1. Trang chủ
  2. » Trung học cơ sở - phổ thông

DE THI VA DAP AN THI THU DH KHOI BD NAM 20112012 LANGGIANG 1

6 6 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 831 KB

Nội dung

Dưới đây chỉ là hướng dẫn chấm, nếu học sinh làm cách khác đúng thì các đồng chí vận dụng hướng dẫn chấm này để cho điểm.. Yêu cầu các đồng chí chấm đúng, chấm đủ bài của học sinh để tr[r]

(1)

SỞ GD - ĐT BẮC GIANG

Trường THPT Lạng Giang số 1 ĐỀ THI KHẢO SÁT HỌC SINH KHÁ GIỎI LẦN 4Năm học: 2011 - 2012 Mơn: Tốn Khối B, D Thời gian làm bài: 180 phút I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)

Câu I (2 điểm) Cho hàm số y x 33x2m (1)

1) Khảo sát biến thiên vẽ đồ thị hàm số (1) m = 4

2) Tìm m để đồ thị hàm số (1) có hai điểm cực trị A, B cho AOB120 Câu II (2 điểm) Giải phương trình, hệ phương trình:

1)  

2

2cos3 cos sin 2 os x x  xc  x 

  2)

¿ x3y

(1+y)+x2y2(2+y)+xy330=0 x2y+x(1+y+y2)+y −11=0

¿{ ¿ Câu III (1 điểm) Tính tích phân:

7

1

3 2

 

  

x

I dx

x x .

Câu IV (1 điểm) Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC tam giác cân đỉnh C; đường thẳng BC’ tạo với mặt phẳng (ABB’A’) góc 60 AB = AA’ = a Gọi M, N, P trung điểm BB’, CC’, BC Q điểm cạnh AB cho BQ =

a

Tính theo a thể tích khối lăng trụ ABC.A’B’C’ chứng minh (MAC) (NPQ)

Câu V (1 điểm): Cho số thực dương a, b, c thỏa mãn a2b2c2 1 Chứng minh

5 5

2 2 2

2 2

3

a a a b b b c c c

b c c a a b

     

  

  

II PHẦ N DÀNH RIấNG (3 điểm) Thí sinh đợc làm phần hoăc phần 2. 1 Theo chương trỡnh chuẩn.

Câu VI.a (2 điểm)

1) Trong mặt phẳng với hệ toạ độ Oxy, cho ABC cân A nội tiếp đường tròn  C x: 2y2 2x 4y 1

M0;1 Tìm toạ độ điểm A, B, C biết A có hồnh độ dương M trung điểm cạnh AB

2) Trong không gian với hệ toạ độ Oxyz, cho hai đường thẳng

1 :

1 2

x y z

  

 

2

2

:

1

x t

y t t R

z t

   

    

   

Tìm M 1;NOx cho MN vng góc với đường thẳng 2 MN2 5. Câu VII.a (1 điểm): Tìm số phức z thỏa mãn :

2

2

zz zz

z z 2 2 Theo chương trình nâng cao

Câu VI.b (2 điểm) 1) Trong mặt phẳng tọa độ Oxy cho hình vng ABCD A thuộc đường thẳng x y 1 0 CD có phương trình 2x y  3 0 Tìm tọa độ đỉnh hình vng biết hình vng có diện tích 5.

2) Trong không gian với hệ tọa độ Oxyz, cho ba đường thẳng :

1:

1 x t

d y t

z t

  

  

  

 ; d

2:

2

1 3

x yz

 

  d3:

1 1

5

xyz

 

Viết phương trình đường thẳng , biết  cắt ba đường thẳng d1 , d2 , d3 điểm A,

(2)

Câu VII.b (1 điểm) Giải hệ phương trình:

3 2 1 0

(3 ) 2

x y

x x y y

    

    

 

Họ tên thí sinh: Số báo danh:

-Hết -HƯỚNG DẪN CHẤM ĐỀ THI KHẢO SÁT HỌC SINH KHÁ GIỎI LẦN NĂM HỌC 2011 – 2012. Mơn: Tốn Khối B, D Thới gian làm bài: 180 phút

Lưu ý:

Dưới hướng dẫn chấm, học sinh làm cách khác đồng chí vận dụng hướng dẫn chấm điểm.

Yêu cầu đồng chí chấm đúng, chấm đủ học sinh để trả cho học sinh.

CÂU Ý NỘI DUNG ĐIỂM

I PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 ĐIỂM)

I

1 Với m = -4 ta có: y x3 3x2 4

  

+ Tập xác định: D = R + Sự biến thiên

y' 3 x26x;

0 '

2 x y

x

     

Hàm số đồng biến   ; 2 0;, hàm số nghịch biến 2;0

Hàm số đạt cực đại x = -2; y = 0, hàm số đạt cực tiểu x = 0; y = -4

limxlim y

Bảng biến thiên (vẽ đúng) + Đồ thị (vẽ đúng, đẹp)

0.25

0.25 0.25 0.25 2

Ta có: y’ = 3x2 + 6x; y' =

2

0

    

     

x y m

x y m

Vậy hàm số có hai điểm cực trị A(0 ; m) B(2 ; m + 4)

Ta có: (0; ),  ( 2; 4)

OA m OB m Để  1200

AOB thì

1 cos

2  AOB

 

2

( 4)

2 ( 4)

 

  m m

m m

4

12

12 3

3    

  

     

  

m

m m

Kết luận:

0.25

0.5

0.25 II 1

 

 

2

2cos cos sin 2 os cos os2 sin os

2

x x x c x

x c x x c x

 

     

 

  

         

 

 

os4 sin os2 sin

sin sin

6

2sin cos

c x x c x x

x x

x x

 

    

   

      

   

 

    

 

sin 18 3

6 cos

2

x k

x

x k

x

 

  

     

 

 

     

  

 

 

0.25 0.25 0.25

(3)

2

Hệ PT 

xy x y x y x y xy x y xy x y

2 2

( ) ( ) 30

( ) 11

    

    

 

xy x y x y xy xy x y(( )() xy x y) 3011

    

     

Đặt

x y u xy v     

 .Hệ trở thành

uv u v uv u v( ) 3011

  

   

 

uv uv

uv u v(11 ) 30 (1)11 (2)

  

   

 Từ (1) 

uv uv 56

    

 Với uv =  u v 6 Giải ta nghiệm (x; y) là:

5 21 5; 21

2

   

 

  và

5 21 5; 21

2

   

 

 

 Với uv =  u v 5 Giải ta nghiệm (x; y) là: (1;2) (2;1)

Kết luận: Hệ PT có nghiệm: (1;2), (2;1),

5 21 5; 21

2

   

 

 ,

5 21 5; 21

2

   

 

 .

0.25 0.25

0.25

0.25

III

Tính

1

3 2

 

  

x

I dx

x x

Đặt t= x+ Þ2 x= -t2 dx=2tdt Đổi cận:

2

7

x t

x t

ì = Þ = ïï

íï = Þ = ïỵ

Ta có

( )

( )

2

2 3

1

2

4 24

4

t t

I dt

t t

t t dt t

t dt

t -=

+ -+ =

+

ổ ửữ

= ỗỗố - + ữữ

ø +

ò ò ò

( )

3

2

6 24ln

t t t

= - + +

7 24ln

6

= - +

0.25

0.25

0.5

IV

Gọi I trung điểm A’B’

' ' '

' ( ' ') ' AA '

C I A B

C I ABA B

C I

 

 

 

suy góc BC’ mp(ABB’A’) góc C BI '

Suy C BI ' 600

 15

' tan '

2 a C IBI C BI

3

' ' ' ' ' '

1 15

AA ' AA ' ' '

2

ABC A B C A B C

a

VSCI A B

/ / '

( ) / /( ' ) / / '

NP BC

NPQ C BI

PQ C I

  

 (1)

 

 

' ( ) '

' 90 AM BI

ABM BB I c g c suy AMB BIB suy AMB B BI

  

    .

Mặt khác theo chứng minh C’I AM nên AM ( 'C BI)

Suy (AMC) ( 'C BI) (2)

Từ (1) (2) suy (MAC) (NPQ)

0.25

0.25

0.25

(4)

V

Do a, b, c > a2b2c2 1 nên a b c, , 0;1

Ta có

 2

5 2 3

2 1

a a

a a a

a a

b c a

 

  

 

Bất đẳng thức trở thành      

2

3 3

3

a a b b c c

        

Xét hàm số     

3 0;1

f x xx x

Ta có: 0;1  

2 ax

9

M f x

     

3

f a f b f c

   

Dấu “=” xảy a = b = c=

1

0.5

0.5

II PHẦN RIÊNG (3 Điểm) 1 Theo chương trình chuẩn

VIa 1

Đường trịn (C) có tâm I1;2, bán kính IA2 Ta có: IM 1; ,  IMAB



suy phương trình đường thẳng AB: x y  1

 ; ;  0 A AB  A a aa

Khi

 2  2

2 1 1

IA  a  a   a   a

(do a0) Suy ra: A1; ; B1;0

2;0 ;

IAIABC

suy phương trình BC x:  1 0, phương trình AI y:  0 Gọi  NAIBC Suy N1; 2 N trung điểm BC Suy C1; 4

0.25

0.25 0.25 0.25 2

Gọi M  1 M t t ; ; 1 t, NOx N a ;0;0

Khi đó: MN a t ; ;1 tt

2 có vecto phương u2 1; 2; 2 

Theo giả thiết    

2

2 2

3

4 20

2

a t MN

a t t t

MN

   

  

 

 

    

 

 

2

1

5 15

3 t a

a t

t t t

a

   

    

 

   

    

 

 

   

Vậy M1; 2;0 , N5;0;0  

5 10

; ; , 3;0;0

3 3

M    N

 

0.25 0.25

0.25

0.25

VIIa

Gọi z = x + iy ta có

2

2 2 2

;

z x iy z  zz z x y

2

2 2 2 2 2

2 4( ) ( ) (1)

zz zz   xy   xy

2 2 (2)

z z   x  x

Từ (1) (2) tìm x = ; y = 1

Vậy số phức cần tìm + i – i

0.25 0.25 0.25 0.25 2 Theo chương trình nâng cao

VIb 1

(5)

bằng 5:  

 

| |

,

5

a a

d A CD     

| 3a | a

    

7 a

a1:  A1;0 Phương trình AD (qua ACD): x12 y 0 0

hay x2y1 0 Tọa độ DADCD nghiệm hệ

 

2

1;1

2

x y

D x y

   

 

   

Đường tròn ( )D tâm D bán kính có PT:    

2

1

x  y 

Tọa độ  

C CD  D

nghiệm    

 

2

2

0;3

1

x y

C

x y

   

 

   

C2; 1 

Với C0;3 trung điểm O AC

1 ; 2 O 

  Do O trung điểm của

BD nên

2

B O D

B O D

x x x

y y y

 

 

 

  B2;2

Với C2; 1  tương tự ta có B0; 2 

7 a

:

7 10 ; 3 A 

  

  Gọi M  d CD

2 ; 3 M 

  

  Dễ thấy

trường hợp đỉnh hình vng đối xứng với đỉnh tương ứng

vừa tìm trường hợp qua M nên dễ dàng tìm

1 ; 3 D 

  và

; 3 C 

 ,

10 ; 3 B 

 

2 13 ; 3 C 

 ,

4 16 ; 3 B 

 .

Vậy có hình vng ABCD thỏa mãn u cầu tốn:

1;0 , 2;2 , 0;3 ,  1;1

A B C D

; A1;0 , B0; ,  C2; ,  D1;1

7 10 10 4 1

; , ; , ; , ;

3 3 3 3

A  B  C  D 

        ;

7 10 16 13

; , ; , ; , ;

3 3 3 3

A  B  C  D 

       

0.25

0.25

0.25

0.25

2 Gọi ba điểm A, B, C nằm ba đường thẳng d1 , d2 , d3

Ta có A (t, – t, -1 +2t) ; B (u, – 3u, -3u) ; C (-1 + 5v, + 2v, - +v)

A, B, C thẳng hàng AB = BC  B trung điểm AC

( )

4 (1 ) 2.(2 ) ( ) 2( )

t v u

t v u

t v u

    

              

Giải hệ được: t = 1; u = 0; v = Suy A (1;3;1); B(0;2;0); C (- 1; 1; - 1)

Đường thẳng  qua A, B, C có phương trình

2

1 1

x yz

 

0.25

0.25 0.25 0.25

VIIb 2 1 0 (1)

(3 ) 2 (2)

x y

x x y y

    

    

 Điều kiện

1

2

(6)

(2)  12 x 2 x 1 2y1 2y1

Xét hàm số f(t) = (1 + t2)t = t3 + t

f’(t)= 3t2 + > t R Vậy hàm số tăng R

(2) f  2 x f  2y1  2 x  2y1 2 – x = 2y –  2y = – x

Thay vào (1): x3 + x – = 0  x = Nghiệm hệ (1;1)

Ngày đăng: 26/05/2021, 06:29

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w