1. Trang chủ
  2. » Cao đẳng - Đại học

De thi thu dai hoc mon Toan 140

2 5 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 75,96 KB

Nội dung

Gọi M, N lần lượt là hình chiếu vuông góc của điểm A trên các cạnh SB và SC.. Theo chương trình chuẩn.[r]

(1)

ĐỀ THI THỬĐẠI HỌC, CAO ĐẲNG NĂM 2010. Mơn thi : TỐN (ĐỀ 140)

I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm) Cho hàm số yx33x2 2 (C)

1) Khảo sát biến thiên vẽ đồ thị (C)

2) Tìm đường thẳng (d): y = điểm mà từ kẻ ba tiếp tuyến đến đồ thị (C)

Câu II (2 điểm)

1) Giải phương trình: 2x 3 x 1 3x2 2x25x 3 16. 2) Giải phương trình: x x x x

3

2 cos2 sin2 cos 4sin

4

 

   

      

    .

Câu III (1 điểm) Tính tích phân:

I 4x 4x 6x 6x dx

0

(sin cos )(sin cos )

  

Câu IV (2 điểm) Cho hình chóp S.ABC, đáy ABC tam giác vng B có AB = a, BC = a 3, SA vng góc với mặt phẳng (ABC), SA = 2a Gọi M, N hình chiếu vng góc điểm A cạnh SB SC Tính thể tích khối chóp A.BCNM

Câu V (1 điểm) Cho a, b, c, d số dương Chứng minh rằng:

a4 b4 c4 abcd b4 c4 d4 abcd c4 d4 a4 abcd d4 a4 b4 abcd abcd

1 1 1

   

           

II PHẦN RIÊNG (3,0 điểm)

A Theo chương trình chuẩn. Câu VI.a (2 điểm)

1) Trong mặt phẳng với hệ toạ độ Oxy, gọi A, B giao điểm đường thẳng (d): 2x – y – = đường tròn (C’): x2y2 20 50 0 x  Hãy viết phương trình đường trịn (C) qua ba điểm A, B, C(1; 1)

2) Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(4; 5; 6) Viết phương trình mặt phẳng (P) qua A, cắt trục tọa độ I, J, K mà A trực tâm tam giác IJK

Câu VII.a (1 điểm) Chứng minh a bi (c di   )n a2b2 (c2 d2)n

B Theo chương trình nâng cao Câu VI.b (2 điểm)

1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có diện tích

2, A(2; – 3), B(3; –2), trọng tâm ABC nằm đường thẳng (d): 3x – y –8 = Viết

phương trình đường trịn qua điểm A, B, C

2) Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(4;5;6); B(0;0;1); C(0;2;0); D(3;0;0) Chứng minh đường thẳng AB CD chéo Viết phương trình đường thẳng (D) vng góc với mặt phẳng Oxy cắt đường thẳng AB, CD

Câu VII.b (1 điểm) Giải hệ phương trình:

x y x x y

x

xy y y x

y

2

4 4

2

4 4

log ( ) log (2 ) log ( )

log ( 1) log (4 2 4) log

     

  

       

  

(2)

Môn thi : TOÁN (ĐỀ 140)

Câu I: 2) Gọi M(m; 2)  d Phương trình đường thẳng  qua M có dạng: y k x m (  )2 Từ M kẻ tiếp tuyến với (C)  Hệ phương trình sau có nghiệm phân biệt:

x x k x m

x x k

3

2 ( ) (1)

3 (2)

     

  

 

m m

m

5

3

   

    Câu II: 1) Đặt t 2x 3 x1 > (2)  x3

2) 2)  (sinxcos ) (cosx 4 x sin ) sinx  2x 4 0  x k

  

; x k x k

2 ;

2 

 

  

Câu III: (sin4xcos )(sin4x 6xcos )6x x x

33 cos4 cos8

64 16 64

  

I 33

128

Câu IV: Đặt V1=VS.AMN; V2=VA BCNM; V=VS.ABC;

V SM SN SM (1)

V1 SB SC SB

1

2

 

4a SM

AM a SM=

SB

2 ;

5

5

  

V V

V V (2)

V1 V2

2 3

5 5

    

ABC a

V 1S SA 3

3 

 

a V2 3

5 

Câu V: a4b4 2a b (1); b2 4c42b c (2); c2 4a4 2c a (3)2

a4b4c4abc a b c(   ) a4b4c4abcd abc a b c d (    )

(4) abc a b c d a4 b4 c4 abcd

1

( )

 

  

    đpcm.

Câu VI.a: 1) A(3; 1), B(5; 5)  (C): x2y2 4x 8y10 0 2) Gọi I(a;0;0), J(0;b;0), K(0;0;c)

( ) :P xyz 1

a b c

(4 ;5;6), (4;5 ;6)

(0; ; ), ( ;0; )

IA a JA b

JK b c IK a c

   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

5

4

  

 

  

  

a b c

b c

a c

77 77

5 77

6 a b c

   

      

Câu VII.a: a + bi = (c + di)n  |a + bi| = |(c + di)n |

 |a + bi|2 = |(c + di)n |2 = |(c + di)|2n  a2 + b2 = (c2 + d2)n

Câu VI.b: 1) Tìm C1(1; 1) , C2( 2; 10)  .

+ Với C1(1; 1)  (C):

11 11 16

0

3 3

2 2

xyxy   

+VớiC2( 2; 10)  (C):

91 91 416

0

3 3

2 2

xyxy   

2) Gọi (P) mặt phẳng qua AB (P)  (Oxy)  (P): 5x – 4y =

(Q) mặt phẳng qua CD (Q)  (Oxy)  (Q): 2x + 3y – =

Ta có (D) = (P)(Q)  Phương trình (D)

Câu VII.b:

x với >0 tuỳ ý và x=2

y   y=1

  

 

Ngày đăng: 17/05/2021, 14:45

w