1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nghiên cứu các cơ chế đốt nóng từ trong hệ hạt nano ferit spinel m1 xznxfe204 (m=mn,co)

194 6 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 194
Dung lượng 5,74 MB

Nội dung

GI O V OT O VI N HÀN LÂM KHO H V NG NGH VI T N M HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ PHẠM HỒNG NAM NGHIÊN CỨU CÁC CƠ CHẾ ĐỐT NÓNG TỪ TRONG HỆ HẠT NANO FERIT SPINEL M1-xZnxFe2O4 (M = Mn, Co) huyên ngành: Vật liệu điện tử Mã số: 62.44.01.23 LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU Hà Nội - 2018 GI O V OT O VI N H N L M KHO H V NG NGH VI T N M HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ PHẠM HỒNG NAM NGHIÊN CỨU CÁC CƠ CHẾ ĐỐT NÓNG TỪ TRONG HỆ HẠT NANO FERIT SPINEL M1-xZnxFe2O4 (M = Mn, Co) huyên ngành: Vật liệu điện tử Mã số: 62.44.01.23 LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU NGƢỜI HƢỚNG DẪN KHOA HỌC: PGS.TS ĐỖ HÙNG MẠNH PGS.TS PHẠM THANH PHONG Hà Nội - 2018 LỜI CẢM ƠN Lời đầu tiên, tơi xin bày tỏ lịng biết ơn sâu sắc tới PGS.TS ỗ Hùng Mạnh PGS.TS Phạm Thanh Phong, người Thầy dành cho tơi động viên, giúp đỡ tận tình định hướng khoa học hiệu suốt trình thực luận án Tôi xin cảm ơn bảo, giúp đỡ khích lệ GS.TSKH Nguyễn Xuân Phúc, PGS.TS Trần ại Lâm, TS Hà Phương Thư TS Lê Trọng Lư dành cho năm qua Tôi xin đư c cảm ơn cộng tác giúp đỡ đầy hiệu N S ỗ Khánh Tùng, N S Lưu Hữu Nguyên, N Lê Thị Thanh Tâm cán Phòng Vật liệu nano y sinh, Phòng Vật lý vật liệu từ siêu dẫn - Viện Khoa học vật liệu (VKHVL) - Viện Hàn lâm Khoa học ông nghệ Việt Nam (VHLKH NVN), nơi tơi hồn thành luận án Tơi xin đư c gửi lời cảm ơn chân thành tới GS Nguyễn Thị Kim Thanh TS Lê ức Tùng, ại học London, Vương quốc Khoa Vật lý, Trường iện nh, PGS Phan Mạnh Hưởng, ại học Nam Florida, Mỹ cán thuộc iện tử, Trường ộ Môn ại học asque (UPV/EHU), Tây an Nha h p tác nghiên cứu giúp đỡ thực số phép đo quý báu Tôi xin đư c gửi lời cảm ơn tới học viên ộ môn Mô phôi Tế bào thuộc Khoa Sinh học Trường ại học Khoa học Tự nhiên ( HKHTN) - ại học Quốc gia Hà Nội ( HQGHN) h p tác nghiên cứu ứng dụng y sinh Tôi xin trân trọng cảm ơn giúp đỡ tạo điều kiện thuận l i sở đào tạo Học viện Khoa học ông nghệ VKHVL - VHLKH NVN, quan mà công tác, trình thực luận án Luận án đư c hỗ tr kinh phí ề tài cấp sở mã số S L02.16 (Viện Khoa học vật liệu), đề tài nghiên cứu định hướng ứng dụng mã số TNCCB- HƯ -2012-G/08 (N FOSTE ), đề tài h p tác quốc tế F 2386-14-10025 FA2386-17-1-4042 ( O R ), đề tài nghiên cứu mã số103.02– 2015.74 (Nafosted) Luận án đư c thực Phòng Vật liệu nano y sinh Phòng Vật lý vật liệu từ siêu dẫn (VKHVL, VHLKH NVN); Phòng Kỹ thuật i iện- iện tử (Viện Kỹ thuật nhiệt đới, VHLKH NVN) Khoa sinh học, Trường HKHTN, HQGHN Sau cùng, muốn gửi tới tất người thân gia đình bạn bè lời cảm ơn chân thành hính tin yêu mong đ i gia đình bạn bè tạo động lực cho thực thành công luận án Tác giả luận án Phạm Hồng Nam ii LỜI CAM ĐOAN Tôi xin cam đoan công trình nghiên cứu riêng tơi ác số liệu, kết nêu luận án đư c trích dẫn lại từ báo đư c xuất cộng ác số liệu, kết trung thực chưa đư c cơng bố cơng trình khác Tác giả luận án Phạm Hồng Nam iii DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT I DANH MỤC CÁC KÝ HIỆU a : Hằng số mạng A : Phân mạng tứ diện A1 : A2 : Nội hệ hạt nano A3 : Năng lư ng chu trình từ hóa B : Phân mạng bát diện C : Nhiệt dung riêng c : Nồng độ hạt từ E : Năng lư ng dị hướng Ea : Năng lư ng kích hoạt dx : Mật độ khối lư ng D : Kích thước hạt Dc : Kích thước tới hạn đơn đơmen DFESEM : Kích thước từ ảnh FESEM DTEM : Kích thước tử ảnh TEM DSP : Kích thước siêu thuận từ DXRD : Kích thước từ giản đổ XR f : Tần số fo : Tần số tiêu chuẩn H : HA : Trường dị hướng Hc : Lực kháng từ Hmax : Từ trường lớn Hmin : Từ trường nhỏ K : Hằng số dị hướng Keff : Hằng số dị hướng hiệu dụng ộ lớn tương tác trao đổi ường độ từ trường iv KV : Hằng số dị hướng từ tinh thể KS : Hằng số dị hướng bề mặt kB : Hằng số Boltzmann L : Hàm Langevin m : Khối lư ng M : Từ độ M(0) : Từ độ 0K Me2+ : Mr : Từ dư Ms : Từ độ bão hòa Ms( ) : Từ độ vật liệu khối n : Số hạt đơn vị thể tích P : ơng suất Phys : ông suất tổn hao từ trễ Q : Nhiệt lư ng thu vào T : Nhiệt độ TB : Nhiệt độ khóa Tb : Nhiệt độ bão hịa TC : Nhiệt độ urie To : Nhiệt độ hiệu dụng T1 : Thời gian hồi phục spin-mạng T2 : Thời gian hồi phục spin-spin ΔT : t : Thời gian V : Thể tích hạt Vopt : Thể tích tối ưu hạt W : Năng lư ng từ hóa  ác kim loại hóa trị 2+ ộ biến thiên nhiệt độ : ộ dài tương quan : ộ nhớt chất lỏng từ v : ộ lớn tương tác trao đổi  : Khối lư ng riêng 0 : χ’ : Phần thực độ cảm từ xoay chiều χ’‘ : Phần ảo độ cảm từ xoay chiều ộ từ thẩm chân không : Thời gian hồi phục hiệu dụng : Thờ gian hồi phục rown τm : Thời gian hồi phục đặc trưng phép đo hồi phục : Thời gian hồi phục Neél : Thời gian hồi phục đặc trưng ω0 : Tần số Larmor II DANH MỤC CÁC CHỮ VIẾT TẮT Tiếng Anh Tiếng Việt EDX : Energy dispersive X-ray EHT : Exogenous heating FC : Field cooled FESEM : Field Phổ tán xạ lư ng tia X ốt nóng ngồi Làm lạnh có từ trường emission scanning Kính hiển vi điện tử quét phát xạ electron microscope trường Phổ hồng ngoại phân giải Fourier FTIR : Fourier-transform infrared ILP : Intrinsic loss of power ISPM : Interacting superparamagnetic Siêu thuận từ tương tác LRT : Linear response theory Lý thuyết đáp ứng tuyến tính MHT : Magnetic hyperthermia Nhiệt từ trị MRI : Magnetic resonance imaging Ảnh cộng hưởng từ hạt nhân NA : Neél Arrhenius Luật Neél Arrhenius OA : Oleic acid OLA : Oleylamine PMAO : Poly(maleic ông suất tổn hao nội anhydride-alt-1- vi octadecene) Physical property measurement Hệ đo tính chất vật lý PPMS : SPM : SQUID : SLP : SLPHC : SLPLRT : SLPmax : ông suất tổn hao cực đại SLPTN : ông suất tổn hao thực nghiệm SW : Stoner-Wohlfarth TEM : Transmission electron system Siêu thuận từ Superparamagnetic Superconducting quantum interference device Giao thoa kế lư ng tử siêu dẫn ông suất tổn hao riêng Specific loss power ông suất tổn hao sau hiệu chỉnh ông suất tổn hao theo lý thuyết đáp ứng tuyến tính Hiển vi điện tử truyền qua microscope TGA : Thermo gravimetric analysis Phân tích nhiệt vi lư ng XRD : X-ray difraction Nhiễu xạ tia X VF : Vogel-Fulcher Luật Vogel-Fulcher VSM : ZFC : Vibrating sample magnetometer Hệ từ kế mẫu rung Làm lạnh không từ trường Zero field cooled vii DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ Hình 1.1 ấu trúc tinh thể vật liệu ferit spinel Hình 1.2 Một số cấu hình phân bố ion mạng spinel, phân mạng ion kim loại vị trí tứ diện bát diện, vịng trịn lớn ion ơxy Hình 1.3 Mơmen từ bão hịa K ferit spinel Hình 1.4 Mơmen từ bão hịa K ferit spinel Me2+Fe2O4 phụ thuộc vào nồng độ Zn2+, đường nét liền số liệu thực nghiệm, đường nét đứt kết tính theo cơng thức lý thuyết (1.3) Hình 1.5 Cơ chế đảo từ hệ hạt nano Hình 1.6 ác đường từ độ phụ thuộc nhiệt độ MnFe2O4 theo hai kiểu F ZFC Hình 1.7 Sự phụ thuộc mơmen từ vào từ trường H (a) H/T (b) nhiệt độ khác hạt nano Fe có kích thước = 4,4 nm Hình 1.8 Lực kháng từ phụ thuộc vào kích thước hạt Hình 1.9 ường M(H) với kích thước khác (a) phụ thuộc lực kháng từ vào kích thước hệ hạt nano Fe3O4 300 K (b) Hình 1.10 ường M(H) với kích thước khác (a) phụ thuộc lực kháng từ vào kích thước mẫu o0,4Fe2,6O3 (b) Hình 1.11 ường cong từ hóa tinh thể Fe (a) Co (b) theo phương khác Hình 1.12 Sự phụ thuộc Ms vào nồng độ pha tạp Zn2+ hệ nano (ZnxM1−x)Fe2O4 (M = Fe, Mn) Hình 1.13 Kết làm khớp phụ thuộc ln(f) vào 1/(TB-To) cho hạt nano MnFe2O4 đư c ủ nhiệt độ khác Hình 1.14 Phần thực độ cảm từ χ‘ phụ thuộc nhiệt độ cho mẫu Mn3,1Sn0,9 tần số khác Hình nhỏ kết làm khớp theo phương trình (1.16) Hình 1.15 Sự phụ thuộc nhiệt độ lực kháng từ số nam châm v nh cửu viii 55 FLópez-Quintela M.A., Hueso L.E., Rivas J Rivadulla (2003), Intergranular magnetoresistnce in nanomanganites, in Nanotechnology, 14: p 212-219 56 Fantechi E., Campo G., Carta D., Corrias A., Fernandez C., Gatteschi D., Innocenti C., Pineider F., Rugi F., Sangregorio C (2012), Exploring the effect of Co doping in fine maghemite nanoparticles, Journal of Physical Chemistry C, 116: pp 8261–8270 57 Fantechi E., Innocenti C., Albino M., Lottini E., Sangregorio C (2015), Influence of cobalt doping on the hyperthermic efficiency of magnetite nanoparticles, Journal of Magnetism and Magnetic Materials, 380: pp 365– 371 58 Feng W.J, Li D., Ren W.J., Li Y.B, Li W.F., Li J., Zhang Y.Q., Zhang Z.D (2006), Glassy ferromagnetism in Ni3Sn-type Mn3.1Sn0.9, Physical Review B, 73: pp 205105 59 Ferna´ndez van Raap M.B., Coral D.F., Yu S., Mun˜oz G ., Sa´nchez F.H.,Roig A (2017), Anticipating hyperthermic efficiency of magnetic colloids using a semi-empirical model: a tool to help medical decisions, Physical Chemistry Chemical Physics, 19: pp 7176–7187 60 Foote M (2005), Oncology basics Part What is cancer?, Journal of American Medical Writers Association, 20: pp 52–58 61 Fortin J.P., Wilhelm C., Servais J., Ménager C., Bacri J.C., Gazeau F (2007), Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia, Journal of American Chemical Society, 129: pp 2628–2635 62 Gabal M.A., Angari A.Y.M., Kadi M.W (2011), Structural and magnetic properties of nanocrystalline Ni1−xCuxFe2O4 prepared through oxalate precursors, Polyhedron, 30: pp 1185–1190 63 Gabal M.A., Bayoumy W.A (2010), Effect of composition on structural and magnetic properties of nanocrystalline Ni0.8−xZn0.2MgxFe2O4 ferrite, Polyhedron, 29: pp 2569–2573 64 Gaharwar A.K., Wong J.E., Müller-Schulte D., Bahadur D., Richtering W (2009), Magnetic Nanoparticles Encapsulated Within a Thermoresponsive Polymer, Journal of Nanoscience and Nanotechnology, 9: pp 5355–5361 65 Gao G., Liu X., Shi R., Zhou K., Shi Y., Ma R., Takayama-Muromachi E., Qiu G (2010), Shape-controlled synthesis and magnetic properties of monodisperse Fe3O4 nanocubes, Crystal Growth & Desig, 10: pp 2888–2894 66 Garcia S., Ghivelder L., Soriano S., Felner I (2006), Magnetization scaling in the ruthenate-cuprate RuSr2Eu1.4Ce0.6Cu2O10-δ (Ru-1222), European Physical Journal B, 53: pp 307–313 157 67 Ghandoor H.E., Zidan HM., Mostafa MH., Khalil M.I., Ismail M (2012), Synthesis and Some Physical Properties of Magnetite (Fe3O4) Nanoparticles International Journal of Electrocchemical Science, 7: pp 573–5745 68 Gilchrist R.K Shorey, W.D., Hanselman R.C., Parrott J.C Taylor C.B (1957), Selective inductive heating of lymph nodes, Annals of Surgery, 146: pp 596– 606 69 Gittleman J.I., Abeles B., Bozowski S (1974), Superparamagnetism and relaxation effects in granular Ni-SiO2 and Ni-Al2O3 films, Physical Review B, 9: pp 3891–3899 70 Goldman Alex (2006), Modern ferrite Technology 2nd, Pittsburgh, PA, USA, Springer 71 Gordon R.T., Hines J.R., Gordon D (1979), Intracellular hyperthermia: a biophysical approach to cancer treatment via intracellular temperature and biophysical alterations, Medical Hypothesis, 5: pp 83–102 72 Gozuak F., Koseoglu Y., Baykal A., Kavas H ( 2009), Synthesis and characterization of CoxZn1-xFe2O4 magnetic nanoparticles via a PEG-assisted route, Journal of Magnetism and Magnetic Materials, 321: pp 2170–2177 73 Guardia P., Riedinger A., Nitti S., Pugliese G., Marras S., Genovese A., Materia M.E., Lefevre C., Manna L., Pellegrino T (2014), One pot synthesis of monodisperse water soluble iron oxide nanocrystals with high values of the specific absorption rate., Journal of Materials Chemistry B, 2: pp 4426–4434 74 Gul I.H., Abbasi A.Z., Amin F., Anis-ur-Rehman M., Maqsood A (2007), Structural, magnetic and electrical properties of Co1-xZnxFe2O4 synthesized by co-precipitation method, Journal of Magnetism and Magnetic Materials, 311: pp 494–499 75 Guo G.Y., Wang Y.K., Chen Y.Y (2004), Ab initio studies of the electronic structure and magnetic properties of bulk and nano-particle CeCo2, Journal of Magnetism and Magnetic Materials, 272: pp 1193–1194 76 Gupta A.K., Gupta M (2005), Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, Biomaterials, 26: pp 399–4021 77 Haase C., Nowak U (2012), Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles, Physical Review B, 85: pp 045435-045440 78 Haixia Wu, Guo Gao, Xuejiao Zhou, Yan Zhang, Shouwu Guo (2012), Control on the formation of Fe3O4 nanoparticles on chemically reduced graphene oxide surfaces, Cryst Eng Comm, 14: pp 499–504 158 79 Hanaor D., Michelazzi H., Leonelli C., Sorrell C.C (2012), The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2, Journal of the European Ceramic Society, 32: pp 235–244 80 Handy E.S Ivkov R., Ellis-Busby D., Foreman A., Braunhut S.J., Gwost D.U., and Ardman B (2003), Thermo-therapy via targeted delivery of nanoscale magnetic particles, U.S Patent Application, US2003/0032995 81 Hassan Hejase, Saleh S Hayek, Shahnaz Qadri, Yousef Haik (2012), MnZnFe nanoparticles for self-controlled magnetic hyperthermia, Journal of Magnetism and Magnetic Materials, 324 pp 3620–3628 82 Hergt R., Andra W.d'Ambly C.G., Hilger I., Kaiser W.A., Richter U., Schmidt H.G (1998), Physical limits of hyperthermia using magnetite fine particles IEEE Transactions on Magnetics, 34: pp 3745–3754 83 Hergt R., Hiergeist R., Hilger I., Kaiser W.A., Lapatnikov Y., Margel S., Richterd U (2004), Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia, Journal of Magnetism and Magnetic Materials, 270: pp 345–357 84 Hergt R., Hiergeist R., Zeisberger M., Schüler D., Heyen U., Hilger I., Kaiser W (2005), Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools, Journal of Magnetism and Magnetic Materials, 293: pp 80–86 85 Hergt R., Silvio Dutz (2007), Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy, Journal of Magnetism and Magnetic Materials, 311: pp 187–192 86 Herzer1 G (1990), Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets, IEEE Transactions on Magnetics, 26: pp 13971402 87 Herzer G (1996), Nanocrystalline soft magnetic materials Journal of Magnetism and Magnetic Materials, 157: pp 133–136 88 Hiergeist R., Andra W., Buske N., Hergt R., Richter U., Kaiser W (1999), Synthesis of aqueous ferrofluids of ZnxFe3-xO4 nanoparticles by citric acid assisted hydrothermal-reduction route for magnetic hyperthermia applications, Journal of Magnetism and Magnetic Materials, 201: pp 420– 422 89 Hilger I., Andrä W., Hergt R., Hiergeist R., Schubert H., Kaiser W (2001), Electromagnetic heating of breast tumors in interventional radiology: in vitro and in vivo studies in human cadavers and mice, Radiology, 218: pp 570– 575 159 90 ou X., Feng J., Liu X., Ren Y., Fan Z., Zhang M (2011), Magnetic and high rate adsorption properties of porous Mn1-xZnxFe2O4 (0,0 < x< 0.8) adsorbents, Journal of Colloid and Interface Science, 353: pp 524-529 91 http://www.magforce.de/en/home.html (2015) 92 Hugounenq P., Levy M., Alloyeau D., Lartigue L., Dubois E., Cabuil V., Ricolleau C., Roux S., Wilhelm C., Gazeau F., Bazzi R., (2012), Iron Oxide Monocrystalline Nanoflowers for Highly Efficient Magnetic Hyperthermia, The Journal of Physical Chemistry, 116: pp 15702–15712 93 Iida H., Takayanagi K., Nakanishi T., Osaka T (2007), Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis, Journal of Colloid and Interface Science, 314: pp 274–280 94 Jadhav N.V., Prasad A.I., Kumar A., Mishra R., Dhara S., Babu K.R., Prajapat C.L., Misra N.L., Ningthoujam R.S., Pandey B.N., Vatsa R.K (2013), Synthesis of oleic acid functionalized Fe3O4 magnetic nanoparticles and studying their interaction with tumor cells for potential hyperthermia applications, Colloids Surf B Biointerfaces, 108: pp 158–68 95 Jang J.T., Nah H., Lee J.H., Moon S.H., Kim M G., Cheon J (2009), Critical Enhancements of MRI Contrast and Hyperthermic Effects by DopantControlled Magnetic Nanoparticles, Angewandte Chemie-International Edition, 48: pp 1234−1238 96 Jean-Paul Fortin, Florence Gazeau, Claire Wilhelm (2008), Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles Néel relaxation of magnetic nanoparticles, Eur Biophys, 37: pp 223–228 97 Jeun Minhong, Seung Je Moon, Hiroki Kobayashi, Hye Young Shin, Asahi Tomitaka, Yu Jeong Kim, Yasushi Takemura, Sun Ha Paek, Ki Ho Park, Kyung-Won Chung, and Seongtae Bae (2010), Effects of Mn concentration on the ac magnetically induced heating characteristics of superparamagnetic MnxZn1−xFe2O4 nanoparticles for hyperthermia, Journal of Applied physics, 96: pp 202511 98 John Zhang Z., Zhong L., Wang., Bryan C Chakoumakos, Jin S Yin (1998), Temperature Dependence of Cation Distribution and Oxidation State in Magnetic Mn-Fe Ferrite Nanocrystals, Journal of American Chemical Society, 120: pp 1800–1804 99 Jordan A., Scholz R., Wust P., Fahling H., Krause J., Wlodarczyk W., Sander B., Vogl T., and Felix R (1997), Effects of magnetic fluid hyperthermia on C3H mammary carcinoma in vivo, Journal International Journal of Hyperthermia, 13: pp 587–605 160 100 Jordan A., Wust P., Fählin H., John W., Hinz A., Felix R (1993), Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia, Int J Hyperthermia, 9: pp 51–68 101 Jun Wang, Chuan Zeng, Zhenmeng Peng, Qianwang Chen (2004), Synthesis and magnetic properties of Zn1-xMnxFe2O4 nanoparticles, Physica B 349: pp 124–128 102 Kallumadil M., Tada M., Nakagawa T., Abe M., Southern P., Pankhurst Q (2009), Suitability of commercial colloids for magnetic hyperthermia, Journal of Magnetism and Magnetic Materials, 321: pp 1509–1513 103 Khot V.M., Salunkhe A.B., Ruso J.M., Pawar S.H (2013), Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia, Journal of Magnetis mand Magnetic Materials, 332: pp 48–51 104 Khot V.M., Salunkhe A.B., Ruso J.M., Pawar S.H (2015), Improved magnetic induction heating of nanoferrites for hyperthermia applications:Correlation with colloid al stability and magneto-structural properties, Journal of Magnetis mand Magnetic Materials, 384: pp 335–343 105 Kikuchi T., Kasuya, R., Endo S., Nakamura, A., Takai T., Metzler-Nolte N., Tohji K., Balachandran J (2011), Preparation of magnetite aqueous dispersion for magnetic fluid hyperthermia, Journal of Magnetism and Magnetic Materials, 323: pp 1216–1222 106 Kim D., Lee N., Park M., Kim B.H., An K., Hyeon T and (2009), Synthesis of Uniform Ferrimagnetic Magnetite Nanocubes, Journal of American Chemical Society, 131: pp 454−455 107 Kim D.H., Nikles D.E., Brazel C.S (2010), Synthesis and characterization of multifunctional chitosan-MnFe2O4 nanoparticles for magnetic hyperthermia and drug delivery, Materials, 3: pp 4051–4065 108 Kodama R., Berkowitz A (1999), Atomic-scale magnetic modeling of oxide nanoparticles, Physical Review B, 59: pp 6321–6336 109 Kodama R.H., Berkowitz A.E., Mcniff E.J., Foner S (1997), Surface spin disorder in ferrite nanoparticles ( invited), Journal of Applied Physics, 81: pp 5552–5558 110 Krishna Surendra M., Annapoorani S., Ereath Beeran Ansar., Harikrishna Varma P.R., Ramachandra Rao M.S (2014), Magnetic hyperthermia studies on water-soluble polyacrylic acid-coated cobalt ferrite nanoparticles, Journal of Nanoparticle Research, 16: pp 2773-2787 111 Krishnan K.M (2010), Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy, IEEE Transactions on Magnetics, 46: pp 2523–2558 161 112 Lacroix L.M., Bel Malaki R., Carrey J., Lachaize S, Respaud M., Goya G., Chaudret B (2009), Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: Evidences for Stoner–Wohlfarth behavior and large losses, Journal of Applied Physics, 105: pp 023911 113 Laniado M., Chachuat A (1995), Compatibility profile of Radiologe, 35: pp 266–270 endorem, 114 Lee J.H., Huh Y.M., Jun Y., Seo J., Jang J., Song H.T., Kim S., Cho E.J., Yoon H.G., Suh J.S (2006), Artificially Engineered Magnetic Nanoparticles for Ultra-Sensitive Molecular Imaging, Nature Medicine, 13: pp 95−99 115 Lee J.H., Jang J.T., Choi J.S., Moon S.H., Noh S.H., Kim J.G., Kim I.S., Park K.I., Cheon J (2011), Exchange-coupled magnetic nanoparticles for efficient heat induction, Nature Nanotechnology, 6: pp 418–22 116 Leem G., Sarangi S., Zhang S., Rusakova I., Brazdeikis A., Litvinov, D., Lee T.R (2009), Surfactant-Controlled Size and Shape Evolution of Magnetic Nanoparticles, Crystal Growth & Desig, 9: pp 32–34 117 Liang Xiao Juan, Shi Hao Wei, Jia Xiang Chen, Yang Yu Xiang, Liu Xiang Nong (2011), Dispersibility, Shape and Magnetic Properties of Nano-Fe3O4 Particles, Materials Sciences and Applications, 2: pp 1644–1653 118 Lima Jr E., Brandl A L., Arelaro A.D., Goy G.F (2006), Spin disorderand magnetic anisotropy in Fe3O4 nanoparticles, Journal of Applied physics, 99: pp 083908 119 Lin M., Huang J., Zhang J., Wang L., Xiao W., Yu H., Li Y., Li H., Yuan C., Hou X., Zhang H., Zhang D (2013), The therapeutic effect of PEIMn0.5Zn0.5Fe2O4 nanoparticles/pEgr1-HSV-TK/GCV associated with radiation and magnet induced heating on hepatoma., Nanoscale, 5(3): pp 991–1000 120 Linderoth S., Hendriksen P.V., Bødker F., Wells S., Davies K., Charles S.W, Mørup S (2004), On spin-canting in maghemite particles, Journal of Applied Physics, 75: pp 6583–6585 121 Linh P.H., Manh D.H., Phong P.T., Hong L.V., Phuc N.X (2014), Magnetic Properties of Fe3O4 Nanoparticles Synthesized by Coprecipitation Method, Journal of Superconductivity and Novel Magnetism, 27: pp 2111–2115 122 Liu X.L., Fan H.M., Yi J.B., Yang Y., Choo E.S.G., Xeu J.M., Fan D.D., Ding J (2012), Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents., Journal of Materials Chemistry, 22: pp 8235–8244 123 Lu T.L., Dung T.N., Tung D.L., Thanh T.C., Quy K.O., Chuc V.N., Shinya M., Thanh T.K.N (2015), Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of 162 solvent, surfactant, reductant and synthetic conditions, Nanoscale, 7: pp 19596–19610 124 Lu Xiao, Tao Zhou, Jia Meng (2009), Hydrothermal synthesis of Mn–Zn ferrites from spent alkaline Zn–Mn batteries, Particuology, 7: pp 491–495 125 Luis F., Torres J.M., García L.M., Bartolomé T., Stankiewic J., Petroff F., Fettar F., Maurice J.L , Vaurés A (2002), Enhancement of the magnetic anisotropy of nanometer-sized Co clusters: Influence of the surface and of interparticle interactions, Physical Review B, 65: pp 094409–094411 126 Luong Ngoc Anh, To Thanh Loan, Nguyen Phuc Duong, Siriwat Soontaranon, Tran Thi Viet Nga, Than Duc Hien (2015), Influence of Y and La substitution on particle size, structural and magnetic properties of nanosized nickel ferrite prepared by using citrate precursor method, Journal of Alloys and Compounds, 647: pp 419–426 127 Maaz K., Mumtaz A., Hasanain S.K., Ceylan A (2007), Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route, Journal of Magnetism and Magnetic Materials, 308: pp 289– 295 128 Madsen D.E., Hansen M.F., Mørup S (2008), The correlation between superparamagnetic blocking temperatures and peak temperatures obtained from ac magnetization measurements, Journal of Physics: Condensed Matter, 20: pp 345209 (6) 129 Makovec D., Drofenik M (2008), Non-stoichiometric zinc-ferrite spinel nanoparticles, Journal of Nanoparticle Research, 10: pp 131–141 130 Marcela Gonzales-Weimuller, Matthias Zeisberger, Kannan M Krishnan (2009), Size-dependant heating rates of iron oxide nanoparticlesb for magnetic fluid hyperthermia, Journal of Magnetism and Magnetic Materials, 321: pp 1947–1950 131 Mathieu Artus, Lotfi Ben Tahar, Frộdộric Herbst, Leila Smiri, Franỗoise Villain, Nader Yaacoub, Jean-Marc Grenèche, Souad Ammar and Fernand Fiévet (2011), Size-dependent magnetic properties of CoFe2O4 nanoparticles prepared in polyol, Journal of Physics: Condensed Matter, 23: pp 506001 (9pp) 132 Mathur P., Thakur A., Singh M (2008), A study of nano-structured Zn–Mn soft spinel ferrites by the citrate precursor method, Physica Scripta, 77: pp 045701 (6pp) 133 Mei Lin, Dongsheng Zhang, Junxing Huang, Jia Zhang, Wei Xiao, Hong Yu, Lixin Zhang and Jun Ye (2013), The anti-hepatoma effect of nanosized Mn–Zn ferrite magnetic fluid hyperthermia associated with radiation in vitro and in vivo, Nanotechnology, 24: pp 255101(8pp) 163 134 Milos Bekovic, Anton Hamler (2010), Determination of the Heating Effect of Magnetic Fluid in Alternating Magnetic Field, IEEE Transactions on Magetics, 46: pp 552–555 135 Ming-Ru, Syue Fu-Jin Wei, Chan-Shin Chou, Chao Ming Fu (2011), Magnetic and electrical properties of Mn-Zn ferrites synthesized by combustion method without subsequent heat treatments, Journal of Applied Physics, 109: pp 07A324 136 Montferrand C., Hu L., Milosevic I., Russier V., Bonnin D., Motte L., Brioude A., Lalatonne Y (2013), Iron oxide nanoparticles with sizes, shapes and compositions resulting in different magnetization signatures as potential labels for multiparametric detection, Acta Biomaterialia, 9: pp 6150–6157 137 Moore T.L., Rodriguez L.L., Hirsch V., Balog S., Urban D., Jud C., Rothen R.B., Lattuada M., Petri F.A (2015), Nanoparticle colloidal stability in cell culture media and impact on cellular interactions, Chemical Society Reviews, 44: pp 6287–6305 138 Mornet S., Vasseur S., Grasset F., Duguet E (2004), Magnetic nanoparticle design for medical diagnosis and therapy, Journal of Materials Chemistry, 14: pp 2161–2175 139 Moroz P., Jones S.K., Gray B.N (2002), Magnetically mediated hyperthermia: current status and future directions, Int J Hyperthermia, 18: pp 267–284 140 Mukta V.L., Shashi B.S., Sadgopal K.D., Deepti V., Raghavendra R., Ajay G., Vasant S., Ram J.C., Sulabha K.K (2009), High Coercivity of Oleic Acid Capped CoFe2O4 Nanoparticles at Room Temperature, Journal of Physical Chemistry B, 113: pp 9070–9076 141 Nadeem K., Krenn H., Traussnig T., Wurschum R., Szabo´ D.V., LetofskyPaps I (2011), Effect of dipolar and exchange interactions on magnetic blocking of maghemite nanoparticles, Journal of Magnetism and Magnetic Materials, 323: pp 1998–2004 142 Nam D.N.H., Jonason K., Nordblad P., Khiem N.V., Phuc N.X (1999), Coexistence of ferromagnetic and glassy behavior in the La0.5Sr0.5CoO3 perovskite compound, Physical Review B, 59: pp 4189–4194 143 Nemati Z.J., Alonso J., Martinez L M., Khurshid H., Garaio E., Garcia J A., Phan M.H., Srikanth H (2016), Enhanced Magnetic Hyperthermia in Iron Oxide Nano-Octopods: Size and Anisotropy Effects, Journal of Physical Chemistry C, 120: pp 8370–8379 144 Ngo T.D., Nguyen V.L, Le T.T.T., Pham H.N., Le D.T., Nguyen X.P, Le T L., Nguyen T.K.T (2017), High magnetisation, monodisperse and waterdispersible CoFe@Pt core/shell nanoparticles, Nanoscale,9: pp 8952–8961 164 145 Nica V., Sauer H.M., Embs J., Hempelmann R (2008), Calorimetric method for the determination of Curie temperatures of magnetic nanoparticles in dispersion, Journal of Physical: Condensed Matter, 20: pp 204115 (5pp) 146 Nikam D.S., Jadhav S.V., Khot V.M., Phadatare M.R., Pawar S.H (2014), Study of AC magnetic heating characteristics of Co0.5Zn0.5Fe2O4 nanoparticles for magnetic hyperthermia therapy, Journal of Magnetism and Magnetic Materials, 349: pp 208–213 147 Nogues J., Skumryev V., Sort J., Stoyanov S., Givord D (2006), Shell-Driven Magnetic Stability in Core-Shell Nanoparticles, Physical Review Letters, 97: pp 157203/1-157203/4 148 Noh S.H., Na W., Jang J.T., Lee J.H., Lee E.J., Moon S.H., Lim Y., Shin J.S., Cheon J (2012), Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis, Nano Letters, 12: pp 3716– 3721 149 O'Brien R.W., Midmore B.R., Lam A., Hunter R.J (1990), Electroacoustic studies of moderately concentrated colloidal suspensions, Faraday Discussions of the Chemical Society, 90: pp 301–312 150 Pal S., Dutta S., Shah N., Huffman G.P., Seehra M.S (2007), Surface spin disorder in Fe3O4 nanoparticles probed by electron magnetic resonance spectroscopy and magnetometry, IEEE Transactions on Magnetics, 43(6): pp 3091–3093 151 Pallab Pradhan, Jyotsnendu Giri, Gopal Samanta, Haladhar Dev Sarma, Kaushala Prasad Mishra, Jayesh Bellare, Rinti Banerjee, Dhirendra Bahadur (2007), Comparative evaluation of heating ability and biocompatibility of different ferite-based magnetic fluids for hyperthermia application, Journal of Biomedical Materials Research Part B Applied Biomaterials, 81(1): pp 12-22 152 Pankhurst Q.A., Connolly J., Jones S.K., Dobson J (2003), Applications of magnetic nanoparticles in biomedicine, Journal of Physics: D Applied Physics, 36: pp R167–R181 153 Parekh K., Almásy L., Hyo S.L., Upadhyay R.V (2012), Surface spin-glasslike behavior of monodispersed superparamagnetic Mn0,5Zn0,5Fe2O4 magnetic fluid, Applied Physics A, 106: pp 223–228 154 Parekh K., Upadhyay R.V (2010), Magnetic field induced enhancement in thermal conductivity of magnetite nanofluid, Journal of Applied Physics, 107: pp 053907 155 Patricia de la Presa, Yurena Luengo, Victor Velasco, Maria Del Puerto Morales, Mariano Iglesis, Sabino Veintemillas-Verdaguer, Patricia Crespo, and Antonio Hernando (2015 ), Particle Interactions in Liquid Magnetic 165 Colloids by Zero Field Cooled Measurements: Effects on Heating Efficiency, Journal of Physical Chemistry C, 119 (20): pp 11022–11030 156 Pereira C., Pereira A.M., Fernandes C., Rocha M., Mendes R., FernandezGarcia M., Guedes A., Tavares P.B., Greneche J.M., Araujo J.P., Freire C., Guedes A., Tavares P.B., Greneche J.M., Araujo J.P., Freire C (2012), Superparamagnetic MFe2O4 (M = Fe, Co, Mn) nanoparticles: Tuning the particles size and magnetic properties through a novel one-step coprecipitation route, Chemical materials, 24: pp 1496–1504 157 Pham Thanh Phong, Luu Huu Nguyen, Do Hung Manh, In-ja Lee, Nguyen Xuan Phuc (2017), Computer simulations of contributions of Neel and Brown relaxation to specific loss power of magnetic fluids in hyperthermia, Journal of Electronic Materials, 46(4): pp 2393–2405 158 Phong P.T., Nam P.H., Manh D.H., Tung D.K., Lee J., Phuc N.X (2015), Studies of the Magnetic Properties and Specific Absorption of Mn0.3Zn0.7Fe2O4 Nanoparticles, Journal of Electronic Materials, 44: pp 287–294 159 Phong P.T., Nguyen L.H., Phong L.T.H., Nam P.H, Manh D.H., Lee J and Phucc N.X (2017), Study of specific loss power of magnetic fluids with various viscosities, Journal of Magnetism and Magnetic Materials, 428: pp 36–42 160 Phu N.D., Ngo D.T., Hoang L.H., Luong N.H., Chau N., Hai N.H (2011), Crystallization process and magnetic properties of amorphous iron oxide nanoparticles, Journal of Physics D: Applied Physics, 44: pp 345002 (7) 161 Qu Y., Li J., Ren J., Leng J, Lin C., Shi D (2014), Enhanced Magnetic Fluid Hyperthermia by Micellar Magnetic Nanoclusters Composed of MnxZn1xFe2O4 Nanoparticles for Induced Tumor Cell Apoptosis, ACS Applied Material and Interfaces, 6(19): pp 16867–16879 162 Rahimi M., Kameli P., Ranjbar M., and Salamati H (2013), The effect of sintering temperature on evolution of structural and magnetic properties of nanostructured Ni0 3Zn0.7Fe2O4 ferrite, Journal of nanoparticle research, 15: pp 1865–1976 163 Rand R.W., Snow H.D., Elliott D.G., and Haskins G.M (1985), Induction heating method for use in causing necrosis of neoplasm, US Patent, 4, 545, 368 164 Rath C., Sahu K.K., Anand S., Date S.K., Mishra N.C., Das R.P (1999), Preparation and characterization of nanosize Mn-Zn ferrite, Journal of Magnetism and Magnetic Materials, 202: pp 77–84 165 Roca A.G., Costo R., Rebolledo A.F., Veintemillas S., Tartaj P., GonzalezCarreno T., Morales M.P., Serna C.J (2009), Progress in the preparation of magnetic nanoparticles for applications in biomedicine, Journal of Physics D: Applied Physics, 42: pp 1–11 166 166 Rosensweig R.E (2002), Heating magnetic fluid with alternating magnetic field, Journal of Magnetism and Magnetic Materials, 252: pp 370–374 167 Rudolf Hergt, Silvio Dutz, Matthias Zeisberger (2010), Validity limits of the Néel relaxation model of magnetic nanoparticles for hyperthermia, Nanotechnology, 21: pp 015706 (5pp) 168 Rudolf Hergt, Silvio Dutz, Michael Roder (2008), Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia, Journal of Physics: Condensed Matter, 20, 385214 (12pp) 169 Rudolf Hergt, Silvio Dutz, Robert Muller and Matthias Zeisberger (2006), Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy, Journal of Physics: Condensed Matter, 18 pp S2919–S2934 170 Saafan S.A., Assar S.T., Moharram B.M., El Nimr M.K (2010), Particle size distribution, magnetic permeability and dc conductivity of nano-structured and bulk LiNiZn–ferrite samples, Journal of Magnetism and Magnetic Materials, 322(15): pp 2108–2112 171 Sahira Hassan Kareem Ali A Ati, Mustaffa Shamsuddin, Siew Ling Lee (2015), Nanostructural, morphologicalandmagneticstudiesofPEG/Mn1Zn Fe O nanoparticles synthesizedbyco-precipitation, Ceramics x x International, 41: pp 11702–11709 172 Salazar-Alvarez G., Qin J., Sepelak V., Bergmann I., Vasilakaki M., Trohidou K.N., Ardisson J.D., Macedo W.A.A., Mikhaylova M., Muhammed M (2008), Cubic versus spherical magnetic nanoparticles: The role of surface anisotropy, Journal of American Chemical Society, 130: pp 13234–13239 173 Schladt T.D., Ibrahim S., Schneider K., Tahir M.N., Natalio F., Ament I., Becker J., Jochum F.D., Weber S., Kohler O (2010), Au@MnO nanoflowers: Hybrid nanocomposites for selective dual functionalization and imaging, Angewandte Chemie International Edition, 49: pp 3976–3980 174 Seung-hyun Noh, Wonjun Na, Jung-tak Jang, Jae-Hyun Lee, Eun Jung Lee, Seung Ho Moon, Yongjun Lim, Jeon-Soo Shin and Jinwoo Cheon (2012), Nanoscale Magnetism Control via Surface and Exchange Anisotropy for Optimized Ferrimagnetic Hysteresis, Nano Letters, 12 pp 3716−3721 175 Sharifi Ibrahim Shokrollahi H., Doroodmand Mohammad M., Safi R (2012), Magnetic and structural studies on CoFe2O4 nanoparticles synthesized by coprecipitation, normal micelles and reverse micelles methods, Journal of Magnetism and Magnetic Materials, 324: pp 1854–1861 176 Shete P.B., Patil R.M., Thorat N.D., Prasad A., Ningthoujam R.S., Ghosh S.J., Pawar S.H (2014), Magnetic chitosan nanocomposite for hyperthermia 167 therapy application: Preparation, characterization and in vitro experiments, Applied Surface Science, 288: pp 149–157 177 Shubitidze Fridon, Kekalo Katsiaryna, Stigliano Robert, Baker Lan ((2015)), Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy, Journal of Applied Physics, 117: pp 094302 178 Singh V., Seehra M.S., Bonevich J (2009), AC susceptibility studies of magnetic relaxation in nanoparticles of Ni dispersed in silica, Journal of Applied physics, 105: pp 07B518 (4 pp) 179 Song Q., Zhang Z.J (2004), Shape Control and Associated Magnetic Properties of Spinel Cobalt Ferrite Nanocrystals, Journal of American Chemical Society, 126: pp 6164−6168 180 Srikala D., Singh V.N., Banerjee A., Mehta B.R., Patnaik S.S (2009), Synthessis and characterization of ferromagnetic cobalt nanospheres, nanodiscs and nanocubes, Journal of Nanoscience and Nanotechnology, 9: pp 5627–5632 181 Srikanth Singamaneni, Valery N Bliznyuk, Christian Binekc, Evgeny Y Tsymbalc (2011), Magnetic nanoparticles: recent advances in synthesis, selfassembly and applications, Materials Chemistry and Physics, 21: pp 16819– 16845 182 Stark D.D., Weissleder R., Elizondo G., Hahn P.F., Saini S (1998), Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver, 168: pp 297–301 183 Sun S., Zeng H., Robinson D.B., Raoux S., Rice P.M., Wang S.X., Li G (2004), Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles, Journal of American Chemical Society, 126: pp 273–279 184 Sun T., Borrasso J.A., Liu B., Dravid V (2011), Synthesis and Characterization of Nanocrystalline Zinc Manganese Ferrite, Journal of the American Ceramic Society, 94: pp 1490–1495 185 Tadi´c M., Kusigerski V., Markovi´c D., Panjan M., Miloˇsevi´c I., Spasojevi´c V (2012), Highly crystalline superparamagnetic iron oxide nanoparticles (SPION) in a silicamatrix, Journal of Alloys and Compounds, 525: pp 28–33 186 Tadic Marin, Kusigerski Vladan, Markovic Dragana, Milosevic Irena and Spasojevic Vojislav (2009), High concentration of hematite nanoparticles in a silica matrix: Structural and magnetic properties, Journal of Magnetism and Magnetic Materials, 321: pp 12–16 187 Taeghwan Hyeon, Yunhee Chung, Jongnam Park, Su Seong Lee, YoungWoon Kim, and Bae Ho Park (2002), Synthesis of Highly Crystalline and 168 Monodisperse Cobalt Ferrite Nanocrystals Journal of Physical Chemistry B, 106 (27), pp 6831–6833 188 Tai Thien Luong,Thu Phuong Ha, Lam Dai Tran, Manh Hung Do, Trang Thu Mai, Nam Hong Pham, Hoa Bich Thi Phan, Giang Ha Thi Pham, Nhung My Thi Hoang, Quy Thi Nguyen, Phuc Xuan Nguyen (2011), Design of carboxylated Fe3O4/poly(styrene-co-acrylic acid) ferrofluids with highly efficient magnetic heating effect, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384: pp 23–30 189 Tao Ke, Hongjing Dou, Kang Sun (2008), Colloids and Surfaces A: Physicochemical and Engineering Aspects, Interfacial coprecipitation to prepare magnetite nanoparticles:Concentration and temperature dependence, 320: pp 115-122 190 Tejada J., Zhang X.X., Chudnovsky E.M (1993), Quantum relaxation in random magnets, Physical Review B, 47: pp 14977–14989 191 Teran F.J., Casado C., Mikuszeit N., Salas G, Bollero A., Morales M.P., Camarero J., Miranda R (2012), Accurate determination of the specific absorption rate in superparamagnetic nanoparticles under non-adiabatic conditions, Journal of Applied physics letters, 101: pp 062413 192 Thakur M., De K., Giri S., Si S., Kotal A., Mandal T.K (2006), Interparticle interaction and size effect in polymer coated magnetite nanoparticles, Journal of Physics: Condensed Matter, 18: pp 9093–9104 193 Thi Kim Oanh Vuong, Dai Lam Tran, Trong Lu Le, Duy Viet Pham, Hong Nam Pham, Thi Hong Le Ngo, Hung Manh Do, Xuan Phuc Nguyen (2015), Synthesis of high-magnetization and monodisperse Fe3O4 nanoparticles via thermal decomposition, Materials Chemistry and Physics, 163: pp 537-544 194 Toru Iwaki, Yasuo Kakihara, Toshiyuki Toda, Mikrajuddin Abdullah, and Kikuo Okuyama (2003), Preparation of high coercivity magnetic FePt nanoparticles by liquid process, Journal of Applied Physics, 94: pp 6807– 6811 195 Turtelli R.S., Atif M., Mehmood N., Kubel F., Biernacka K., Linert W., Grossinger R., Kapusta C., Sikora M (2012), Interplay between cation distribution and production methods in cobalt ferrite, Materials Chemistry and Physics, 132: pp 832–838 196 Usov N.A (2010), Low frequency hysteresis loops of superparamagnetic nanoparticles with uniaxial anisotropy Journal of Applied Physics, 107: pp 123909 197 Va´zquez-Va´zquez C., Lo´pez-Quintela M.A., Buja´n-Nu´n˜ez M ., Rivas J (2011), Finite size and surface effects on the magnetic properties of cobalt ferrite nanoparticles, Nanopart Research, 11: pp 16631667 169 198 Vaidyanathan G., Sendhilnathan S (2008), Characterization of Co1-xZnxFe2O4 nanoparticles synthesized by co-precipitation method, Physica B, 403: pp 2157–2167 199 Verde E.L., Landi G.T., Gomes J A., Sousa M.H., and Bakuzis A.F (2012), Magnetic hyperthermia investigation of cobalt ferrite nanoparticles: Comparison between experiment, linear response theory, and dynamic hysteresis simulations, Journal of Applied Physics, 111: pp 123902 200 Wiriya N., Bootchanont A., Maensiri S., Swatsitang E (2014), Magnetic properties of Zn1-xMnxFe2O4 nanoparticles prepared by hydrothermal method, Microelectronic Engineering, 126: pp 1–8 201 Wu L., Jubert P.O., Berman D., Imaino W., Nelson A., Zhu H., Zhang S., Sun S (2014), Monolayer Assembly of Ferrimagnetic CoxFe3-xO4 Nanocubes for Magnetic Recording, Nano Letters, 14: pp 3395−3399 202 Wu C.G., Lin H.L., Shau N.L (2006), Magnetic nanowires via template electrodeposition, Journal of Solid State Electrochemistry, 10: pp 198–202 203 Xu S.T., Ma Y.Q., Zheng G.H., Dai Z.X (2015), Simultaneous effects of surface spins: rarely large coercivity, high remanence magnetization and jumps in the hysteresis loops observed in CoFe2O4 nanoparticles, Nanoscale, 7: pp 6520–6526 204 Xuan Y., Li Q., Yang G (2007), Synthesis and magnetic properties of Mn–Zn ferrite nanoparticles, Journal of Magnetism and Magnetic Materials, 312: pp 464–469 205 Yafet Y., Kittel C (1952), Antiferromagnetic arrangements in ferrites, Physical Review, 87: pp 290–294 206 Yan M., Fresnais J., Berret J.F (2010), Growth mechanism of nanostructured superparamagnetic rods obtained by electrostatic co-assembly, Soft Matter, 6: pp 1997–2005 207 Yin Liu, Xiao-guang Zhu, Lei Zhang, Fan-fei Mina, Ming-xu Zhang (2012), Microstructure and magnetic properties of nanocrystalline Co1-xZnxFe2O4 ferrites, Materials Research Bulletin, 47: pp 4174–4180 208 Yosun Hwang, Angappane S., Jongnam Park, Kwangjin An, Hyeon T., JeGeun Par (2012), Exchange bias behavior of monodisperse Fe3O4/g-Fe2O3 core/shell nanoparticles, Current Applied Physics, 12: pp 808–814 209 Zeisberger M., Dutz S., Müller R., Hergt R., Matoussevitch N., Bönnemann H (2007), Metallic cobalt nanoparticles for heating applications, journal of Magnetism and Magnetic Materials, 311: pp 224–227 210 Zhen G., Muir B.W., Moffat B.A., Harbour P., Murray K.S., Moubaraki B., Suzuki K., Madsen I., Agron-Olshina N., Waddington L (2011), Comparative 170 study of magnetic behavior of spherical and cubic superparamagnetic iron oxide nanoparticles, The Journal of Physical Chemistry C, 115: pp 327–334 211 Zheng M., Wu X C., Zou B S Wang Y J (1998), Magnetic properties of nanosized MnFe2O4 particles, Journal of Magnetism and Magnetic Materials, 183: pp 152–156 212 Zheng R.K., Wen G.H., Fung K.K., Zhang X.X (2004), Giant exchange bias and the vertical shifts of hysteresis loopsing -ɤFe2O3-coated Fe nanoparticles, Journal of Applied Physics, 95: pp 5244 213 Zheng Z.G., Zhong X.C., Zhang Y.H., Yu H.Y., Zeng D.C (2008), Synthesis, structure and magnetic properties of nanocrystalline Zn1-xMnxFe2O4 prepared by ball milling, Journal of Alloys and Compounds, 466: pp 377 – 382 171 ... trị SLP hệ hạt nano oFe2O4 Từ lý trên, chọn đề tài nghiên cứu luận án là: Nghiên cứu chế đốt nóng từ hệ hạt nano ferit spinel M1-xZnxFe2O4 (M=Mn, Co) Đối tƣợng nghiên cứu luận án: Hệ hạt nano M1-xZnxFe2O4... liệu ferit spinel tính chất hạt nano từ hương chế vật lý mơ hình lý thuyết áp dụng đốt nóng cảm ứng từ hương trình bày kỹ thuật thực nghiệm chế tạo hệ hạt nano hương đưa kết nghiên cứu hệ M1-xZnxFe2O4... KHO H V NG NGH VI T N M HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ PHẠM HỒNG NAM NGHIÊN CỨU CÁC CƠ CHẾ ĐỐT NÓNG TỪ TRONG HỆ HẠT NANO FERIT SPINEL M1-xZnxFe2O4 (M = Mn, Co) huyên ngành: Vật liệu

Ngày đăng: 17/05/2021, 08:28

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w