1. Trang chủ
  2. » Mẫu Slide

Gia tri bieu thuc

5 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 142,9 KB

Nội dung

[r]

(1)

bài 1:tính giá trị biểu thøc sau:

1;log82 ; 2, 27

1

log

; 3, log1282 2 ; 4, 0,2

5

log

; 5,51 log 35

; 6, log     

  ; 7,32 log 183

; 8, 3log

5 ; 9,

4

8

125 1log

log

81  25 ;10,

3 25

5

4

1log 3log log

16 

 ,11,

9 4

7 5

1log log

log

49  5

Bµi 2::tính giá trị biểu thức sau:

A,log159 log189  log109 ; b,

3

6 400 45

1 1

3 3

1

2log log 3log

2   , c, 36 log log  , d,

 3 log log

log Bài 3:giải pt sau:

Bµi8:pt logarit:1,   2 12

logxxx 2;2, log29 

x

x

  ;3 log162x3 2;4, log23.2 1 x

x

 

5,3log3 log9

x x

 

;6,

3

3 27

5

log log log

3

x x x

  

;7,    

3

2 2

logx logx log

  ;8, 2 log log x x   9,  3  1  1  1

2 1

2

logx  logx 2logx logx

  

;10.

64 16

log xlogx 3 ;11,

2

7

log log

6

x

x  

12,log2 log4 log8 11

x x x

   ;13,

3

2

9 9

9

5logx logx 8logx

x x x    ;14; 1log log x        ;

15,  

2

2

log xx1 logx2x 0

;16,  

log x  2 x;17, log76 

x

x

 

18,  

2 9

3

2 logx 5log x

  

;19,

1

3

logx logx

  

;20,

   

2

6

1

logxx logxx x 21,

   

3

4

4

logxxx logxx

;22,

3

5

3

log x log

x

 

 

;23,  

1

lg lg

2

xx

; 24,

2 2 2 log log x x x x x x           

   ;25lgx 92lg 2x1 2 ,26, lgx3 2lgx 2lg 0,

27,

5

5

log logx

x

x  ;28,log log2x 22x log42x;29,log4log2 log2log4

x x

 

hd:

log2 log2 log2

4 2

1

log log log log

2

x x x

 

vµ    

2 2

4

1 log log log log 2

2 2

log log log

x

x x  

 

   2  2

1

log log

2

2 2

log log x log x

   

30

x+6¿3 4− x¿3+log1

4

¿

x+2¿23=log1

¿

2log1

¿

;31) log2(4

x+1

+4) log2(4x+1) = log1

√2√

1

32) logx3 + log3x = log√x3 + log3√x +

1

2 ;33, logx(125x) log252x =

34) log3(sin x

2sinx) + log13 (sin x

2+cos 2x) = (Đề 3);36: xlog29 = x2 3log2xxlog23

37) log3(3x−1) log3(3x+13) = 6;38; c) log4log2x + log2log4x =

39) logx3 + log3x = log√x3 + log3√x +

1 ;40:

log3x

log93x

=log279x

log8127x 41; log x5 log5x6  log x5 2 ;42 log x5 log x25 log0,2 3

43  

2 x

log 2x  5x4 2

;44.

2 x 3

lg(x 2x 3) lg 0

x 1

   

(2)

45.

1

.lg(5x 4) lg x 1 2 lg 0,18

2      ;46 log x5 log5x6 log5x2

47 log x5 log x25 log0,2 3 ;48  

2 x

log 2x  5x4 2

Bài 9: giải phơng trình sau a log x5 log5x6  log5x2

b log x5 log x25 log0,2 3 c  

2 x

log 2x  5x4 2

d.

2 x 3

lg(x 2x 3) lg 0

x 1

   

e.

1

.lg(5x 4) lg x 1 2 lg 0,18

2      a.

1 2

1

4 lg x 2lg x 

b.log x2  10 log x2 6 0 c. log0,04x 1  log0,2x 3 1 d.3log 16x  4 log x16 2 log x2

d.3log 16x  4 log x16 2 log x2 e.log 16x2 log 642x 3 f.

3

lg(lg x)lg(lg x  2)0

a.

x

3

1

log log x 9 2x

2

 

  

 

  b.    

x x

2

log 4.3  6  log 9  6 1

c.

 x   x 

2

2

1

log 4 4 log 4 1 log

8

  

d.  

x x

lg 6.5 25.20  x lg 25

e.      

x x

2 lg 1 lg 5 1 lg 5  5

f.  

x

xlg 5 x lg 2lg3

g.5lg x 50 xlg 5h.

2

3

log x log x

3 x 162

a.    

2

xlg x  x 6  4 lg x2

;b.log x 13  log 2x 15   2

c.x2 log 32x 1  4 x log   3x 1   160;d.2log x 35   x

bài10 : giải phơng trình sau:

2  

1

3

1) log  x x  2 log 2x2 0

  2¿ log

4{2log3[1+log2(1+3 log2x)]}=

1 3¿ log2(x21)=log1

2

(x-1) 4¿ log

x(x2+4x −4)=3

5¿ logcosx4 logcos2x2=1 6¿ log

2(x-1)

=2log2(x3+x+1)

7¿ log3x+log4x=log5x 8) log x 8 log x 58  1log x 4 4

2 x

     

9¿3 2log1

4

(x+2)2-3=log1

(4-x)3+log1

(x+6)3

10) log2(x2

+x+1)+log2(x2− x+1)=log2(x4+x2+1)+log2(x4− x2+1)

11) 2(log9x)2=log3x log3(√2x+11)

12) log2(x2+3x+2)+log2(x2+7x+12)=3+log23

log2(5x+2)+2 log5x

+223>0

1¿ xlg

2x23 lgx−9

2

=102 lgx 2¿(x-2)log3[9(x −2)]

=9(x-2)3

3¿ log2(3x−1) log2(2 3x−2)=2

(3)

5¿ log2(x-√x 1) log3(x+√x 1)=log6(x-√x 1) 9¿ log2x+√log2x+1=1 6¿ lg2(x2+1)+(x25)lg(x2+1)-5x2=0 10) log5(5

x

1) log25(5

x+1

5)=1

7¿ log2[x(x-1)2]+log2(x2− x)-2=0 11) (x −1)log2[4(x−1)]

=8(x −1)3

8¿√3+log2(x24x+5)+2√5-log2(x24x+5)=6 14) log2

x

2+log24x=3

12) log2(5x−1) log2(2 5x−2)=2 13) 3log2x

+xlog23

=6 14) log2x2+log24x=3

15) log22x −2(x −1)log2x+2x

2

6x+5=0 16) log2(5x+2)+2 log5x

(4)

17) 3log32x−18xlog3

1

+3>0 18) log22x −(x+1)log2x+2x −2>0

19) log3x log2x<log3x2+log2 x

4 20)

2log12

x

+x log1

2

x5

2

21) 3(log3x)

2

+xlog3x6 22)

 

3 4 1

5

log 4 1 log 3

2

x

x

  

23)

 2  

1

3

1) log  x x  2 log 2x2 0

 

√2|log2x|>log2x

 2  

1

3

1) log  x x  2 log 2x2 0

2¿ log4{2log3[1+log2(1+3 log2x)]}=

1 3¿ log2(x21)=log1

2

(x-1)

4¿ logx(x

2

+4x −4)=3

5¿ logcosx4 logcos2x2=1

6¿ log2(x-1)

=2log2(x3+x+1)

7¿ log3x+log4x=log5x

    1  

8) log x 8 log x 58 log x 4 4

2 x

(5)

Ngày đăng: 30/05/2021, 12:03

w