Tài liệu tham khảo |
Loại |
Chi tiết |
1. Agarwal Neha, Sikka Geeta, and Awasthi Lalit Kumar, Evaluation of web service clustering using Dirichlet Multinomial Mixture model based approach for Dimensionality Reduction in service representation. Information Processing &Management, 2020. 57(4): p. 102238 |
Sách, tạp chí |
Tiêu đề: |
Evaluation of web service clustering using Dirichlet Multinomial Mixture model based approach for Dimensionality Reduction in service representation |
|
2. Aggarwal Charu C, A Survey of Stream Clustering Algorithms, in Data Clustering: Algorithms and Applications, C.K.R. Charu C. Aggarwal, Editor.2013, CRC Press. p. 229-253 |
Sách, tạp chí |
Tiêu đề: |
A Survey of Stream Clustering Algorithms", in "Data Clustering: Algorithms and Applications |
|
3. Aggarwal Charu C, et al. A framework for clustering evolving data streams. in Proceedings 2003 VLDB conference. 2003. Elsevier |
Sách, tạp chí |
Tiêu đề: |
A framework for clustering evolving data streams". in "Proceedings 2003 VLDB conference |
|
4. Ahmed Amr and Xing Eric. Dynamic non-parametric mixture models and the recurrent chinese restaurant process: with applications to evolutionary clustering. in Proceedings of the 2008 SIAM International Conference on Data Mining. 2008. SIAM |
Sách, tạp chí |
Tiêu đề: |
Dynamic non-parametric mixture models and the recurrent chinese restaurant process: with applications to evolutionary clustering". in "Proceedings of the 2008 SIAM International Conference on Data Mining |
|
5. Aldous David J, Exchangeability and related topics, in École d'Été de Probabilités de Saint-Flour XIII—1983. 1985, Springer. p. 1-198 |
Sách, tạp chí |
Tiêu đề: |
Exchangeability and related topics", in "École d'Été de Probabilités de Saint-Flour XIII—1983 |
|
6. Aljalbout Elie, et al., Clustering with deep learning: Taxonomy and new methods. arXiv preprint arXiv:1801.07648, 2018 |
Sách, tạp chí |
Tiêu đề: |
Clustering with deep learning: Taxonomy and new methods |
|
7. Alrehamy Hassan and Walker Coral, Exploiting extensible background knowledge for clustering-based automatic keyphrase extraction. Soft Computing, 2018. 22(21): p. 7041-7057 |
Sách, tạp chí |
Tiêu đề: |
Exploiting extensible background knowledge for clustering-based automatic keyphrase extraction |
|
8. Alzaidy Rabah, Caragea Cornelia, and Giles C Lee. Bi-LSTM-CRF sequence labeling for keyphrase extraction from scholarly documents. in The world wide web conference. 2019 |
Sách, tạp chí |
Tiêu đề: |
Bi-LSTM-CRF sequence labeling for keyphrase extraction from scholarly documents". in "The world wide web conference |
|
9. Amoualian Hesam, et al. Streaming-lda: A copula-based approach to modeling topic dependencies in document streams. in Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining.2016 |
Sách, tạp chí |
Tiêu đề: |
Streaming-lda: A copula-based approach to modeling topic dependencies in document streams". in "Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining |
|
10. Antonellis Panagiotis, et al., Efficient Algorithms for Clustering Data and Text Streams, in Encyclopedia of Information Science and Technology, Third Edition |
Sách, tạp chí |
Tiêu đề: |
Efficient Algorithms for Clustering Data and Text Streams", in |
|
11. Bakkum Douglas J, et al., Parameters for burst detection. Frontiers in computational neuroscience, 2014. 7: p. 193 |
Sách, tạp chí |
Tiêu đề: |
Parameters for burst detection |
|
12. Beliga Slobodan, Meštrović Ana, and Martinčić-Ipšić Sanda, Selectivity-based keyword extraction method. International Journal on Semantic Web and Information Systems (IJSWIS), 2016. 12(3): p. 1-26 |
Sách, tạp chí |
Tiêu đề: |
Selectivity-based keyword extraction method |
|
13. Bicalho Paulo, et al., A general framework to expand short text for topic modeling. Information Sciences, 2017. 393: p. 66-81 |
Sách, tạp chí |
Tiêu đề: |
A general framework to expand short text for topic modeling |
|
14. Blei David M and Lafferty John D. Dynamic topic models. in Proceedings of the 23rd international conference on Machine learning. 2006 |
Sách, tạp chí |
Tiêu đề: |
Dynamic topic models". in "Proceedings of the 23rd international conference on Machine learning |
|
15. Blei David M, Ng Andrew Y, and Jordan Michael I, Latent Dirichlet Allocation. Journal of machine Learning research, 2003. 3(Jan): p. 993-1022 |
Sách, tạp chí |
Tiêu đề: |
Latent Dirichlet Allocation |
|
16. Cai Yanli and Sun Jian-Tao, Text Mining, in Encyclopedia of Database Systems, L. Liu and M.T. ệZsu, Editors. 2009, Springer US: Boston, MA. p. 3061-3065 |
Sách, tạp chí |
Tiêu đề: |
Text Mining", in "Encyclopedia of Database Systems |
|
17. Cami Bagher Rahimpour, Hassanpour Hamid, and Mashayekhi Hoda, User preferences modeling using dirichlet process mixture model for a content-based recommender system. Knowledge-Based Systems, 2019. 163: p. 644-655 |
Sách, tạp chí |
Tiêu đề: |
User preferences modeling using dirichlet process mixture model for a content-based recommender system |
|
18. Cao Feng, et al. Density-based clustering over an evolving data stream with noise. in Proceedings of the 2006 SIAM international conference on data mining.2006. SIAM |
Sách, tạp chí |
Tiêu đề: |
Density-based clustering over an evolving data stream with noise". in "Proceedings of the 2006 SIAM international conference on data mining |
|
19. Chen Gang, Deep learning with nonparametric clustering. arXiv preprint arXiv:1501.03084, 2015 |
Sách, tạp chí |
Tiêu đề: |
Deep learning with nonparametric clustering |
|
20. Chen Junyang, Gong Zhiguo, and Liu Weiwen, A Dirichlet process biterm-based mixture model for short text stream clustering. Applied Intelligence, 2020: p. 1- 11 |
Sách, tạp chí |
Tiêu đề: |
A Dirichlet process biterm-based mixture model for short text stream clustering |
|