1. Trang chủ
  2. » Cao đẳng - Đại học

Dap an de so 2Thu suc truoc ky tren THTT Luyenthi DH nam 2011

5 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 146,87 KB

Nội dung

0 0 Tính hạ bậc liên tiếp rồi dung tích phân từng phần cho hàm xsinx; xcoskx để được kết quả... C: và điểm MN có độ dài lớn nhất.[r]

(1)GỢI Ý GIẢI ĐỀ SỐ 02 – TH&TT LUYỆN THI ĐH – CĐ NĂM HỌC 2010 – 2011 PHẦN CHUNG CâuI Cho hàm số y 2 x  x  (C ) Khảo sát biến thiên và vẽ đồ thị (C) Tìm trên (C) điểm M cho tiếp tuyến (C) M cắt trục tung điểm có tung độ Giải: Bạn đọc tự giải 2 y ' 6 x  x Tiếp tuyến (d) M( x0 ; x0  x0  ) : y 6( x0  x0 )( x  x0 )  x0  x0  cắt Oy điểm có tung độ là  x03  x0  đó  x03  x0  8  x03  3x0  0  ( x0  1)(4 x0  x0  7) 0  x0  , đó M(-1;-4) CâuII:  xy  18 12  x    xy 9  y Giải hệ:  x x Giải phương trình:  ( x  12)2  11  x 0 (*) Giải:  xy  18 12  x  y  27 (27  y ) 9(9  t )  2   12   t   12   xy 9  y y2 9.3t   t 9  t  t  81   3t  27t 36t  (t  9)       4t  45t  81 0  t  y  t  (Với )  y 3  x 2 t 9    y  3  x  ( xy  ) Với (27  3t ) 75 t2  x2    12 đó 27t Với     ( x; y )  3;3 ;  3;  3 Vậy hệ có nghiệm là x Đặt t 2 ĐK: t > Khi đó (*) trở thành t  ( x  12)t  11  x 0  t 1; t 11  x Với t = ta x = x x x Với t = 11-x ta 11  x   x  11 0; f ( x ) 2  x có f (3) 0; f '( x)  x nên x= là nghiệm phương trình x 11  x Vậy phương trình có tập nghiệm là S = {0; 3} (2) CâuIII: Chóp tam giác S.ABC cạnh đáy a và khoảng cách cạnh bên với cạnh đáy đối diện m Tính thể tích khối chóp Giải: Gọi M, P là trung điểm BC, AC Hạ MN vuông góc với SA Dễ dàng có MN là đoạn vuông góc chung SA và BC Xét tam giác SAM với hai đường cao SH và MN, đó a MN = m và AM = Có SA = SB = SC nên SH  ( ABC ) , Với H là trọng tâm tam giác ABC ( SN  NA) SA2 SH  AH SM  MH  AH 2 N B A SN  NM  MH  AH  2SN NA  NA2 NM  MH  HA2 2 Mặt khác NA MA  MN S P 2 SN NA  MA  MN MN  MH  HA MN  HA2  MA2  MH    SH  2 MA2  MN  NA  MA  MN a a a MN m, MA  , HA  , MH  đó hoàn toàn xác định đó V  SH SABC SH Từ đó ta tính thể tích khối chop  CâuIV: Tính tích phân Giải:  I x(cos x  sin x) dx   I x(cos x  sin x)dx x cos xdx  x sin xdx 0     I1 x cos xdx xd sin x  x sin x   cos x  0 Tính hạ bậc liên tiếp dung tích phân phần cho hàm xsinx; xcoskx để kết     cos x 1 cos x  I x sin xdx x sin x( ) dx x sin x(  cos x  ) dx 0 CâuV: Cho tam giác ABC có BC = a; CA = b; AB = c thoả mãn 1   Chứng minh a b c Giải: a (a  c) b  b(b  a) c H M C (3) a(a  c) b  a  ac b a  c  2ac cos B  c a (2 cos B  1)  sin C 2sin A cos B  sin A  sin C sin( A  B)  sin( A  B)  sin A B B B B  sin( A  B)  sin A 0  sin( A  ) cos 0  sin( A  ) 0  A  2 2 C b(b  a ) c  B  2, Tương tự, từ 1800 2.1800 4.1800 A ;B ;C  7 Kết hợp với A + B + C = 1800 ta 1 1 bc      sin B.sin C sin A.(sin B  sin C ) a bc Mặt khác a b c hay 2.1800 4.1800 1800 3.1800 1800 sin sin 2sin sin cos 7 7 0 0 2.180 4.180 2.180 3.180 4.1800 3.1800  sin sin sin sin  sin sin 7 7 7 (đpcm) PHẦN RIÊNG A Theo chương trình chuẩn CâuVI.a: 2 (d): 3x – 4y +5 = và (C): x  y  x  y  0 Tìm điểm M trên (C) và N trên (d) cho MN có độ dài nhỏ ( P1 ) : x  y  z  0 ; ( P2 ) : x  y  z  0 và đường thẳng x2 y z    1 2 Lập phương trình mặt cầu (S) có tâm I thuộc (d) và tiếp xúc với ( P1 ); ( P2 ) (d ) : Giải: Đường tròn (C) có tâm I(-1;3) với bán kính R = d ( I , d ) 2  R Đường thẳng (a) qua I(-1;3) vuông góc với (d) có phương trình là: ; x  y  0 ; (a) cắt (d) điểm H( 5 ); (a) cắt (C) M là trung điểm IH 11  ; đó M( 5 ) Mọi điểm H trên (C) và điểm P trên (d) luôn có HP MN 1 dấu “ = “ xảy H M và P N Lấy I(-2-t; -2t; 4+3t) trên (d) đó 9t  10t  16 25 N d ( I ; P1 ) d( I ; P2 )    t  7; t  3 19 Ứng t ta tìm R tương ứng, đó cho phương trình mặt cầu CâuVII.a: 12 Đặt (1  x  x  x ) a0  a1 x  a2 x   a12 x Tính hệ số a7 I M (4) Giải: (1  x  x  x3 ) [(1  x)(1  x )]4 (1  x) (1  x ) 4 Có (1  x) ( x  4)  C4k ( 1)  k x k và 4 0 (1  x )4 ( x  1)4  C4p ( x ) p  C4p x p Khi đó (1  x) (1  x )  (  1)  k C4k C4p x k 2 p số hạng chứa x tương ứg với k+2p = suy k = thì p = 3; k = thì p = Vậy hệ 3 số x là a7 ( 1) C4C4  ( 1) C4 C4  40 B Theo chương trình Nâng cao CâuVI.b M( ; ) 2 ( x  1)  ( y  3)  5 Tìm trên (C) điểm N cho (C): và điểm MN có độ dài lớn 2 2 Mặt cầu (S): x  y  z  x  y  z  0 và mặt phẳng (P): x-2y+2z-3=0 Tìm điểm M thuộc (S), N thuộc (P) cho MN nhỏ Giải: (C) có tâm I(-1;3) và bán kính R = MI = đó M nằm ngoài đường tròn N 11 ; ) Trung điểm A MI thuộc đường tròn (C), A( 5 ; Lấy N đối xứng 14 19  ; ) với A qua I N( 5 Khi đó, điểm P thuộc đường tròn thì PM NM Dấu “=” xảy P N d 2 (S) có tâm I(-1;2;1) và bán kính R = 1; ( I , P ) Các điểm M thuộc (S) Và N thuộc (P) để MN nhỏ xác định sau: M( ; ) +) Viết phương trình đường thẳng (d) qua I(-1;2;1) và vuông góc với (P) 5 +) N là giao (d) với (P) +) M là trung điểm NI ( NI = =2R) CâuVII.b  3x   x f ( x)  x Dùng định nghĩa, tính đạo hàm hàm số x 0 và f(0)=0; điểm x0 0 P I A Giải: +) Cho x0 0 số gia x Có y  f ( x0  x)  f ( x0 )  f (x)  f (0)  f (x) y  3x   2x lim  lim x  x x  ( x ) +) Ta tính lim x  3x   x  3x  (1  x)  x  (1  x)  lim  lim 2 x x x x x2 (5)  3x  (1  x)  x ( x  3)  lim  x x  x2 x (1  3x)  (1  x)  x  (1  x)     x  (1  x) x I lim lim  x x x  I I1  I  x   x  (1  x )   Vậy f’(0) = I1 lim (6)

Ngày đăng: 05/06/2021, 17:28

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w