[r]
(1)Sở giáo dục đào tạo H−ng yên
đề thức
kỳ thi tuyển sinh vào lớp 10 thpt chuyên Năm học 2011 2012
Môn thi: Toán
(Dành cho thí sinh thi vào lớp chuyên Toán, Tin) Thời gian làm bài: 150 phút
Bài 1: (2,0 điểm) Cho phơng trình x2 2 m x( − ) +m2 − =2 0 (1) (ẩn x) a) Tìm nghiệm phơng trình (1) m số tự nhiên
b) Tìm giá trị m để ph−ơng trình (1) có hai nghiệm mà hiệu chúng Bài 2: (2,0 im)
a) Giải hệ phơng trình
2
2
2x y xy y 5x x y x y
⎧ − + + − + =
⎪ ⎨
+ + + − =
⎪⎩ b) Cho parabol (P) y 1x2
4
= điểm M( 1; 2) Tìm phơng trình đờng thẳng qua M cắt (P) điểm
Bài 3: (2,0 điểm)
a) Tìm số nguyên tố p q cho số 7p+q pq 11+ số nguyên tố
b) Cho x, y số thực không âm Tìm giá trị nhỏ biểu thức: P=2x+ y xy−2 y+2011
Bài 4: (3,0 điểm) Cho tam giác ABC nội tiếp đ−ờng tròn tâm O Trên cung nhỏ AB đ−ờng tròn (O) lấy điểm E cho E khác A B Đ−ờng thẳng AE cắt tiếp tuyến B, C đ−ờng tròn (O) lần l−ợt M N Gọi F giao điểm MC BN Chứng minh rằng:
a) Hai tam giác ACN, MBA∆ ∆ đồng dạng với BM.CN=BC2 b) BC tiếp tuyến đ−ờng tròn ngoại tiếp tam giác MBF
c) EF qua điểm cố định E thay đổi cung nhỏ AB đ−ờng tròn (O) (E khác A v B)
Bài 5: (1,0 điểm) Trên mặt phẳng cho 2011 điểm cho ba điểm thẳng hàng Xét tất đoạn thẳng nối cặp điểm 2011 điểm Vẽ đờng thẳng d không qua điểm số 2011 điểm nói Chứng minh đờng thẳng d cắt số đoạn thẳng xét số đoạn thẳng bị đờng thẳng d cắt số chẵn
- Hết -Họ tên thí sinh: .
Chữ ký giám thị .