Sai số của phương pháp xác định hệ số α (hệ số lệch phổ 1/E của trường nơtron trên nhiệt) sử dụng các cặp mônitơ 197Au-94Zr và 197Au-64Zn trong các kênh chiếu xạ của lò phản ứng hạt nhân đã được nghiên cứu một cách chi tiết. Các biểu thức tính hệ số đóng góp vào sai số α của các thông số cũng được trình bày dựa vào lý thuyết truyền sai số. Phương pháp đã được ứng dụng để đánh giá sai số của α trong các kênh chiếu xạ của lò phản ứng hạt nhân Đà Lạt. Kết quả đánh giá cho thấy sử dụng phương pháp đơn giản để xác định hệ số α đã trình bày trong [1] là phù hợp với các phương pháp khác và có độ tin cậy cao.
TẠP CHÍ PHÁT TRIỂN KH&CN, TẬP 9, SỐ 6-2006 ĐÁNH GIÁ SAI SỐ XÁC ĐỊNH HỆ SỐ LỆCH PHỔ 1/E CỦA TRƯỜNG NƠTRON TRÊN NHIỆT TRONG CÁC KÊNH CHIẾU XẠ CỦA LÒ PHẢN ỨNG HẠT NHÂN Trần Văn Hùng (1), Mai Văn Nhơn(2) (1) Trung tâm Nghiên cứu Triển khai Công nghệ Bức xạ (2) Trường Đại học Khoa họcTự nhiên, ĐHQG-HCM (Bài nhận ngày 10 tháng 02 năm 2006, hoàn chỉnh sửa chữa ngày 27 tháng 07 năm 2006) TÓM TẮT: Sai số phương pháp xác định hệ số α (hệ số lệch phổ 1/E trường nơtron nhiệt) sử dụng cặp mônitơ 197Au-94Zr 197Au-64Zn kênh chiếu xạ lò phản ứng hạt nhân nghiên cứu cách chi tiết Các biểu thức tính hệ số đóng góp vào sai số α thơng số trình bày dựa vào lý thuyết truyền sai số Phương pháp ứng dụng để đánh giá sai số α kênh chiếu xạ lò phản ứng hạt nhân Đà Lạt Kết đánh giá cho thấy sử dụng phương pháp đơn giản để xác định hệ số α trình bày [1] phù hợp với phương pháp khác có độ tin cậy cao Từ khoá: Hệ số lệch phổ 1/E, Hệ số α, Tích phân cộng hưởng, Tỷ số cadmium RCd, GIỚI THIỆU Trường nơtron nhiệt kênh chiếu xạ lị phản ứng hạt nhân thường khơng tn theo quy luật 1/E mà bị lệch quy luật 1/E1+α Hệ số α nhỏ, âm dương tuỳ thuộc vào cấu hình phân bố vật liệu vùng hoạt lò phản ứng Mặc dù, hệ số α nhỏ, ảnh hưởng đến tích phân cộng hưởng I0 Trong nhiều trường hợp ứng dụng, chẳng hạn phân tích kích hoạt phương pháp comparator dùng phản ứng (n,γ), hệ số α cần phải xác định để hiệu chỉnh kết phân tích Trong [2,3] trình bày ba phương pháp xác định hệ số α, : phương pháp bọc cadmium, phương pháp dùng tỷ số cadmium RCd phương pháp chiếu trần ba đồng vị thích hợp Trong Q0 (α ) viết: Q0 (α ) = I (α ) / σ = Q0 − 0.426 /( Er )α + 0.426 /[(2α + 1)(0.55)α ] (1) Trong biểu thức (1), I0(α) tích phân cộng hưởng trường hợp phổ nơtron nhiệt tuân theo quy luật 1/E1+α, σ0 tiết diện nơtron với vận tốc 2200 cms-1 Với giá trị /α/ < 0.2, báo cáo [1], chúng tơi trình bày phương pháp xác định hệ số α đơn giản hơn, sử dụng biểu thức gần tính Q0(α) đơn giản sau: Q0 (α ) = Q0 exp(− a ln( Er )α ) (2) Trong Q0 Er hàng số hạt nhân cho thành bảng tài liệu số liệu hạt nhân, a số đặc trưng cho đồng vị Các số a cho 88 đồng vị hay sử dụng phân tích kích hoạt trình bày trong[4] Như hệ số α viết: α= ⎛ (R − 1)Q0, ⎞ ⎟ ln⎜⎜ Cd a2 ln E r − a1 ln E r1 ⎝ (RCd − 1)Q0,1 ⎟⎠ ( ) (3) Trong thực nghiệm xác định hệ số α phương pháp tỷ số cadmium, người ta thường chọn cặp mônitơ 197Au-94Zr 197Au-64Zn Vì với cặp cho dải lượng rộng ( Er (Au) = 5.65 eV, Er (94Zr) = 6260 eV, Er (64Zn) = 2560 eV) Các số (1) (2) biểu thức (3) biểu thị cho đồng vị 197Au 94Zr 64Zn tương ứng Như vậy, thực nghiệm cần xác định tỷ số cadmium 197Au, 94Zr 64Zn, sau sử dụng biểu Trang 31 Science & Technology Development, Vol 9, No.6- 2006 thức (3) dễ dàng xác định hệ số α Phương pháp ứng dụng để xác định hệ số α kênh 7-1, 1-4 bẫy nơtron lò phản ứng hạt nhân Đà Lạt Kết chi tiết xác định hệ số α trình bày [1] Mục đích báo cáo đánh giá sai số phương pháp trình bày trên, nhằm khẳng định tính xác độ tin cậy phương pháp ĐÁNH GIÁ SAI SỐ CỦA PHƯƠNG PHÁP XÁC ĐỊNH HỆ SỐ α Đánh giá sai số phương pháp lên giá trị α cần phải xét đến hai loại sai số : Sai số gần chuyển từ biểu thức (1) sang biểu thức (2); xem sai số hệ thống phương pháp sai số biến số biểu thức (3) xác định hệ số α ; xem sai số thống kê Bảng Các số hạt nhân số a đồng vị sử dụng xác định hệ số α Mônitơ Er (eV) Q0 a (α0) Au(n,γ)198Au 64 Zn(n,γ)65Zn 94 Zr(n,γ)95Zr 5.65 ± 0.40 2560 ± 260 6260 ± 250 15.7 ± 0.28 1.908 ± 0.094 5.05 ± 0.10 1.0013 0.8797 0.9576 0.9903 0.7163 0.8693 197 Như ví dụ để so sánh kết tính Q0(α) từ biểu thức (1) biểu thức (2), cơng trình [1] đánh giá giá trị Q0(α) số mônitơ 197Au, 94Zr, 96Zr phản ứng (n,γ) theo biểu thức (1) (2) đưa bảng Bảng 2.2 So sánh giá trị Q0(α) [2] tính từ biểu thức (1) (2) số mônitơ phản ứng (n, γ) với α khoảng [-0.2,0] α Q0(α) của197Au(n,γ)198Au Q0(α) Zr(n,γ)95Zr 94 Q0(α) Zn(n,γ)65Zn 64 (1) (2) (1) (2) (1) (2) 0.0 15.7 15.7 5.05 5.05 1.908 1.908 -0.02 16.25 16.25 5.95 5.97 2.17 2.19 -0.04 16.82 16.83 7.02 7.05 2.48 2.52 -0.06 17.41 17.42 8.28 8.34 2.84 2.89 -0.08 18.03 18.04 9.79 9.86 3.26 3.32 -0.10 18.66 18.67 11.59 11.64 3.75 3.82 -0.12 19.32 19.33 13.72 13.82 4.32 4.39 -0.14 20.01 20.01 16.27 16.35 4.99 5.04 -0.16 20.72 20.72 19.30 19.34 5.77 5.80 -0.18 21.46 21.45 22.90 22.79 6.68 6.66 -0.20 22.22 22.21 27.19 27.07 7.75 7.66 Trang 32 TẠP CHÍ PHÁT TRIỂN KH&CN, TẬP 9, SỐ 6-2006 Từ bảng cho thấy rằng: Các giá trị Q0(α) tính từ hai biểu thức phù hợp với Đối với monitơ 197Au, 64Zn phản ứng (n,γ) , giá trị Q0(α) tính từ hai biểu thức sai khác < 0.1%, 94Zr nhỏ 0.8% 64Zn khoảng 1% Điều chứng tỏ việc sử dụng biểu thức (2) α khoảng [-0.2, 0] hoàn toàn tin cậy Kết luận cho trường hợp α nằm khoảng [0,0.2] 2.1 Sai số gần biểu thức Chúng ta trở lại xem xét cặp monitơ 197Au-94Zr 197Au-64Zn phương pháp bọc cadmium Rõ ràng từ bảng 2, 197Au giá trị Q0(α) tính từ hai biểu thức (1) (2) hoàn toàn trùng nhau, khác không đáng kể xem hồn tồn xác, ảnh hưởng lên độ xác việc xác định α phụ thuộc vào sai khác Q0(α) mônitơ 94Zr 65Zn Xuất phát từ biểu thức (2) có: α = (lnQ0(α) -lnQ0)/ aln Er (4) Theo lý thuyết truyền sai số, sai số tương đối α gần biểu thức (2) viết: ζα = σα 1 ΔQ0 (α ) = α α a ln E r Q0 (α ) (5) ΔQ0 (α ) giá trị sai khác Q0(α) từ hai biểu thức (1) (2) Rõ ràng từ biểu thức (5), ζ α phụ thuộc vào đồng vị chọn làm monitơ tỷ lệ ngược với giá trị α Khảo sát sai số gần biểu thức (2) theo α nằm khoảng /α / < 0.2 mônitơ 94 Zr 65Zn đưa hình hình 14 12 10 64 Zn 94 Zr -1 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 α 0.05 -2 -0.05 0.05 0.1 0.15 0.2 α 0.25 Hình Sự phụ thuộc vào sai số theo α Hình Sự phụ thuộc vào sai số theo mônitơ 94Zr 65Zn α dương mônitơ 94Zr 65Zn α âm Từ hình cho thấy sai số tương đối phụ thuộc theo độ lớn α Khi /α / ≈ 0, sai số tương đối sử dụng biểu thức (2) nhỏ lúc sai khác giá trị Q0(α) tính từ hai biểu thức không đáng kể Khi giá trị /α / tăng sai lệch Q0(α) hai biểu thức tăng sai số α tăng lên Tuy nhiên, /α/ tăng lên đến giá trị sai lệch Q0(α) có chiều hướng khơng thay đổi, nên sai số α có xu hướng giảm xuống, Δα tỷ hệ ngược với α (xem biểu Trang 33 Science & Technology Development, Vol 9, No.6- 2006 thức 5) Khi /α/ >0.15 khác Q0(α) hai biểu thức (1) (2) lại bắt dầu tăng rõ rệt, nên ζ α có chiều hướng tăng 2.2 Sai số thống kê Sai số gây từ sai số biến số có biểu thức (2); bao gồm biến số ai, , Rcdi, Q0i đây, từ lý thuyết truyền sai số, xét đóng góp biến số vào sai số α Khi sai số tổng cộng bậc hai tổng bình phương sai số đóng góp biến số Hệ số đóng góp vào sai số α biến số xj định nghĩa sau: ∂α x j ⎛ ∂α ⎞ ⎛ ∂x j ⎞⎟ Z α (x j ) = ⎜ ⎟ / ⎜ = ⎜ ⎟ ⎝ α ⎠ ⎝ x j ⎠ ∂x j α (6) Khi sai số tương đối α đóng góp sai số xj là: sα ( x j ) = Zα ( x j ) Δx j (7) xj Theo biểu thức (6), áp dụng cho biểu thức (2) thu được: Z α ( E r1 ) = a1 a ln E r − a1 ln E r1 Z α ( Er ) = − Zα (a1 ) = a2 a2 ln Er − a1 ln Er1 a1 ln Er1 a2 ln Er − a1 ln Er1 Z α ( a2 ) = − a2 a2 ln Er − a1 ln Er1 Zα ( Rcd ) = (9) (10) (11) α a2 ln Er − a1 ln Er1 (12) Rcd α ( Rcd − 1)(a2 ln Er − a1 ln Er1 ) (13) Zα (Q01 ) = Zα (Q02 ) = (8) Zα ( Rcd ) = − Rcd α ( Rcd − 1)(a2 ln Er − a1 ln Er1 ) (14) Trong trường hợp dùng cặp mônitơ 197Au-94Zr 197Au-64Zn ảnh hưởng sai số khơng đáng kể, sai số nhỏ 0.1%, cịn đóng góp sai số E ri vào α cỡ 1%, sai số tính tốn E ri thường cỡ 10% Đóng góp vào sai số α Q0i Rcdi quan trọng Thật vậy, khảo sát sai số thực nghiệm xác định α kênh 7-1 cuả lò phản ứng hạt nhân Đà Lạt dùng cặp monitơ 197Au-94Zr cho thấy α= 0.044, sai số thực nghiệm xác định Rcd cỡ 1%, sai số Q0i E ri lấy từ [5], tính được: sα ( ErZr ) ≈ 1.4% , Trang 34 TẠP CHÍ PHÁT TRIỂN KH&CN, TẬP 9, SỐ 6-2006 sα ( ErAu ) ≈ 1.4% , sα (a Au ) ≈ 0.03% , sα (aZr ) ≈ 0.13% , sα (Q0 Au ) ≈ 6.5% , sα (Q0 Zr ) ≈ 7% , sα ( RcdAu ) ≈ 5.2% , sα ( RcdZr ) ≈ 7.6% Sai số tổng cộng từ sai số trên; bao gồm sai số đóng góp biểu thức gần (khi α = 0.044, ζ α ≈ 2% ) cỡ 13% KẾT LUẬN Phương pháp xác định hệ số α trình bày [1] áp dụng để xác định hệ số α kênh lò phản ứng hạt nhân Đà Lạt Kết cho thấy phù hợp với phương pháp khác độ tin cậy cao Từ đánh giá sai số phương pháp, rút số kết luận sau: Phương pháp tiến hành thực nghiệm đơn giản hơn, hệ số α trình bày dạng tường minh nên dễ dàng việc đánh giá ảnh hưởng thông số liên quan đến sai số α Từ hệ số đóng góp vào sai số α cho thấy, độ lệch phổ α nhỏ khả xác định α sai số lớn Điều thể kết cơng trình cơng bố, không cho biểu thức tường minh ESTIMATION OF ERROR IN DETERMINING OF 1/E SPECTRUM DEVIATION FACTOR OF EPITHERMAL NEUTRON FLUX IN IRRADIATION CHANELS OF REACTOR Tran Van Hung (1), Mai Van Nhon(2) (1)Research And Development Center For Radiation Technology (2) University of Natural Sciences, VNU-HCM ABSTRACT: Errors of determination of α-factor (1/E spectrum deviation factor of epithermal neutron flux) using monitors 197Au-94Zr and 197Au-64Zn in irradiation chanels of reactor have been studied in detail Based on the customary error propagation theory, the error propagation functions on α-error were also presented The method was applied to estimate α-error in irradiation chanels of Dalat reactor The result of the estimation showed that the use of simple method for α-determination carried out in paper [1] is well agreement with other methods and having high confidence TÀI LIỆU THAM KHẢO [1] Tran Van Hung, Mai Van Nhon, Le Van So, Communications in Physics, Vol 15, No 2, pp 108-114., 2005 [2] Simonits, F De Corte, A De Wispelaere, J Hoste, Paper Presented at the MTAA7/1986 Conference, Copenhagen, June 1986 [3] F De Corte, K Sordo-el Hammami, L Moens, A Simonits, J Hoste, J Radioanal Chem., Vol 52, No 2, pp 305-316, 1979 [4] Trần Văn Hùng, Nghiên cứu đặc trưng thông lượng nơtron lò phản ứng hạt nhân Đà lạt ảnh hưởng chúng lên kết phân tích kích hoạt sản suất đồng vị phóng xạ, Luận án Tiến sỹ, chuyên ngành 02 03, Vật lý hạt nhân, 2004 [5] F De Corte, A Simonits, A De Wispelaere,J Hoste, A Compilation of k0 Factors and related Nuclear Data for 94 radionuclides of Interest in NAA, INW/KFKI Interim Report, 1986 Trang 35 ... dàng xác định hệ số α Phương pháp ứng dụng để xác định hệ số α kênh 7-1, 1-4 bẫy nơtron lò phản ứng hạt nhân Đà Lạt Kết chi tiết xác định hệ số α trình bày [1] Mục đích báo cáo đánh giá sai số. .. bày trên, nhằm khẳng định tính xác độ tin cậy phương pháp ĐÁNH GIÁ SAI SỐ CỦA PHƯƠNG PHÁP XÁC ĐỊNH HỆ SỐ α Đánh giá sai số phương pháp lên giá trị α cần phải xét đến hai loại sai số : Sai số gần... sang biểu thức (2); xem sai số hệ thống phương pháp sai số biến số biểu thức (3) xác định hệ số α ; xem sai số thống kê Bảng Các số hạt nhân số a đồng vị sử dụng xác định hệ số α Mônitơ Er (eV) Q0