1. Trang chủ
  2. » Cao đẳng - Đại học

Math Reviews

21 9 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 21
Dung lượng 862 KB

Nội dung

simple models only, e.g., three linear or two linear and one quadratic equation models Complexity increases geometrically w/ increase in # equations, e.g., six eq.. Linear model Need a[r]

(1)Mathematics for Economists (2) 2.1 Endogenous & Exogenous Variables; constants, parameters    TR – TC (identity) Qd = Qs (equilibrium condition) Y = a + bX0 (behavioral equation) Y: endogenous variable X0: exogenous variable a: constant b: parameter and the coefficient of exogenous variable X0 (3) 2.4 Functions and Relations Function: a set or ordered pairs with the property that for (x, y) any x value uniquely determines a single y value, e.g., curves  or , e.g., mpp or cost curves Relation: ordered pairs with the property that for (x, y) any x value determines more than one value of y e.g., curves  or , (4) 2.4 General Functions Y = f (X) Y is value or dependent variable (w/ range, vertical axis) f is the function or a rule for mapping X into a unique Y X is argument or the independent variable (w/ domain, horizontal axis) (5) 2.5 Specific Functions Algebraic Y Y Y Y Y Y = = = = = = functions a0 (constant: fixed costs) a0+ a1 X (linear: S&D) a0 + a1X + a2X2 (quadratic: prod.) a0 + a1X + a2X2 + a3X3 (cubic: t cost) a/X (hyperbolic: indiff.) aXb (power: prod fn) Transcendental functions (Ch 10) Y = aX (exponential: interest) lnY = ln(a) + b ln(X) (logarithmic: easier) (Chiang & Wainwright, p 22, Fig 2.8) (6) 2.5 Digression on exponents Rules for exponents  Xn = (X*X*X* *X) n times Rule I: Xm * Xnm= Xm+n X  X m n Rule II: Rule Rule III: X = IV: X0 = Rule Rule Rule V: X1/n =nx VI: (Xm)n = Xmn VII:Xm * Ym = (XY)m Xn -n Xn (7) 2.7 Levels of generality Specific function 1: specific form and specific parameters  Y = 10 - 5X Specific function 2: specific form and general parameters  Y = a – bX General function: general form and no parameters  Y = f(X)  f maps X into a unique value of Y (8) 3.1 Find the equilibrium price (P*) and quantity (Q*)  Given  Qd quantity demanded  Qs quantity supplied P price, where P* is the equilibrium price  Assume  Qd = Qs=Q*  Qd a decreasing linear function of P  Qs an increasing linear function of P  P* >  One equilibrium and two behavioral equations (9) 3.1 The meaning of equilibrium Qd a Qs = - c + dP (supply) Qd Qs Q * P ,Q  * * Qd a  bP P O -c (demand) P* ceterus paribus  Equilibrium: a set of selected interrelated variables, e.g P, Q, within the model adjusted to a state such that there no inherent tendency to change (10) 3.1 Ingredients of a mathematical model A mathematical economic model will consist of: ◦ ◦ Variables, Parameters, Example: Constants Equations and Identities Supply-demand model Qd = a - bP demand equation Qs = -c + dP supply equation Qd = Qs= Q* equilibrium condition 10 (11) 3.2 Solving a linear market model Partial equilibrium model of supply & demand 1) Qd = Qs=Q* equilibrium condition 2) a – bP = -c + dP 3) (a + c) – (b+d)P* = where P=P* when Q=0 4) (a + c) – (b+d)P = Q more general form linear formulae 5) P* = (a+c)/(b+d) 6) Q* = (ad-bc)/(b+d) 11 (12) 3.2 Solving a Linear Market Model Partial equilibrium model of supply & demand Qd = Qs =Q* equilibrium condition Qd = 21 - 2P ; a=21, b=2 Qs = -4+ 8P ; c=4, d=8 linear formula P* = (a+c)/(b+d) = (21+4)/(2+8)=25/10=2.5 Q* = (ad-bc)/(b+d) = (21)(8)-(2)(4)/10 = 160/10 = 16 12 (13) Root of a Linear Market Model Let a 21, b 2, c 4, d 8 Qd a  bP (blue) Qs  c  dP (black) Qd Qs Q * a  bP  c  dP (a  c)  (b  d ) P * 0 (a  c)  (b  d ) P Q (root) (function, red) 13 (14) 3.3a Quadratic Market Model 1) Qd = – P2 demand equation 2) Qs = -1 + 4P supply equation 3) Qd = Qs = Q* equilibrium equation 4) - P2 = -1 + 4P 5) P*2 + 4P* -5 = root 6) P2 + 4P -5 = Q function  How you solve for P*? ◦ Graphically? ◦ Factor? ◦ Quadratic formula? 14 (15) 3.3 eq.(3.6) Roots of a quadratic model Qd 4  P (black) Qs   P (blue) Qd Qs Q *  P   P P  P  Q (red) P *2  P *  0 P *    P *  0 P *   5, 1 Q *   21, 3 15 (16) 3.3b Deriving the Quadric formula  Take ax2 + bx + c = 0, solve for x in terms a, b, c  x2 + bx/a + c/a =  x2 + bx/a + b2/4a2 = b2/4a2 - c/a  (x + b/2a)2 = (b2-4ac)/4a2  x + b/2a = (b2-4ac)½/2a  x = (-b (b2-4ac)½)/2a quadratic formula  Solve the system of eq for P and set P = by moving all terms to one side, then apply quadratic formula 16 (17) 3.3b Solving a Quadratic Market Model Using the Quadratic Formula ax2 + bx + c =  P*2 + 4P* -5 =   b  b  4ac P  2a *   16  (4)(1)( 5)   1 16  20 P  * 1/ 2 6  1, 5 17 (18) Cubic formula: take ax3+bx2 +cx+d= solve for x in terms of a, b, c, d 18 (19) Finding the roots of a cubic function Find the rational roots of the following cubic equation 3 x  x  x  0 8 x  x  x  0 x c (1,1 8,1 ,1 2) let c  3 1 8 1  1 x  x  0 4 8 4 2 ( 8) x  x  x  0 x x  1  1 x  1 0  x  1 x  1 0  x  1 x  1 x  1 0 x   1,  4,1 2 19 (20) 3.4 Two-commodity market model Qd  Qs1 0 Q d  Q s 0 Qd a  a1 P1  a P2 Qs1 b0  b1 P1  b2 P2 Qd    P1   P2 Qs    1 P1   P2 20 (21) Summary Elimination of variable method is ok for v simple models only, e.g., three linear or two linear and one quadratic equation models Complexity increases geometrically w/ increase in # equations, e.g., six eq Linear model Need a better way to handle the nequation linear models -> matrix algebra! 21 (22)

Ngày đăng: 08/06/2021, 17:54

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w