Trªn tia ®èi cña CA lÊy ®iÓm F sao cho CF=AB.[r]
(1)Đề Bai 1: a,(2.5 điểm); T×m x biÕt:
3
¿4=625
5x
b,(2.5 điểm): Tìm a thoả mÃn: 3a+12=6449
c,(2.5 điểm): Cho n∈N , 8x −1¿2n+2=72n+2
¿ T×m x
Bài 2: a,(2.5 điểm): Cho a b=
8 ;
b c=
2
7 a+b+c=61 Tính a,b,c b,(2 điểm): Tìm x , yZ thoả mÃn: 2xy-x-y=3
Bài 3: a,(2 điểm): Cho đa thức f (x)=x27x+6 đa thức g(x)=2x2+3x −5 So s¸nh f(1) víi g(1)
b,(2 điểm): Cho đa thức f(x)=ax2+bx+c với hệ số a, b, c nguyªn BiÕt r»ng f(x)⋮5∀x∈Z , xÐt xem 2a+9b+1969c cã chia hÕt cho kh«ng?
Bài 4: Cho ΔABC vuông cân A Phân giác góc A cắt BC D Trên tia đối tia AD lấy điểm E cho AE=BC Trên tia đối CA lấy điểm F cho CF=AB
a,(2 điểm): CM E^A B=BC F^ , từ CM ΔEAB=ΔBCF .
b,(2 điểm):Qua B kẻ đờng thẳng vng góc với EF M So sánh EM
BF víi BM BE
ĐỀ 2 Câu 1 (3điểm)
1) Cú hay khụng mt tam giác với độ dài ba cạnh : √17 ; √5+1 ; 3√5
2) Thùc hiÖn phÐp tÝnh: A = [(
193 − 386)
193 17 +
33 34 ]:[(
7 1931+
11 3862)
1931 25 +
8 9] 3) Chøng minh r»ng:
B = 98+2 97+3 96+ +96 3+97 2+98 1 2+2 3+3 4+ +96 97+97 98+98 99=
1
C©u ( điểm)
Tìm x, y biết : ( 2x – 5) 2008+ ( 3y + 4)2010 0
Câu 3 ( điểm):
a) Cho a,b,c ,d số khác thoả mÃn b2 = ac vµ c2 = bd
Chøng minh r»ng: a
+b3+c3 b3+c3+d3=
a d b) Cho S = abc bca cab .
Chứng minh S số chớnh phng
Câu 4 ( điểm):
Cho tam giác ABC có góc A nhọn Trên nửa mặt phẳng bờ AB không chứa điểm C lấy điểm M cho NA = BA NAB = 900.trên nửa mặt phẳng bờ AC không chứa điểm B
lấy điểm M cho MA = CA MAC = 900.
1) Chøng minh r»ng: a) NC = BM b) NC BM
2) Qua A kẻ đờng thẳng vng góc với BC cắt MN K chứng minh K trung điểm đoạn thẳng MN
ĐỀ 3
(2)a)
3 7
: :
7 11 11 11 11
b)
1 1 1
99.97 97.95 95.93 5.3 3.1
Bµi 2: T×m x; y; z biÕt:
a) 2009 – x 2009 = x
b)
2008
2008
2
5
x y x y z
B ài 3:(3 điểm)
a) Cho hai ®a thøc f(x) = x5 – 3x2 + 7x4 – 9x3 + x2 -
4x
g(x) = 5x4 – x5 + x2 – 2x3 + 3x2 -
TÝnh f(x) + g(x) vµ f(x) – g(x)
b) TÝnh giá trị đa thức sau: A = x2 + x4 + x6 + x8 + …+ x100 t¹i x = -1.
Bài 4:(7 điểm)
Cho tam giác ABC cân (AB = AC ; góc A tù) Trên cạnh BC lấy điểm D, tia đối CB lấy điểm E cho BD = CE Trên tia đối CA lấy điểm I cho CI = CA
1): Chøng minh: a) ABDICE
b) AB + AC < AD + AE
2): Từ D E kẻ đờng thẳng vng góc với BC cắt AB; AI theo thứ tự M; N Chứng minh BM = CN
3): Chøng minh r»ng chu vi tam giác ABC nhỏ chu vi tam giác AMN
Bài (3 điểm):