷ ữủ ăr t tổ ởt t n ợ (X, ) ữủ ữ ợ ỏ ữợ P SH(X, ω) ❦❤ỉ♥❣ ♥❤➜t t❤✐➳t ❜à ❝❤➦♥✳ ✣➙② ❝ơ♥❣ ❧➔ ❧ỵ♣ ❧ỵ♥ ♥❤➜t ❝→❝ ❤➔♠ ω ✲✤❛ ✤✐➲✉ ❤á❛ ữợ tr õ t tỷ r ự tèt✳ ◆â ✤÷đ❝ sû ❞ư♥❣ ✤➸ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤ ▼♦♥❣❡✲❆♠♣➧r❡ t♦➔♥ ❝ư❝ ✈ỵ✐ ❞ú ❧✐➺✉ t❤ỉ✳ ❈→❝ ♣❤➛♥ tû v ∈ ε(X, ω) t❤÷í♥❣ ❦❤ỉ♥❣ ❜à ❝❤➦♥ ♥❤÷♥❣ ❝â ❝→❝ ❦ý ❞à r➜t ♥❤➭✳ ✣➦❝ ❜✐➺t✱ t❤❡♦ ❬✶✸❪ ❈♦r♦❧❧❛r② ✶✳✽✱ t↕✐ x∈X ❜➜t ❦ý sè ▲❡❧♦♥❣ ❝õ❛ v ❜➡♥❣ ❦❤æ♥❣✳ ❚✉② ♥❤✐➯♥✱ ♥❤÷ ✤➣ ♥❤➟♥ ①➨t tr♦♥❣ ❬✶✶❪ t➼♥❤ ❝❤➜t ổ trữ ợ (X, ) s rs tr♦♥❣ ❜➔✐ ❜→♦ ❬✼❪ ✤➣ tr➻♥❤ ❜➔② ♠ët ❦➳t q✉↔ ❧➜♣ ✤➛② ❧é ❤ê♥❣ ♥➔②✱ ♥❣❤➽❛ ❧➔ ✤➦❝ tr÷♥❣ ❝→❝ ♣❤➛♥ ε(X, ω) tû ❝õ❛ t❤❡♦ t➼♥❤ ♥❤➭ ❝õ❛ ❝→❝ ❦ý ❞à ❝õ❛ ❝❤ó♥❣✳ ✣➸ t❤ü❝ ❤✐➺♥ ✈✐➺❝ ♥➔②✱ t→❝ ❣✐↔ ❜➔✐ ❜→♦ ✤÷❛ r❛ ♠ët ❝→❝❤ ①➙② ❞ü♥❣ ❝→❝ t ăr t ợ t t tr ✤à❛ ②➳✉ tr♦♥❣ ❦❤ỉ♥❣ ❣✐❛♥ ❝→❝ t❤➳ ✈à ❑❛ ❧ỵ♣ ε(X, ω)✳ ε(X, ω) ⑩♣ ❞ö♥❣ sü ①➙② ❞ü♥❣ ♥➔②✱ t→❝ ❣✐↔ ✤➣ ❝❤ù♥❣ ♠✐♥❤ ♠ët ✤➦❝ tr÷♥❣ ❝õ❛ t❤❡♦ ❝→❝ ❜❛♦ tr➯♥✳ ❑➼ ❤✐➺✉ ❜à ❝❤➦♥ ✈➔ AM (max{−l, ψ}) ✱ l l→+∞ cψ = lim AM (.) ψ ∈ P SH(X, ω) ❧➔ ♥➠♥❣ ❧÷đ♥❣ ❆✉❜✐♥✲▼❛❜✉❝❤✐ ❝õ❛ ♠ët ữợ trữ t ợ tr♦♥❣ ✤â ε(X, ω) ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤ ❧➔ ❝â t❤➸ ❦❤æ♥❣ ω ✲✤❛ ✤✐➲✉ ❤á❛ ψ ∈ ε(X, ω) ♥➳✉ ✈➔ cψ = 0✳ ❇➢t ✤➛✉ tø ♠ët ✤♦↕♥ tr➢❝ ữợ (, ) t ut P SH(X, ω) ✈✐➺❝ ①➙② ❞ü♥❣ ♠ët t✐❛ tr➢❝ ✤à❛ ②➳✉ tê♥❣ q✉→t tr➯♥ ❣➦♣ trð ♥❣↕✐ ✈➻ ♥â✐ ❝❤✉♥❣ ❣✐ỵ✐ u := lim ut t+ ổ tỗ t ♣❤ö❝ ✈➜♥ ✤➲ ♥➔② ❝➛♥ ♠ët q✉→ tr➻♥❤ ❝❤✉➞♥ t➢❝ ❤â❛ ✤♦↕♥ tr➢❝ ✤à❛ ②➳✉✳ ❙ü ❝❤✉➞♥ t➢❝ ❤â❛ ♥➔② t❤ü❝ ❤✐➺♥ ✤÷đ❝ ♥❤í ✈➔♦ ♠ð rë♥❣ ♠ët ❦➳t q✉↔ ❝õ❛ ❇❡r♥❞tss♦♥ ❬✶❪ ✈➲ t➼♥❤ ❧✐➯♥ tö❝ ▲✐♣s❝❤✐t③ ❝õ❛ ✤♦↕♥ tr tũ ỵ ợ tr ữủ t õ ỏ ữợ ❦❤→❝ u∞ := lim ut ❧➔ ❤➔♠ t→+∞ −∞✳ ▼ö❝ t✐➯✉ t✐➳♣ t❤❡♦ ❧➔ ①➙② ❞ü♥❣ t✐❛ tr➢❝ ✤à❛ ②➳✉ ✤÷đ❝ ❝❤✉➞♥ t➢❝ ❤â❛ s❛♦ ❝❤♦ v0 = φ ✈➔ ω ✲✤❛ v∞ = ψ ✈ỵ✐ φ, ψ ∈ P SH(X, ω)✱ ψ ≤ φ ✈ỵ✐ φ ❜à ❝❤➦♥ ✈➔ ψ t → vt ❝â t❤➸ ❦❤æ♥❣ ❜à ❝❤➦♥✳ ✣➸ ỹ ởt t ữ t ợ t t➟♣ ❤ñ♣ ❝→❝ t✐❛ tr➢❝ ✤à❛ ②➳✉ ❝❤✉➞♥ t➢❝✿ R(φ, ψ) = {vt ❧➔ ♠ët t✐❛ ②➳✉ ❝❤✉➞♥ t➢❝ ❤â❛ ✈ỵ✐ vo = lim vt = φ(t) t→0 ✈➔ v∞ = lim vt ≥ ψ(t)} t→∞ tr♦♥❣ ✤â ❣✐ỵ✐ ❤↕♥ ❧➔ t❤❡♦ tø♥❣ ✤✐➸♠✳ ❑➼ ❤✐➺✉ max{φ − l, ψ} v(φ, ψ) = usc t → ult ∈ P SH(X, ω) (0, l) ❧➔ ✤♦↕♥ tr➢❝ ✤à❛ ②➳✉ ❞✉② ♥❤➜t ♥è✐ φ ✈ỵ✐ ✈➔ ❝❤➼♥❤ q✉② ❤â❛ ♥û❛ ❧✐➯♥ tư❝ tr➯♥ ❝õ❛ ❣✐ỵ✐ ❤↕♥ ❝→❝ ✤♦↕♥ ♥➔② ❧➔ lim ul l→+∞ ❝õ❛ ❝→❝ ♣❤➛♥ tû t❤✉ë❝ ❈✉è✐ ❝ị♥❣✱ ✈ỵ✐ ❧➔ ❜❛♦ tr➯♥ ❝õ❛ φ ✳ ❇➔✐ ❜→♦ ❝❤ù♥❣ ♠✐♥❤ ✤÷đ❝ r➡♥❣ t✐❛ R(φ, ψ) ✈➔ ♥â ❧➔ ❤➡♥❣ ♥➳✉ ✈➔ ❝❤➾ ♥➳✉ ψ ∈ P SH(X, ω) ✈➔ v(φ, ψ) ψ ∈ ε(X, ω)✳ φ ∈ P SH(X, ω) ∩ L1 (X) ✤è✐ ✈ỵ✐ ❦✐➸✉ ❦ý ❞à ❝õ❛ ψ ❧➔ ữợ P[] () ỹ ①➙② ❞ü♥❣ t✐❛ tr➢❝ ✤à❛ ②➳✉ ✈➔ t➼♥❤ ❝ü❝ ✤↕✐ ❝õ❛ ♣❤➨♣ ❜✐➳♥ ✤ê✐ ▲❡❣❡♥❞r❡ ❝õ❛ t✐❛ tr➢❝ ✤à❛ ②➳✉✱ ❜➔✐ ❜→♦ ✤➣ ❝❤ù♥❣ ♠✐♥❤ ❦❤➥♥❣ ✤à♥❤ ✤➦❝ tr÷♥❣ ❝→❝ ♣❤➛♥ tû ❝õ❛ ε(X, ω) t❤❡♦ t➼♥❤ ♥❤➭ ❝õ❛ ❝→❝ ❦ý ❞à ❝õ❛ ❝❤ó♥❣✿ ψ ∈ ε(X, ω) ♥➳✉ ✈➔ ❝❤➾ ♥➳✉ P[ψ] (φ) = φ ✈ỵ✐ ψ ∈ P SH(X, ω) ✈➔ φ ∈ P SH(X, ω)∩ C(X)✳ ▲✉➟♥ ✈➠♥ ♥➔② tr➻♥❤ ❜➔② ❧↕✐ ♥ë✐ ❞✉♥❣ ❜➔✐ ❜→♦ ❝õ❛ ❚❛♠→s ❉❛r✈❛s ❬✼❪ ✈➲ ✈✐➺❝ ①➙② ❞ü♥❣ t✐❛ tr➢❝ ✤à❛ ②➳✉ tr♦♥❣ ❦❤ỉ♥❣ ❣✐❛♥ ❝→❝ t❤➳ ✈à ❣➢♥ ❦➳t ✈ỵ✐ ❝→❝ t➼♥❤ ❝❤➜t ❝õ❛ ❧ỵ♣ ε(X, ω) ✈➔ sû ❞ư♥❣ ú trữ ợ ữủ t tr ỗ ữỡ ữỡ P ❝❤✉➞♥ ❜à✱ tr➻♥❤ ❜➔② ❝→❝ ❦✐➳♥ t❤ù❝ ✈➲ ❍➻♥❤ ❤å❝ ự ỵ tt t õ q ử ữỡ t t ăr r ữỡ ✷✿ ❚✐❛ tr➢❝ ✤à❛ ②➳✉ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ❝→❝ t❤➳ ăr tr tr ổ ❣✐❛♥ ❝→❝ t❤➳ ✈à ❑❛ ◦ P❤÷ì♥❣ ♣❤→♣ ❝õ❛ ❇❡r♥❞tss♦♥ ❬✷❪ ①➙② ❞ü♥❣ ❝→❝ ✤♦↕♥ tr➢❝ ❞à❛ ②➳✉ ♥è✐ ❤❛✐ tở ợ ỏ ữợ ữỡ ợ ε(X, ω) t❛ ❝â γ ∈ ε(X, ω) ⇔ lim ω + i∂∂γl l→+∞ ωn = (γ>−l) ⇔ lim l→+∞ ❚ø ✭✸✳✶✳✶✵✮ t❛ ✤÷đ❝ n X ω + i∂∂γl n = (γ≤−l) cγ = 0✳ ▼➺♥❤ ✤➲ ✸✳✶✳✻✳ ❚r♦♥❣ ✤à♥❤ ♥❣❤➽❛ ❝õ❛ cγ t❛ ❝â t❤➸ ❜➢t ✤➛✉ ✈ỵ✐ t ữợ tr l l := max{γ, β − l} ✈ỵ✐ ♠å✐ β ∈ P SH(X, ω) ∩ L∞(X)✳ AM (˜ γl ) ❣✐è♥❣ ♥❤÷ cγ ❜❛♥ ✤➛✉✳ ❍➡♥❣ c˜γ = l→+∞ lim l ✸✳✷ ❈→❝❤ ①➙② ❞ü♥❣ t✐❛ tr➢❝ ✤à❛ ②➳✉ ✸✳✷✳✶ ❚✐❛ tr➢❝ ✤à❛ ss ttstră ă ❚r♦♥❣ ♠ö❝ ♥➔②✱ t❛ ♥❤➢❝ ❧↕✐ ❝→❝❤ ①➙② ❞ü♥❣ ❝õ❛ ❲✐tt✲◆②str♦ t✐❛ tr➢❝ ✤à❛ ②➳✉✳ ▼➦❝ ❞ị ❬✶✽❪ ✤÷đ❝ ✈✐➳t ❦❤✐ ❧✐➯♥ ❤➺ ✈ỵ✐ ❝➜✉ tró❝ ❑❛❤❧❡r ✭[ω] H (X, Z)✮✱ ∈ t♦➔♥ ❜ë sü ①➙② ❞ü♥❣ ✈➝♥ ✤÷đ❝ t❤ü❝ ❤✐➺♥ ❦❤ỉ♥❣ t❤❛② ✤ê✐ ✤è✐ ✈ỵ✐ t➻♥❤ ❤✉è♥❣ tê♥❣ q✉→t ✤÷đ❝ ♥➯✉ tr♦♥❣ ❧✉➟♥ ✈➠♥✳ ✣à♥❤ ♥❣❤➽❛ ✸✳✷✳✶✳ ❝♦♥❣ tỷ tỗ t ởt số τ → ψτ (x) ψτ ▼ët →♥❤ ①↕ ❧ã♠ t❤❡♦ τ ♥➳✉ ✤÷đ❝ ❣å✐ ❧➔ ✤÷í♥❣ s❛♦ ❝❤♦ x ∈ X✱ ψ−∞ ∈ P SH(X, ω)∩L∞ (X) ♥➔♦ ✤â ✈ỵ✐ τ < −Cψ ❀ τ > Cψ ✳ ✣à♥❤ ♥❣❤➽❛ ✸✳✷✳✷✳ ✤à♥❤ ♥❣❤➽❛ ❝→❝ τ → ψτ ∈ P SH(X, ω) Cψ > ✈ỵ✐ ♠å✐ ❜➡♥❣ ♠ët t❤➳ ✈à ❜à ❝❤➦♥ ψτ = −∞ R ❈❤♦ b0 , b1 ❧➔ ❝→❝ ❤➔♠ ❝❤➼♥❤ q✉② ❤â❛ ♥û❛ ❧✐➯♥ tö❝ tr➯♥ ❜❛♦ P (b0 ) = sup{ψ ≤ b0 : ψ ∈ P SH(X, ω)}; P (b0 , b1 ) = P (min{b0 , b1 }) = sup{ψ ≤ min{b0 , b1 }|ψ ∈ P SH(X, ω)} X✱ t❛ ✹✷ ❱➻ ❝❤➼♥❤ q✉② ❤â❛ ♥û❛ ❧✐➯♥ tö❝ tr➯♥ ✉s❝P (b0 ) ❝õ❛ tr❛♥❤ ✭tù❝ ❧➔ ✉s❝P (b0 ) P (b0 ) ∈ P SH(X, ω) ❱ỵ✐ C>0 ≤ b0 , ✉s❝P (b0 ) ∈ P SH(ω)✮ ✈➔ ✈➔ ✤✐➲✉ t÷ì♥❣ tü ❝ơ♥❣ ✤ó♥❣ ❝❤♦ ψ, ψ ∈ P SH(X, ω) t❛ ♥â✐ r➡♥❣ ψ ✈➔ ψ P (b0 ) ❧➔ ♠ët ♣❤➛♥ tû ❝↕♥❤ P (b0 ) ≤ ✉s❝(P (b0 )) ❞➝♥ ✤➳♥ P (b0 , b1 )✳ ❝â ❝ò♥❣ ❦✐➸✉ tỗ t s C + < ψ < ψ + C ✣✐➲✉ ♥➔② ❝↔♠ s✐♥❤ ởt q tữỡ ữỡ tr ợ [] ữủ ❜ð✐ ♣❤➛♥ t❤û ✤↕✐ ❞✐➺♥ ❈❤♦ ♠ët ✤÷í♥❣ ❝♦♥❣ t❤û ❧➔ τ → ψτ ✱ P SH(X, ω) ✈➔ t❛ ❦➼ ❤✐➺✉ ♠é✐ ψ ∈ P SH(X, ω)✳ ✤÷í♥❣ ❝♦♥❣ ❦➻ ❞à ❦✐➸✉ τ → [ψτ ] ✤÷đ❝ ❣å✐ ❝➜✉ ❤➻♥❤ t❤û ❣✐↔✐ t➼❝❤✳ ✣à♥❤ ♥❣❤➽❛ ✸✳✷✳✸✳ ❈❤♦ φ, ψ ∈ P SH(X, ω), φ ∈ L∞ (X, ω)✱ ❦➻ ❞à ❝õ❛ ψ ✤÷đ❝ ❝❤♦ ❜ð✐ ❝ỉ♥❣ t❤ù❝ P[ψ] (φ) = usc ❜❛♦ ❝õ❛ φ ✤è✐ ✈ỵ✐ ❦✐➸✉ lim P (ψ + D, φ) , D→+∞ tr♦♥❣ ✤â ✉s❝ ❦➼ ❤✐➺✉ ❝❤♦ q✉→ tr➻♥❤ ❝❤➼♥❤ q✉② ❤â❛ ♥û❛ ❧✐➯♥ tö❝ tr➯♥✳ ●✐↔ sû ψ ❝â ❦➻ ❞à ❣✐↔✐ t➼❝❤✱ t❛ ❝â t❤➸ ❝❤➾ r❛ r➡♥❣ ψ ❝â ❝ò♥❣ ❦✐➸✉ ❦➻ ❞à ✈ỵ✐ P[ψ] (φ)✳ ◗✉→ tr➻♥❤ ①➙② ❞ü♥❣ ♠ët t✐❛ tr➢❝ ✤à❛ ②➳✉ ✤÷đ❝ ❜➢t ✤➛✉ tø ♠ët ✤÷í♥❣ ❝♦♥❣ tỷ ởt t ữợ ✤➛✉ t✐➯♥ ❧➔ φ ∈ P SH(X, ω) ∩ L∞ (X)✳ ❝ü❝ ✤↕✐ ❤â❛ ✤÷í♥❣ ❝♦♥❣ t❤û τ → ψτ ố ợ ợ t ởt ữớ tỷ ợ := P[] () ữợ tự ❧➔ ❧➜② ♣❤➨♣ ❜✐➳♥ ✤ê✐ ♥❣÷đ❝ ▲❡❣❡♥❞r❡ ❝õ❛ φt = usc sup(ψ˜τ + tτ ) ψ˜τ ✿ ∈ P SH(X, ω) ∩ L∞ (X), t ∈ [0, +∞) ✭✸✳✷✳✶✮ τ R ú ỵ r tr t õ t ọ q✉❛ ❝❤➼♥❤ q✉② ❤â❛ ♥û❛ ❧✐➯♥ tö❝ tr➯♥✳ ❚❤➟t ✈➟②✱ ởt tờ qt ỡ ú ợ ữớ ❝♦♥❣ t❤û✿ ✹✸ ▼➺♥❤ ✤➲ ✸✳✷✳✹✳ ●✐↔ sû τ → ψτ ❧➔ ♠ët ✤÷í♥❣ ❝♦♥❣ t❤û ♥❤÷ ✣à♥❤ ♥❣❤➽❛ ✸✳✷✳✶✳ ❑❤✐ ✤â ✈ỵ✐ ♠å✐ t ≥ t❛ ❝â usc sup(ψτ + tτ ) = sup(ψτ + tτ ) τ ∈R ❈❤ù♥❣ ♠✐♥❤✳ τ ∈R ❚❛ ❦➼ ❤✐➺✉ u(s, z) = sup(ψτ (z) + ❘❡sτ ), (s, z) ∈ S × X, τ ∈R tr♦♥❣ ✤â S = ❘❡s ≥ ⊂ C✳ ❘ã r➔♥❣ ✉s❝ u ∈ P SH(S × X, π ∗ ω)✳ ❚❛ ❝❤➾ ❝➛♥ ❝❤ù♥❣ ♠✐♥❤ ✉s❝ u = u✳ ✣➦t E = {u < ✉s❝ u} ⊂ S × X ❱➻ ❝↔ u ✈➔ ✉s❝ B ⊂ [0, ∞) × X u ✤➲✉ ❧➔ R✲❜➜t E ụ Rt tỗ t↕✐ s❛♦ ❝❤♦ E = B + i R ❱➻ E ❝â ❞✉♥❣ ❧÷đ♥❣ ♥➯♥ ❝â ✤ë ✤♦ ▲❡❜❡s❣✉❡ 0✳ ❱ỵ✐ ♠é✐ z ∈ X✱ t❛ ❣✐ỵ✐ t❤✐➺✉ ❧→t ❝➢t✿ Bz = B ∪ [0, ∞) × {z}, ❝â ✤ë ✤♦ ▲❡❜❡s❣✉❡ ▲❡❜❡s❣✉❡ ●✐↔ sû x ∈ X \ F✱ tr♦♥❣ ✤â F ⊂X ❧➔ ♠ët t➟♣ ❝â ✤ë ✤â ♥➔♦ ✤â✳ x ∈ X \ F✳ ❱➻ ❝↔ ❤❛✐ →♥❤ ①↕ t➟♣ trị ♠➟t ✈ỵ✐ ♠å✐ ❚❛ ❝❤ù♥❣ ♠✐♥❤ t → u(t, z) [0, ∞)\Bz ✈➔ Bz ❧➔ t➟♣ ré♥❣ t❤➟t sü✳ t → (✉s❝ u)(t, z) ỗ tr [0, ) ú trũ ❉♦ ✤â ✈➔ ❜➡♥❣ ♥❤❛✉ tr➯♥ Bz = ∅✳ ❈è ✤à♥❤ τ ∈ R t❛ ❝â ψτ = inf ut − tτ ≤ χτ := inf [(✉s❝ u)t − tτ ] t≥0 ❱➻ Bz F✳ ❱➻ ❝↔ ❧➔ t➟♣ ré♥❣ ✈ỵ✐ ♠é✐ ψτ ✈➔ χτ ✤➲✉ ❧➔ t≥0 z ∈X \F ω ✲✤❛ ♥➯♥ ψτ = χτ ❜➯♥ ♥❣♦➔✐ t➟♣ õ ổ ỏ ữợ r ❝❤♦ ❝→❝ ✤÷í♥❣ ❝♦♥❣ τ → ψτ ✈➔ ψτ = χτ ✳ τ → χτ ⑩♣ ❞ö♥❣ ♣❤➨♣ ❜✐➳♥ t❛ ữủ s u = u ỵ tr♦♥❣ ❬✶✽❪✱❚❤❡♦r❡♠ ✶✳✶✳ ✣÷í♥❣ ❝♦♥❣ [0, +∞) ①✉➜t ♣❤→t tø t ữủ ợ t ữ tr t tr ă ự s ữủ ❝➜♣ ❜ð✐ ❘♦ss ✈➔ ❲✐tt✲◆②str♦ ❈❤ù♥❣ ♠✐♥❤✳ ✸✳✷✳✶✳ ●✐↔ sû τ → ψτ ❈❤♦ ht ❧➔ ✤÷í♥❣ ❝♦♥❣ t❤û ✤÷đ❝ ❝❤♦ ♥❤÷ tr♦♥❣ ✣à♥❤ ♥❣❤➽❛ ❧➔ ♣❤➨♣ ❜✐➳♥ ✤ê✐ ▲❡♥❣❡♥❞r❡ ❝õ❛ ψ✿ ht := sup(ψτ + tτ ), t ≥ 0; τ ♥❣❤➽❛ ❧➔ φD t t → ht ❧➔ t tr ữợ ợ h0 = ✳ ❱ỵ✐ ❧➔ ❜❛♦ tr➯♥ ❝õ❛ ♠å✐ t✐❛ tr➢❝ ✤à❛ ữợ tr ó r t φD t ▲❡❣❡♥❞r❡ ❝õ❛ D > 0✱ t❛ ❦➼ ❤✐➺✉ min(φ + Cψ t, ht + D)✳ ❝ô♥❣ ❧➔ t✐❛ ữợ tr t ợ t ❜✐➳♥ ✤ê✐ φD t ✿ D φD t = inf φt − tτ t≥0 ❱➻ φD t ≤ min(φ + Cψ t, ht + D) φD τ ≤ min(ψτ + D, φ) ✈ỵ✐ ♠å✐ ♥➯♥ φD t − tτ ≤ min(φ + t(Cψ − τ ), D + ht − tτ )✳ τ ≤ Cψ ✈➔ φD τ = ợ > C ỗ tớ t ỵ ỵ ỹ t s t õ ω ✲✤❛ ❉♦ ✤â inf t (φD t − tτ ) ỏ ữợ õ D D = inf (φt − tτ ) ≤ P (ψτ + D, φ) t ⑩♣ ❞ư♥❣ ♣❤➨♣ ❜✐➳♥ ✤ê✐ ▲❡❣❡♥❞r❡ ♥❣÷đ❝ ❝õ❛ ❜➜t ✤➥♥❣ t❤ù❝ tr➯♥ t❛ ✤÷đ❝ φD t = sup[P (ψτ + D, φ) + tλ], ✭✸✳✷✳✷✮ τ ✈➻ τ → P (ψτ + D, φ) ❧➔ ✤÷í♥❣ ❝♦♥❣ tỷ t tr ữợ ❧➔ ♠ët ❝❛♥❞✐❞❛t❡ tr♦♥❣ ✤à♥❤ ♥❣❤➽❛ ❝õ❛ φD ✳ ❑➼ ❤✐➺✉ lim φD t φt = ✉s❝ D→+∞ ◆❤÷ s➩ t❤➜② ✈➔♦ ❝✉è✐ ❝❤ù♥❣ ♠✐♥❤✱ t → φt φt ❧➔ ❣✐ỵ✐ ❤↕♥ ❝õ❛ φD t ✿ ∈ P SH(X, ω) ữủ ợ t t ố ữớ tr ỷ ỵ s s ố ợ tr ✤à❛ t❛ ❝â t❤➸ ❝❤ù♥❣ ♠✐♥❤ t → φt ❧➔ t✐❛ tr➢❝ ✤à❛ ②➳✉✳ ▲➜② ❣✐ỵ✐ ❤↕♥ tr♦♥❣ ✭✸✳✷✳✷✮✱ t❛ ✤÷đ❝ lim φD t = sup D→+∞ τ lim P (ψτ + D, φ) + tτ D→+∞ ✹✺ ❱➻ P (ψτ + C, φ) ≤ P[ψτ ] (φ) φt ✱ t❛ ❝â t❛ ❝â φD t ≤ supτ (P[ψτ ] (φ) + tλ)✳ ❱➻ φD t t➠♥❣ ❤✳❦✳♥ ✤➳♥ φt ≤ sup(P[ψτ ] (φ) + tλ) ✭✸✳✷✳✸✮ τ ✣➸ ❝❤ù♥❣ ♠✐♥❤ ❝❤✐➲✉ ♥❣÷đ❝ ❧↕✐✱ t❛ ♥❤➟♥ ①➨t r➡♥❣ φD t ≤ φt ✈➔ ✭✸✳✷✳✷✮ t❛ ❝â inf (φt − tτ ) ≥ P (ψτ + D, φ) t≥0 ❱➳ tr→✐ ❧➔ ❤➔♠ P (ψτ + D, φ) ω ✲✤❛ ỏ ữợ t ỵ ỹ t s ✈➻ t➠♥❣ ❤✳❦✳♥ ✤➳♥ P[ψτ ] (φ)✱ t❛ ✤÷đ❝ inf t (φt − tτ ) ≥ P [ψτ ](φ)✳ ❉♦ ✤â φt ≥ sup(P[ψτ ] (φ) + tτ ) ✭✸✳✷✳✹✮ τ ❚ø ✭✸✳✷✳✸✮ ✈➔ ✭✸✳✷✳✹✮ t❛ ❝â t → supτ (P[ψτ ] (φ) + tτ ) ❧➔ ♠ët t✐❛ tr➢❝ ✤à❛✳ ❈✉è✐ ❝ò♥❣ t❛ ♥❤➢❝ ❧↕✐ ✭❜ä q✉❛ ❝❤ù♥❣ ♠✐♥❤✮ ♠ët ♠➺♥❤ ✤➲ ❦❤→❝ tr♦♥❣ ❬✶✽❪✳ ▼➺♥❤ ✤➲ ✸✳✷✳✻✳ ●✐↔ sû φ, ψ ∈ P SH(X, ω) ✈ỵ✐ φ ❧✐➯♥ tư❝ ✈➔ ψ ❝â t❤➸ ❦❤ỉ♥❣ ❜à ❝❤➦♥✳ ❑❤✐ ✤â P[ψ](φ) ❧➔ ❝ü❝ ✤↕✐ ✤è✐ ✈ỵ✐ φ✱ ♥❣❤➽❛ ❧➔ P[ψ](φ) = φ ❤✳❦✳♥ ✈ỵ✐ ✤ë ✤♦ n n ω + i∂∂P[ψ] (φ) ✱ tr♦♥❣ ✤â ω + i∂∂P[ψ] (φ) ✤÷đ❝ ✤à♥❤ ♥❣❤➽❛ ♥❤÷ tr♦♥❣ ✭✸✳✶✳✹✮✳ ✸✳✷✳✷ ▼ët ❝→❝❤ ①➙② ❞ü♥❣ ❝→❝ t✐❛ tr➢❝ ✤à❛ ②➳✉ ❝õ❛ ❚❛♠→s ❉❛r✈❛s ❈❤♦ ψ, φ ∈ P SH(X, ω) ✈ỵ✐ ψ ≤ φ, φ ❜à ❝❤➦♥ ✈➔ ψ ❝â t❤➸ ❦❤æ♥❣ ❜à ❝❤➦♥✱ t❛ ✤à♥❤ ♥❣❤➽❛ t➟♣ ❤ñ♣ ❝→❝ tr➢❝ ✤à❛ ②➳✉ s❛✉✿ R(φ, ψ) = {v ❚➟♣ R(φ, ψ) ❧➔ ♠ët t✐❛ tr➢❝ ✤à❛ ②➳✉ ❝❤✉➞♥ t➢❝ ❤â❛ ✈ỵ✐ ❧✉ỉ♥ ❦❤→❝ ré♥❣ ✈➻ ♥â ❝❤ù❛ t✐❛ ❤➡♥❣ (0, l) u = φ✳ lim vt = t0 ỵ t ult ∈ P SH(X, ω) ❧➔ ✤♦↕♥ tr➢❝ ✤à❛ ②➳✉ ❞✉② ♥❤➜t ♥è✐ φ ✈ỵ✐ ✈➔ max{φ − l, ψ}, l > lim vt > } t ỵ ✸✳✷✳✼✳ ❈❤♦ φ, ψ ∈ P SH(X, ω)✱ ✈ỵ✐ φ ❜à ❝❤➦♥ ✈➔ ψ ≤ φ✱ ❝→❝ ✤♦↕♥ tr➢❝ ✤à❛ ②➳✉ ul t↕♦ t❤➔♥❤ ♠ët ❤å t➠♥❣✳ ❈❤➼♥❤ q✉② ❤â❛ ♥û❛ ❧✐➯♥ tư❝ tr➯♥ ❝õ❛ ❝→❝ ❣✐ỵ✐ ❤↕♥ ❝õ❛ ❝❤ó♥❣ v(φ, ψ) = ✉s❝ lim ul l→+∞ ❧➔ ♠ët t✐❛ tr➢❝ ✤à❛ ②➳✉ t❤ä❛ ♠➣♥ ❝→❝ t➼♥❤ ❝❤➜t s❛✉✿ ✭✐✮ ✭✐✐✮ ✭✐✐✐✮ v(φ, ψ)t = ✉s❝ ✈ỵ✐ ♠å✐ t ∈ (0, +∞)✱ liml→+∞ ult v(φ, ψ) ∈ R(φ, ψ)✱ ❝❤➼♥❤ ①→❝ ❤ì♥✱ v(φ, ψ) = inf v∈R(φ,ψ) v✳ ✣➦❝ ❜✐➺t✱ v(φ, ψ)t ❧➔ ❤➡♥❣ ♥➳✉ ✈➔ ❝❤➾ ♥➳✉ R(φ, ψ) ❝❤➾ ❝❤ù❛ t✐❛ ❤➡♥❣ φ✳ AM (v(φ, ψ)t ) = AM (φ) + cψ (t)❀ t → ✤➦❝ ❜✐➺t t → v(φ, ψ)t ❧➔ ❤➡♥❣ ♥➳✉ ✈➔ ❝❤➾ ♥➳✉ ψ ∈ ε(X, ω)✳ ❈❤ù♥❣ ♠✐♥❤ s➩ ✤÷đ❝ t❤ü❝ ❤✐➺♥ q✉❛ ❞➣② ❝→❝ ❜ê ✤➲ s❛✉✿ ❇ê ✤➲ ✸✳✷✳✽✳ ❈→❝ ✤♦↕♥ tr➢❝ ✤à❛ ②➳✉ t↕♦ t❤➔♥❤ ♠ët ❤å t➠♥❣✳ ❈❤➼♥❤ q✉② ❤â❛ ♥û❛ ❧✐➯♥ tö❝ tr➯♥ v(φ, ψ) = ✉s❝ liml→+∞ ul ❝õ❛ ❝→❝ ❣✐ỵ✐ ❤↕♥ ❝õ❛ ❝❤ó♥❣ ❧➔ ♠ët t✐❛ tr➢❝ ✤à❛ ②➳✉ t❤ä❛ ♠➣♥ ❘ã r➔♥❣ l>0 lim ult v(φ, ψ)t = usc ❈❤ù♥❣ ♠✐♥❤✳ ul l→+∞ , t ∈ (0, +∞) t → γt = max{φ − t, ψ}, t > ❚❛ ✤à♥❤ ♥❣❤➽❛ ❤å ❝→❝ t✐❛ ữợ tr tl = ul t ❦❤✐  γt ❦❤✐ t → γtl ✭✸✳✷✳✺✮ ❧➔ ♠ët t tr ữợ {t0} ữ s < t < l; ✭✸✳✷✳✻✮ t ≥ l ❚❤❡♦ t➼♥❤ ❝❤➜t tr tr ữợ ỏ ữợ tl ởt t tr ữợ ❚ø ❝→❝❤ ①➙② ❞ü♥❣ ❝õ❛ ❇❡r♥❞tss♦♥ t❛ t❤➜② ❤å ♥➔② ❝ô♥❣ t➠♥❣ t❤❡♦ l ✳ ✣➦❝ ❜✐➺t✱ ❤å ul l>0 ❝ô♥❣ t➠♥❣ t❤❡♦ l ✳ ❚❛ ❦➼ ❤✐➺✉ v(φ, ψ) = usc lim ul l ứ ỵ tt ❇❡❞❢♦r❞ ✈➔ ❚❛②❧♦r t❛ s✉② r❛ ✤ë ✤♦ ▼♦♥❣❡✲❆♠♣➧r❡ ❤ë✐ tö ②➳✉ ✈➲ (ω + i∂∂v(φ, ψ))n+1 ✳ ✣✐➲✉ ♥➔② ❞➝♥ ✤➳♥ (ω + i∂∂v(φ, ψ))n+1 ✈ỵ✐ ♠å✐ ❉♦ ✤â Soh ×X =0 h > 0✳ t → v(φ, ψ)t ❧➔ ♠ët t✐❛ tr➢❝ ✤à❛ ②➳✉✳ ❇➙② ❣✐í t❛ ❝❤ù♥❣ ỵ ợ ull = lim ult = γl t→l ✤➲✉ tr♦♥❣ X✳ Mul = sup ull − ul0 max{−l, ψ − φ} = sup ≤ 0; l l X X mul = inf X ✣✐➲✉ ♥➔② s✉② r❛ lim ul l→∞ (ω + i∂∂ul )n+1 ul ul0 = lim ult = φ t→0 ❉♦ ✤â ull − ul0 max{−l, ψ − φ} = inf ≥ −l l l X ❧➔ ▲✐♣s❝❤✐t③ ✤➲✉ t❤❡♦ ❜✐➳♥ t ✈➔ ❞♦ ✤â ❣✐ỵ✐ ❤↕♥ ❝õ❛ ❝❤ó♥❣ ❝ô♥❣ ✈➟②✳ ✣✐➲✉ ♥➔② ❞➝♥ ✤➳♥ usc lim ul = usc l→∞ t lim ult , t ∈ (0, +∞) l→∞ ❚❛ ❝â ✤✐➲✉ ♣❤↔✐ ❝❤ù♥❣ ♠✐♥❤✳ ❇ê ✤➲ ✸✳✷✳✾✳ v(φ, ψ) ∈ R(φ, ψ), ❝❤➼♥❤ ①→❝ ❤ì♥ v(φ, ψ) = v∈R(φ,ψ) inf v ✳ ✣➦❝ ❜✐➺t✱ t → v(φ, ψ) ❧➔ ❤➡♥❣ ♥➳✉ ✈➔ ❝❤➾ ♥➳✉ R(φ, ψ) ❝❤➾ ❝❤ù❛ ♠ët t✐❛ ❤➡♥❣ φ✳ ❈❤ù♥❣ ♠✐♥❤✳ ◆❤➟♥ ①➨t r➡♥❣ ❧➜② ❣✐ỵ✐ ❤↕♥ ✈ỵ✐ l→∞ max{φ − t, ψ} = γt ≤ ult ≤ φ, t ∈ (0, l), l > 0✳ ❝❤➼♥❤ q✉② ❤â❛ t❛ ❝â γt ≤ v(φ, ψ) ≤ φ, t > ✣✐➲✉ ♥➔② ❞➝♥ ✤➳♥ ❙❛✉ ❦❤✐ lim v(φ, ψ) ≥ φ t→∞ ✈➔ ✭✸✳✷✳✼✮ v(φ, ψ) = lim v(φ, ψ)t = φ✳ t→0 ❚❤❡♦ ỵ t t ữủ v(, ) γl − φ ≥ sup , t t x∈X x∈X v(φ, ψ) − φ γl − φ = inf ≥ inf , t t x∈X x∈X Mv(φ,ψ) = sup ✭✸✳✷✳✽✮ mv(φ,ψ) ✭✸✳✷✳✾✮ ✹✽ ✈ỵ✐ ♠å✐ t > 0✳ t → +∞ ❱➻ t → v(φ, ψ)t ❣✐↔♠✱ ❞➝♥ ✤➳♥ Mv(φ,ψ) ≤ 0✳ ❇➡♥❣ ❝→❝❤ ❧➜② ❣✐ỵ✐ ❤↕♥ tr♦♥❣ ✭✸✳✷✳✽✮ t❛ ❝â Mv(φ,ψ) = ❚ø ✭✸✳✷✳✾✮ t❛ ❦➳t ❧✉➟♥ mv(φ,ψ) ≥ ✣➸ t❤➜② r➡♥❣ ❤➡♥❣ ❤♦➦❝ v(φ, ψ) ∈ R(φ, ψ) t❛ ❝❤➾ ❝➛♥ ❝❤ù♥❣ ♠✐♥❤ r➡♥❣ ❤♦➦❝ ❧➔ mv(,) = õ t trữợ t t❛ ❝❤ù♥❣ ♠✐♥❤ r➡♥❣ h ∈ R(φ, ψ) ◆➳✉ t → v(φ, ψ)t h0 = lim ht = φ t❤➻ ❣✐ỵ✐ ❤↕♥ ht ≥ max{φ − l, φ} = γl , l > 0✳ t→0 v(φ, ψ) ≤ h ✈ỵ✐ ♠å✐ h ∈ R(φ, ψ)✳ ❧➔ ✤➲✉ ✈➔ ✈➻ mh = t õ ỵ ỹ ♥➔② ❞➝♥ ✤➳♥ ult ≤ ht , t ∈ [0, l]✳ ❈❤♦ l → +∞ ◆➳✉ t → v(φ, ψ)t ❤➡♥❣✳ ❱➻ tr♦♥❣ ✤→♥❤ ❣✐→ ♥➔②✱ s❛✉ ✤â ❝❤➼♥❤ q✉② ❤â❛✱ t❛ ❝â ❦❤→❝ ❤➡♥❣ t❤➻ ❝❤✉➞♥ t➢❝ ❤â❛ ❝õ❛ ♥â v0 (φ, ψ) = v˜0 = φ, v(φ, ψ) ≤ v˜ mv(φ,ψ) = inf X ✣✐➲✉ ♥➔② ❞➝♥ ✤➳♥ mv(φ,ψ) = −1✱ ✈➔ mv˜ = −1✱ v(φ, ψ) ≤ h v R(, ) ụ tứ ỵ ✷✳✹✳✹ v˜ − φ v(φ, ψ) − φ ≤ inf = −1 t l X ❦➳t t❤ó❝ ❝❤ù♥❣ ♠✐♥❤✳ ❇ê ✤➲ ✸✳✷✳✶✵✳ AM v(φ, ψ)t = AM (φ) + cψ t, ✤➦❝ ❜✐➺t v(φ, ψ) ❧➔ ❤➡♥❣ ♥➳✉ ✈➔ ❝❤➾ ♥➳✉ φ ∈ ε(X, ω) ❈❤ù♥❣ ♠✐♥❤✳ ❱➻ ❝→❝ ✤♦↕♥ ul tr t ỵ ✷✳✸✳✸ ✈➔ ✷✳✹✳✹ t❛ ❝â AM (ul ) = AM (φ) + ❑❤✐ l → +∞✱ t AM (max{φ − l, ψ}) − AM (φ) , t ∈ (0, l), l > l tø ✭✸✳✷✳✺✮ ❞➣② ult t➠♥❣ ❤✳❦✳♥ ỵ tt r r ❝õ❛ ✤➥♥❣ t❤ù❝ ❝✉è✐ ❤ë✐ tö ✈➲ v(φ, ψ)t , t > 0✳ ❙û ❞ö♥❣ ✤✐➲✉ ♥➔②✱ tø AM (ult ) → AM (v(φ, ψ)t )✳ AM (φ) + cψ t✳ ❚❛ ❦➳t ❧✉➟♥ r➡♥❣ AM (v(φ, ψ)t ) = AM (φ) + cψ t, t ∈ (0, +∞) ✹✾ ❱➻ v(φ, ψ)t ≤ φ✱ t❤❡♦ ▼➺♥❤ ✤➲ t → AM (v(φ, ψ)t ) 2.3.5 t❛ ❝â t → v(φ, ψ)t ❧➔ ❤➡♥❣ ♥➳✉ ✈➔ ❝❤➾ ♥➳✉ ❧➔ ❤➡♥❣✳ ố ũ tữỡ ữỡ ợ õ t ỵ t õ t v(, )t ❤➡♥❣ ♥➳✉ ✈➔ ❝❤➾ ♥➳✉ cψ = 0✳ ❉♦ ψ ∈ ε(X, ω)✳ ❍➺ q✉↔ ✸✳✷✳✶✶✳ ●✐↔ sû t → ut ❧➔ ♠ët t✐❛ tr➢❝ ✤à❛ ②➳✉ ❝❤✉➞♥ t➢❝ ❤â❛ s❛♦ ❝❤♦ u0 = φ ✈➔ u1 = ψ✳ ❑❤✐ ✤â ✈ỵ✐ ♠å✐ t → v(φ, ψ)t t❛ ❝ơ♥❣ ❝â v(φ, ψ)∞ = ψ✳ ❈❤ù♥❣ ♠✐♥❤✳ ❱➻ ✸✳✷✳✼✭✐✐✮ t❛ ❝â t → ut ✤÷đ❝ ❝❤✉➞♥ t➢❝ ❤â❛ ♥➯♥ φ ≤ v(φ, ψ)t ≤ ut ✈ỵ✐ ♠å✐ u ∈ R(φ, ψ)✳ t [0, +) ỵ õ ♣❤↔✐ ❝❤ù♥❣ ♠✐♥❤✳ ✸✳✸ P❤➨♣ ❜✐➳♥ ✤ê✐ ▲❡❣❡♥❞r❡ ♥❣÷đ❝ ❝õ❛ ♠ët t✐❛ tr➢❝ ✤à❛ ②➳✉ ✈➔ ε(X, ω) ▼➺♥❤ ✤➲ s❛✉ ✤➙② ❧➔ ♠ët ❦➳t q✉↔ ✈➲ t➼♥❤ ❝ü❝ ✤↕✐ ❝õ❛ ♣❤➨♣ ❜✐➳♥ ✤ê✐ ▲❡❣❡♥❞r❡ ❝õ❛ ♠ët t✐❛ tr➢❝ ✤à❛ ②➳✉✳ ▼➺♥❤ ✤➲ ✸✳✸✳✶✳ ❈❤♦ ♠ët t✐❛ tr➢❝ ✤à❛ ②➳✉ (0, +∞) ✤â ♣❤➨♣ ❜✐➳♥ ✤ê✐ ▲❡❣❡♥❞r❡ ❝õ❛ ♥â R t❤ä❛ ♠➣♥ t → φt ∈ P SH(X, ω)✳ ❑❤✐ t → φ∗τ = inf t∈(0,+∞) (φt − tτ ) ∈ P SH(X, ω) φ∗τ = P (φ∗τ + C, φ0 ), τ ∈ R, C > ✣➦❝ ❜✐➺t P[φ ](φ0) = φ∗τ ✳ ∗ t ❈❤ù♥❣ ♠✐♥❤✳ P SH(X, ω)✳ ❈è ✤à♥❤ ●✐↔ sû τ ∈ R✳ φ∗t = ứ ỵ ỹ t s t õ ✈➔ ❝è ✤à♥❤ C > 0✳ ❱➻ φ∗τ ≤ φo ❝â φ∗τ ∈ P (φ∗τ + C, φ0 ) ≥ φ∗τ ✳ ❉♦ ✤â t❛ ❝❤➾ ❝➛♥ ❝❤ù♥❣ ♠✐♥❤ P (φ∗τ + C, φ0 ) ≤ φ∗τ ●✐↔ sû [0, 1) t → gtl , ht ∈ P SH(X, ω), l ≥ ➔ ❝→❝ ✤♦↕♥ tr➢❝ ✤à❛ ②➳✉ ①→❝ ✤à♥❤ ❜ð✐ ❝æ♥❣ t❤ù❝ gtl = φlt − tlτ, ht = P (φ∗τ + C, φ0 ) − Ct ✺✵ h0 ≤ φ0 = lim gtl = g0l ❑❤✐ ✤â t❛ ❝â t→0 ✈➔ ht ≤ φ∗τ ≤ g1l ✈ỵ✐ ♠å✐ l ≥ 0✳ ❉♦ ✤â✱ t❤❡♦ ♥❣✉②➯♥ ỵ ỹ t õ ht gtl , t ∈ [0, 1], l ≥ l ∈ (0, +∞) ▲➜② ✐♥❢ tr➯♥ tr♦♥❣ ✤→♥❤ ❣✐→ tr➯♥ ✈➔ ❧➜② s✉♣ tr➯♥ t ∈ [0, 1]✱ t❛ ✤÷đ❝ P (φ∗τ + C, φ0 ) ≤ φ∗τ ❈❤♦ C → +∞ t❛ ♥❤➟♥ ✤÷đ❝ ❦❤➥♥❣ ✤à♥❤ ❝✉è✐ ❝õ❛ ♠➺♥❤ ✤➲✳ ▼➺♥❤ tr t ủ ợ ỵ ❝❤♦ ❦➳t q✉↔ s❛✉ ❍➺ q✉↔ ✸✳✸✳✷✳ ❈→❝❤ ①➙② ❞ü♥❣ ss ttstră tr t s r ♠å✐ t✐❛ tr➢❝ ✤à❛ [0, +∞) ❈❤ù♥❣ ♠✐♥❤✳ t → vt ∈ P SH(X, ω) ∩ L∞ (X) ❚❛ ♣❤↔✐ ❝❤ù♥❣ ♠✐♥❤ r➡♥❣ ψτ = inf (vτ − tτ ) t0 ởt ữớ tỷ ỹ rữợ t t❛ ❝❤ù♥❣ ♠✐♥❤ τ → ψτ (z) ❚➼♥❤ ❧ã♠ ❝õ❛ ✣✐➲✉ ❦✐➺♥ ii τ → ψτ ❧➔ ♠ët ✤÷í♥❣ ❝♦♥❣ tỷ ữủ s r tứ t ỗ vτ (z)✳ ❝õ❛ ✣à♥❤ ♥❣❤➽❛ ✸✳✷✳✶ ❧➔ ♠ët ❤➺ q✉↔ ỵ ố ũ v0 = ✱ t➼♥❤ ❝ü❝ ✤↕✐ ❝õ❛ ✤÷í♥❣ ❝♦♥❣ t❤û t → ψτ ✤÷đ❝ s✉② r❛ tø ♠➺♥❤ ✤➲ tr➯♥✿ ψτ = P[ψτ ] (ψ−∞ ) ⑩♣ ❞ö♥❣ ♠➺♥❤ ✤➲ tr➯♥ tr♦♥❣ tr÷í♥❣ ❤đ♣ ❤â❛ ✈➔ τ = 0✳ t → φt ❧➔ ♠ët t✐❛ tr➢❝ ✤à❛ ❝❤✉➞♥ ❚r♦♥❣ tr÷í♥❣ ❤đ♣ ♥➔②✱ t❛ ❝â φ∗0 = inf t∈(0,+∞) φt = lim φt =: φ∞ t→+∞ ❉ü❛ ✈➔♦ ❝→❝❤ ①➙② ❞ü♥❣ ❝õ❛ t❛ ✈➲ ❝→❝ t✐❛ tr➢❝ ✤à❛ ②➳✉✱ t❛ ❝â t❤➸ ✤➦❝ tr÷♥❣ t❤❡♦ ❝→❝ ❜❛♦ tr➯♥✳ ε(X, ω) ✺✶ ✣à♥❤ ỵ sỷ (X, ) P SH(X, ω) ♥➳✉ ✈➔ ❝❤➾ ♥➳✉ ✈➔ φ ∈ P SH(X, ω) ∩ C(X)✳ P[ψ] (φ) = φ ❈❤ù♥❣ ♠✐♥❤✳ ψ − D < 0✳ ●✐↔ sû ●✐↔ sû φ ∈ P SH(X, ω) t → vt (φ, ψ − D) s❛♦ ❝❤♦ ❑❤✐ ✤â ✭✸✳✸✳✶✮ P[ψ] (φ) = D>0 ỗ t s ởt t tr ✤à❛ ②➳✉ ❝❤✉➞♥ t➢❝ ❤â❛ ①➙② ❞ü♥❣ ♥❤÷ tr♦♥❣ ✣à♥❤ ỵ ữ ữ ỵ tr tr trữớ ❤ñ♣ ♥➔② t❛ ❝â v0∗ = inf t∈(0,+∞) v(φ, ψ − D)t = lim vt (φ, ψ − D) =: v∞ t→+∞ ❈❤ó♥❣ t❛ ❝ơ♥❣ ❝â ❞➣② ❝→❝ ❜➜t ✤➥♥❣ t❤ù❝ s❛✉ ✤➙② φ = P[ψ] (φ) = P[ψ−D] (φ) ≤ P[v0∗ ] (φ) = v0∗ ≤ φ, tr♦♥❣ ✤â t❛ sû ❞ö♥❣ ❦➳t q✉↔ ✤➳♥ ψ − D ≤ v∞ = v0∗ φ = v∞ ≤ v(φ, ψ − D) ≤ φt , t > 0❀ ❧➔ ❤➡♥❣✱ ❤➡♥❣ ✈ỵ✐ ✈➔ ▼➺♥❤ ✤➲ ✸✳✸✳✶✳ ❚ø ✤✐➲✉ ♥➔② ❞➝♥ ❞♦ ✤â t✐❛ ②➳✉ ❝❤✉➞♥ t➢❝ ❤â❛ φ✳ ❚ø ✤✐➲✉ sỷ ỵ s r ự ♠✐♥❤ ❝❤✐➲✉ ♥❣÷đ❝ ❧↕✐✱ t❛ ❣✐↔ sû ❱➻ t → v(φ, ψ − D) ψ − D ≤ P[ψ] (φ) ≤ φ✱ ❚❤❡♦ ▼➺♥❤ ✤➲ ✸✳✷✳✻ ψ ∈ ε(X, ω)✳ tứ ỵ t õ P[] () ε(X, ω)✳ ❧➔ ❝ü❝ ✤↕✐ ✤è✐ ✈ỵ✐ P[ψ] (φ) ∈ ε(X, ω)✳ φ✱ ❞♦ ✤â (ω + i∂∂P[ψ] (φ))n ✳ ❚ø ▼➺♥❤ ✤➲ ✸✳✶✳✸ ❞➝♥ ✤➳♥ P[ψ] (φ) ≥ φ ❦❤➢♣ ♥ì✐✳ ◆❤➟♥ ①➨t ❳➨t t✐❛ tr➢❝ ✤à❛ ②➳✉ t → γl := max{φ − t, ψ}, t ≥ 0✳ P❤➨♣ ❜✐➳♥ ✤ê✐ ▲❡♥❣❡♥❞r❡ ❝õ❛ ♥â γτ∗ = τ → γτ∗ : inf t→(0,+∞) (γt − tτ ), τ ∈ R P[ψ] (φ) ≥ φ ❤✳❦✳♥ ✤è✐ ✈ỵ✐ ✺✷ ❚❛ ❞➵ ❞➔♥❣ ❦✐➸♠ tr❛ r➡♥❣ §3.2.1✱ ✤➦❝ ❜✐➺t γτ∗ γτ∗ ❧➔ ♠ët ✤÷í♥❣ ❝♦♥❣ t❤û✱ ♥❤÷ ✤÷đ❝ ✤à♥❤ ♥❣❤➽❛ tr♦♥❣ ❝â t❤➸ ✤÷đ❝ ❜✐➸✉ ❞✐➵♥ γτ∗ =    φ    τ ∈ (−∞; −1) (1 + τ )ψ − τ φ τ ∈ [ − 1; 0]     −∞ τ ∈ (0; +∞) ă ữớ tỷ ữủ ữ ữ ✤➣ ✤÷đ❝ ❝❤➾ r❛ ❜ð✐ ❘♦ss ✈➔ ◆②str♦ ♠ët ♠ð rë♥❣ ❝õ❛ ♠ët ✤÷í♥❣ ❝♦♥❣ t❤û s✐♥❤ r❛ tø ♣❤➨♣ ❜✐➳♥ ❞↕♥❣ ✈➲ ♥â♥ ❝❤✉➞♥ t➢❝✳ ◆❤÷ ✈➟②✱ t✐❛ tr➢❝ ✤à❛ ✤÷đ❝ ①➙② ❞ü♥❣ tø ✤÷í♥❣ ❝♦♥❣ ♥➔② ❜➡♥❣ ❝→❝❤ sỷ ữỡ ố ợ ữớ tỷ tr ỵ t tr ❜➔② ❧↕✐ ♠ët ❜➔✐ ❜→♦ ❝õ❛ ❚❛♠→s ❉❛r✈❛s tr♦♥❣ ❬✼❪ ăr ợ t t ỹ t tr➢❝ ✤à❛ ②➳✉ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ❝→❝ t❤➳ ✈à ❑❛ ❝õ❛ ❧ỵ♣ ε(X, ω) ✈➔ sû ❞ư♥❣ ❝❤ó♥❣ ✤➸ ✤➦❝ trữ ợ ữủ t tr ợ ♥➠♥❣ ❧÷đ♥❣ P SH(X, ω) ε(X, ω) ✤÷đ❝ ①❡♠ ♥❤÷ ợ ỏ ữợ ổ ♥❤➜t t❤✐➳t ❜à ❝❤➦♥✳ ✣➙② ❝ơ♥❣ ❧➔ ❧ỵ♣ ❧ỵ♥ ♥❤➜t ỏ ữợ tr õ t♦→♥ tû ▼♦♥❣❡✲❆♠♣➧r❡ ♣❤ù❝ ①→❝ ✤à♥❤ tèt✳ ◆â ✤÷đ❝ sû ữỡ tr r t ợ ỳ ❧✐➺✉ t❤æ✳ ❉ü❛ ✈➔♦ ❝→❝❤ ①➙② ❞ü♥❣ t✐❛ tr➢❝ ✤à❛ ②➳✉ ✈➔ t➼♥❤ ❝ü❝ ✤↕✐ ❝õ❛ ♣❤➨♣ ❜✐➳♥ ✤ê✐ ▲❡❣❡♥❞r❡ ❝õ❛ t✐❛ tr➢❝ ✤à❛ ②➳✉✱ ❜➔✐ ❜→♦ ✤➣ ❝❤ù♥❣ ♠✐♥❤ ❦❤➥♥❣ ✤à♥❤ ✤➦❝ tr÷♥❣ ❝→❝ ♣❤➛♥ tû ❝õ❛ ε(X, ω) t❤❡♦ t➼♥❤ ♥❤➭ ❝õ❛ ❝→❝ ❦ý ❞à ❝õ❛ ❝❤ó♥❣✿ ψ ∈ ε(X, ω) ♥➳✉ ✈➔ ❝❤➾ ♥➳✉ P[ψ] (φ) = φ ✈ỵ✐ ψ ∈ P SH(X, ω) ✈➔ φ ∈ P SH(X, ω)∩ C(X)✳ ❱✐➺❝ ♥❣❤✐➯♥ ❝ù✉ ✈➲ ❝→❝ t✐❛ tr➢❝ ✤à❛ ②➳✉ tr♦♥❣ t❤➳ ✈à ❑❛❤❧❡r ❣✐ó♣ tỉ✐ t➻♠ ❤✐➸✉ s➙✉ ❤ì♥ ❝→❝ ❦✐➳♥ t❤ù❝ ✈➲ ♣❤÷ì♥❣ tr➻♥❤ ✈✐ ỵ tt t t ♣❤ù❝✳ ✺✸ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ Pr♦❜❛❜✐❧✐t② ♠❡❛s✉r❡s r❡❧❛t❡❞ t♦ ss t s rtss ăr trs ❛r❳✐✈✿✵✾✵✼✳✶✽✵✻✱ ✷✵✵✾✳ ❆ ❇r✉♥♥✲▼✐♥❦♦✇s❦✐ t②♣❡ ✐♥❡q✉❛❧✐t② ❢♦r ❋❛♥♦ ♠❛♥✐❢♦❧❞s ❛♥❞ t❤❡ ❇❛♥❞♦✲▼❛❜✉❝❤✐ ✉♥✐q✉❡♥❡ss t❤❡♦r❡♠✱ ■♥✈❡♥t✳ ▼❛t❤✳ ✷✵✵ ✭✷✵✶✺✮✱ ♥♦✳ ✶✱ ❬✷❪ ❇✳ ❇❡r♥❞tss♦♥✱ ✶✹✾✕✷✵✵✳ ❯♥✐q✉❡♥❡ss ❛♥❞ st❛❜✐❧✐t② ❢♦r t❤❡ ▼♦♥❣❡✲❆♠♣➧r❡ qt t ăr s rst tts r ✺✷ ✭✷✵✵✸✮✱ ❬✸❪ ❩✳ ❇❧♦❝❦✐✱ ✶✻✾✼✲✶✼✵✷✳ ❬✹❪ ❩✳ ❇❧♦❝❦✐✱ ♦♠❡tr②✱ trr r qt ăr ❏✉❧② ❙✉♠♠❡r ✷✵✶✶✱ t♦ ❙❝❤♦♦❧ ❛♣♣❡❛r ✐♥ ✐♥ P❧✉r✐♣♦t❡♥t✐❛❧ ▲❡❝t✉r❡ ◆♦t❡s ✐♥ ❚❤❡♦r②✱ ❈❡✲ ▼❛t❤❡♠❛t✐❝s✱ ❤tt♣✿✴✴❣❛♠♠❛✳✐♠✳✉❥✳❡❞✉✳♣❧✴ ❜❧♦❝❦✐✴♣✉❜❧✴❧♥✴❝❡tr✳♣❞❢✳ ❬✺❪ ❘✳ ❇❡r♠❛♥✱ ❙✳ ❇♦✉❝❦s♦♠✱ ❱✳ ●✉❡❞❥✱ ❆✳ ❩❡r✐❛❤✐✱ ❆ ✈❛r✐❛t✐♦♥❛❧ ❛♣♣r♦❛❝❤ t♦ ❝♦♠♣❧❡① ▼♦♥❣❡✲❆♠♣➧r❡ ❡q✉❛t✐♦♥s✱ P✉❜❧✳ ▼❛t❤✳ ■♥st✳ ❍❛✉t❡s ❊t✉❞❡s ❙❝✐✳ ✶✶✼ ✭✷✵✶✸✮✱ ✶✼✾✲✷✹✺✳ ❬✻❪ ❊✳ ❇❡❞❢♦r❞✱ ❇✳❆✳ ❚❛②♦r✱ ❆ ♥❡✇ ❝❛♣❛❝✐t② ❢♦r ♣❧✉r✐s✉❜❤❛r♠♦♥✐❝ ❢✉♥❝t✐♦♥s✱ ❆❝t❛ ▼❛t❤✳ ✶✹✾ ✭✶✾✽✷✮✱ ✶✲✹✵✳ ❬✼❪ ❚✳ rs s rs t s ăr tts ❛♥❞ t❤❡ ❝❧❛ss ❊✭❳✱ ω✮✱ ❏♦✉r♥❛❧ ♦❢ t❤❡ ■♥st✐t✉t❡ ♦❢ ▼❛t❤❡♠❛t✐❝s ♦❢ ❏✉ss✐❡✉✱ ✶✷✷✳ ❞♦✐✿✶✵✳✶✵✶✼✴ ❙✶✹✼✹✼✹✽✵✶✺✵✵✵✸✶✻✱ ❛r❳✐✈✿✶✸✵✼✳✻✽✷✷✳ ✺✹ ✺✺ ❬✽❪ ❏✳ P✳ ❉❡♠❛✐❧❧② ✭✷✵✵✼✮✱ ❈♦♠♣❧❡① ❛♥❛❧②t✐❝ ❛♥❞ ❞✐❢❢❡r❡♥t✐❛❧ ❣❡♦♠❡tr②✱ ❯♥✐✈❡rs✐t❡ ❞❡ ●r❡♥♦❜❧❡ ■ ■♥st✐t✉t ❋♦✉r✐❡r✱ ❋r❛♥❝❡✳ ❬✾❪ ❙✳ ❑✳ ❉♦♥❛❧❞s♦♥✱ tr ss ăr tr t s r t ❙♦❝✳ ❚r❛♥s❧✳ ❙❡r✳ ✷✱ ✈♦❧✳ ✶✾✻✱ ❆♠❡r✳ ▼❛t❤✳ ❙♦❝✳✱ Pr♦✈✐✲ ❞❡♥❝❡ ❘■✱✶✾✾✾✱✶✸✲✸✸✳ ❬✶✵❪ P✳ ❊②ss✐❞✐❡✉①✱ ❱✳ ●✉❡❞❥✱ ❆✳ ❩❡r✐❛❤✐✱ ❙✐♥❣✉❧❛r ărst trs r t r qts ss t s ăr ♠❡tr✐❝s✳ ▲❡❝t✉r❡ ◆♦t❡s ✐♥ ▼❛t❤❡♠❛t✐❝s✱ ✷✵✸✽✳ ❙♣r✐♥❣❡r✱ ❍❡✐✲ ❬✶✶❪ ❱✳ ●✉❡❞❥ ✭❡❞✐t♦r✮✱ ❞❡❧❜❡r❣✱ ✷✵✶✷✳ ❬✶✷❪ ●✉❡❞❥✱ ❱✳✱ ❩❡r✐❛❤✐✱ ❆✳✱ ■♥tr✐♥s✐❝ ts t ăr s ♥♦✳ ✹✱ ✻✵✼✲✻✸✾✳ ❬✶✸❪ ❱✳ ●✉❡❞❥✱ ❆✳ ❩❡r✐❛❤✐✱ ❚❤❡ ✇❡✐❣❤t❡❞ ▼♦♥❣❡✲❆♠♣➧r❡ ❡♥❡r❣② ♦❢ q✉❛s✐♣❧✉r✐s✉❜✲ ❤❛r♠♦♥✐❝ ❢✉♥❝t✐♦♥s✱ ❏✳ ❋✉♥❝t✳ ❆♥❛❧✳ ✷✺✵ ✭✷✵✵✼✮✱ ♥♦✳ ✷✱ ✹✹✷✲✹✽✷✳ ❬✶✹❪ ❱✳●✉❡❞❥ ✱ ❆✳ ❩❡r✐❛❤✐ ✱ rt r s Cn ăr ♠❡tr✐❝s❀ ❙▲◆ ▼♦♥❣❡✲❆♠♣➧r❡ ❡q✉❛t✐♦♥s ❛♥❞ ❣❡♦❞❡s✐❝s ✐♥ t❤❡ s♣❛❝❡ ♦❢ ❑❛ ✷✵✸✽✱ ✷✵✶✷✳ ❬✶✺❪ ❱✳●✉❡❞❥✱ ❆✳ ❩❡r✐❛❤✐✱ ❉❡❣❡♥❡r❛t❡ ❈♦♠♣❧❡① ▼♦♥❣❡✲❆♠♣➧r❡ ❊q✉❛t✐♦♥s✱ ❊▼❙ ❚r❛❝ts ✐♥ ▼❛t❤❡♠❛t✐❝s ✷✻✱ ■❙❇◆ ✾✼✽✲✸✲✵✸✼✶✾✲✶✻✼✲✺✳ ❬✶✻❪ ❈✳ ❑✐s❡❧♠❛♥✱ ❚❤❡ ♣❛rt✐❛❧ ▲❡❣❡♥❞r❡ tr❛♥s❢♦r♠❛t✐♦♥ ❢♦r ♣❧✉r✐s✉❜❤❛r♠♦♥✐❝ ❢✉♥❝t✐♦♥s✱ ■♥✈❡♥t✳ ▼❛t❤✳ ✹✾ ✭✶✾✼✽✮✱♥♦✳✷✱ ✶✸✼✲✶✹✽✳ ❬✶✼❪ ❚✳ ▼❛❜✉❝❤✐✱ ❙♦♠❡ s②♠♣❧❡❝t✐❝ ❣❡♦♠❡tr② ♦♥ t ăr s s t ❬✶✽❪ ❏✳ ❘♦ss✱ ❉✳ ❲✐tt ✱ ❆♥❛❧②t✐❝ t❡st ❝♦♥❢✐❣✉r❛t✐♦♥s ❛♥❞ ❣❡♦❞❡s✐❝ r❛②s✱ ❏♦✉r♥❛❧ ♦❢ ❙②♠♣❧❡❝t✐❝ ●❡♦♠❡tr② ❱♦❧✉♠❡ ✶✷✱ ◆✉♠❜❡r ✶ ✭✷✵✶✹✮✱ ✶✷✺✕✶✻✾✳ ❬✶✾❪ ❙✳ ❙❡♠♠❡s✱ ❈♦♠♣❧❡① ▼♦♥❣❡✲❆♠♣➧r❡ ❛♥❞ s②♠♣❧❡❝t✐❝ ♠❛♥✐❢♦❧❞s✱ ▼❛t❤✳ ✶✶✹ ✭✶✾✾✷✮✱ ✹✾✺✲✺✺✵✳ ❆♠❡r✳ ❏✳ ...BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH Nguyễn Thị Tuyết Như TIA TRẮC ĐỊA YẾU TRONG KHÔNG GIAN CÁC THẾ VỊ K

Ngày đăng: 14/06/2021, 22:16