Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 16 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
16
Dung lượng
583,5 KB
Nội dung
TRUỜNG THPT LỘC THÁI GV:DƯƠNG THỊ HẰNG ĐỀ 1 I.PHẦN CHUNG (7 điểm) Câu 1:(3,0 điểm)Cho hàm số 3 2 2 3 2y x x= − + − có đồ thị là (C) a.Khảo sát sự biến thiên và vẽ đồ thị (C ) b.Viết phương trình tiếp tuyến của (C ) tại điểm có hòanh độ là -2 Câu 2:(3,0 điểm ) a.giải phương trình 1 3 18.3 29 x x+ − + = b.Tính tích phân 2 0 (2 1)cos2I x xdx π = − ∫ c.Tìm GTLN,GTNN của hàm số 2 9 7y x= − trên đọan [-1;1] Câu 3:(1,0 điểm)Cho tứ diện đều ABCD có cạnh bằng a 1.Tính chiều cao của tứ diện ABCD 2.Tính thể tích của tứ diện ABCD II.PHẦN DÀNH CHO THÍ SINH TỪNG BAN (3,0 điểm) Câu 4:(2,0điểm)Cho bốn điểm A(1;0;0) B(0;1;0) C(0;0;1) D(-2;1;-1) 1.CMR A,B,C,D là bốn đỉnh của tứ diện 2.Tính thể tích của tứ diện đó 3.Lập phương trình mặt cầu ngoại tiếp tứ diện Câu 5:(1,0điểm) giải phương trình 2 7 0x x+ + = trên tập số phức ĐỀ 2 I.PHẦN CHUNG (7,0 điểm) Câu 1(3,0điểm)Cho hàm số 3 2 3 4y x x= + − có đồ thị là (C ) 1. Khảo sát sự biến thiên và vẽ đồ thị (C ) 2. Viết phương trình tiếp tuyến của (C ) tại điểm có hòanh độ là -1 Câu 2(3,0điêm) 1.Giải phương trình 6 3 3. 2 0 x x e e− + = 2.Tính tích phân 2 2 0 sin 2 .sinI x xdx π = ∫ 3. Tìm GTLN,GTNN của hàm số sin 2y x x= − trên đọan ; 2 π π − Câu 3(1,0điểm)Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a/2 ,cạnh bên bằng a 1.Tính diện tích và thể tích mặt cầu ngoại tiếp hình chóp S.ABC 2.Tính thể tích của hình chóp S.ABC . II.PHẦN DÀNH CHO THÍ SINH TỪNG BAN (3,0 điểm) Câu 4(2,0điểm )Cho mặt cầu (S) có đường kính AB,biết A(6;2;-5) B(-4;0;7) 1.Lập phương trình mặt cầu (S) 2.Lập phương trình mặt phẳng (P) tiếp xúc mặt cầu (S) tại điểm A Câu 5(1,0điểm)Giải phương trình 2 2 7 0x x+ + = trên tập số phức ĐỀ 3 I.PHẦN CHUNG (7,0 điểm) Câu 1(3,0điểm)Cho hàm số 3 2 3 4y x x= − + − có đồ thị là (C ) 1. Khảo sát sự biến thiên và vẽ đồ thị (C ) 2. Dùng đồ thị (C),biện luận theo m số nghiệm của phương trình 3 2 3x x m− + = Trang - 1 - TRUỜNG THPT LỘC THÁI GV:DƯƠNG THỊ HẰNG Câu 2(3,0 điểm) 1.Giải phương trình 9 4log log 3 3 x x + = 2. Tính tích phân 1 0 ln(1 )I x dx= + ∫ 3.Tìm GTLN,GTNN của hàm số 5 4y x= − trên đọan [-1;1] Câu 3(1,0điểm)Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật ,cạnh bên SA vuông góc với mặt phẳng đáy,SA=3a,SB=5a,AD=a 1.Tính độ dài AB 2.Tính thể tích của hình chóp S.ABCD . II.PHẦN DÀNH CHO THÍ SINH TỪNG BAN (3,0 điểm) Câu 4(2,0điểm)Cho bốn điểm A(-2;6;3),B(1;0;6),C(O;2;-1),D(1;4;0) 1.Viết phương trình mp (BCD).Từ đó suy ra ABCD là một tứ diện 2.Tính chiều cao AH của tứ diện 3.Viết phương trình mặt phẳng (Q) chứa AB và song song với CD Câu 5(1,0điểm) Giải phương trình 2 5 0x x+ + = trên tập số phức ĐỀ 4 I.PHẦN CHUNG (7,0 điểm) Câu 1(3,0điểm) Cho hàm số y = x 3 + 3x 2 + 1 có đồ thị (C) . 1. Khảo sát sự biến thiên và vẽ đồ thị (C ) 2. Viết phương trình tiếp tuyến của (C ) tại điểm có hòanh độ là -2 Câu 2(3,0 điểm) 1. Giải bất phương trình 2 4 6 1 1 3 27 x x− + ≥ ÷ . 2. Tính tích phân 2 1 ln e I x xdx= ∫ . 3. .Tìm GTLN,GTNN của hàm số 1 x x y − = trên đoạn [ ] 2; 1− − . Câu 3(1,0điểm)Cho hình chóp S.ABCD có đáy ABCD là hình bình hành ( ). 2 a SA ABCD SA⊥ = , AB = 2a , AD = 5a , goc của BAD có số đo 30 0 . Tính thể tích của hình chóp S.ABCD . . II.PHẦN DÀNH CHO THÍ SINH TỪNG BAN (3,0 điểm) Câu 4(2,0điểm) Cho mặt phẳng ( ) :3 5 2 0x y z∂ + − − = và đường thẳng 12 4 9 3 1 x t y t z t = + = + = + 1. Tìm giao điểm M của đường thẳng (d) và mặt phẳng ( )∂ 2. Viết phương trình mặt phẳng ( ) β chứa điểm M va vuông góc với đường thẳng (d) . Câu 5 (1,0điểm) Giải phương trình x 2 + 2x + 7 = 0 trên tập số phức . ĐỀ 5 I.PHẦN CHUNG (7,0 điểm) Câu 1(3,0điểm) Cho hàm số y = -x 3 + 3x 2 + 1 có đồ thị (C) 1. Khảo sát sự biến thiên và vẽ đồ thị (C ) 2. Viết phương trình tiếp tuyến của (C ) tại điểm có hòanh độ là -1 Trang - 2 - TRUỜNG THPT LỘC THÁI GV:DƯƠNG THỊ HẰNG Câu 2(3,0 điểm) 1. Giải bất phương trình log( x – 1 ) – log( 2x – 11 ) = log2 . 2. Tính tích phân ln3 3 0 ( 1) x x e I dx e = + ∫ 3. Tìm GTLN,GTNN của hàm số 3 2 1 2 3 4 3 y x x x= + + − trên đoạn [ ] 4;0− . Câu 3(1,0điểm)Cho hình chóp tứ giác đều S.ABCD có đáy bằng 2 a , cạnh bên bằng 3a 1. Tính diện tích mặt cầu và thể tích khối cầu ngoại tiếp hình chóp S.ABCD. 2. Tính thể tích của hình chóp S.ABCD . . II.PHẦN DÀNH CHO THÍ SINH TỪNG BAN (3,0 điểm) Câu 4(2,0điểm) Cho hai mặt phẳng 1 1 ( ) : 2 2 3 x t d y t z t = − = + = và 2 1 ' ( ) : 3 2 ' 1 x t d y t z = + = − = Chứng minh rằng 1 ( )d và 2 ( )d chéo nhau . Câu 5(1,0điểm) Giải phương trình 2x 2 + 3x + 7 = 0 trên tập số phức . ĐỀ 6 I.PHẦN CHUNG (7,0 điểm) Câu 1(3,0điểm) Cho hàm số y = x 3 + 3x 2 - 4 có đồ thị (C) 1. Khảo sát sự biến thiên và vẽ đồ thị (C ) 2. Viết phương trình tiếp tuyến của (C ) tại điểm có tọa độ là (-1 ; -2) Câu 2(3,0 điểm) 1. Giải phương trình 16 x – 17.4 x + 16 = 0 . 2. Tính tích phân 2 3 2 2 ( 1) x x I x e dx − = − ∫ 3. Tìm GTLN,GTNN của hàm số 1 y x x = + trên khoảng ( ) 0;+∞ . Câu 3(1,0điểm)Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật . Cạnh bên SA vuông góc với mặt phẳng đáy .SB = 5a , AB = 3a , AC = 4a . 1. Tính diện tích mặt cầu và thể tích khối cầu ngoại tiếp hình chóp S.ABCD . 2. Tính thể tích của S.ABCD . II.PHẦN DÀNH CHO THÍ SINH TỪNG BAN (3,0 điểm) Câu 4(2,0điểm )Cho mặt cầu (S) : x 2 + y 2 + z 2 – 10x + 2y + 26z + 170 = 0 . 1.Tìm tọa độ I và độ dài bán kính r của mặt cầu (S) 2.Lập phương trình mặt phẳng (d) qua điểm I vuông góc với mặt phẳng ( ) α : 2x – 5y + z – 14 = 0 . Câu5(1,0điểm)Giải phương trình 2 2 4 7 0x x− + = trên tập số phức ĐỀ 7 I.PHẦN CHUNG (7,0 điểm) Câu 1(3,0điểm) Cho hàm số y = x 3 - 3x 2 + 2 có đồ thị (C) 1. Khảo sát sự biến thiên và vẽ đồ thị (C ) 2. Viết phương trình tiếp tuyến của (C ) tại giao điểm của (C) với trục tung . Câu 2(3,0 điểm) 1. Giải phương trình 16 4x+8 – 4.3 2x+5 + 27 = 0 . Trang - 3 - TRUỜNG THPT LỘC THÁI GV:DƯƠNG THỊ HẰNG 2. Tính tích phân 2 2 sin 3 .cos5I x xdx π π − = ∫ 3. Tìm GTLN,GTNN của hàm số cos2y x x= + trên khoảng [ ] 0; π . Câu 3(1,0điểm)Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật . Cạnh bên SA vuông góc với mặt phẳng (ABCD) .SB = 6a , AB = a , AD = 2a . 1Tính chiều cao của S.ABCD . 2. Tính thể tích của S.ABCD . II.PHẦN DÀNH CHO THÍ SINH TỪNG BAN (3,0 điểm) Câu 4(2,0điểm)Cho điểm M(2 ; -3 ; 1) và mặt phẳng ( ) α : -5x + 2y – z + 3 = 0 . 1. Tính khoảng cách từ điểm đến mặt phẳng ( ) α . 2. Lập phương trình mặt phẳng đi qua góc tọa độ và song song với ( ) α . 3. Lập phương trình đường thẳng chứa M và vuông góc với ( ) α . Câu 5(1,0điểm)Giải phương trình 2 3 2 7 0x x− + = trên tập số phức ĐỀ 8 I.PHẦN CHUNG (7,0 điểm) Câu 1(3,0điểm) Cho hàm số y = x 3 - 6x 2 + 9x có đồ thị (C) 1. Khảo sát sự biến thiên và vẽ đồ thị (C ) 2. Viết phương trình tiếp tuyến của (C ) tại giao điểm tại điểm cực đại của nó . Câu 2(3,0 điểm) 1. Giải bât phương trình 9 x – 4.3 x+1 + 3 3 ≥ 0 . 2. Tính tích phân ln5 2 ln2 1 x x e I dx e = − ∫ 3. Tìm GTLN,GTNN của hàm số 2 sin 1y x x= + + trên khoảng [ ] 0; π Câu 3:(1,0 điểm)Cho hình chóp S.ABCD có SA vuông góc với đáy.Đáy là hình vuông cạnh a.Góc giữa cạnh bên và đáy bằng 60 0 . 1.Tính diện tích mặt cầu và thể tích khối cầu ngoại tiếp hình chóp S.ABCD 2.Tính thể tích của tứ diện ABCD II.PHẦN DÀNH CHO THÍ SINH TỪNG BAN (3,0 điểm) Câu 4:(2,0điểm)Cho ba điểm A(1;0;-1) B(1;2;1) C(0;2;0) . Gọi G là trọng tâm của tam giác giác ABC . 1. Viết phương trình đường thẳng OG . 2. Viết phương trình mặt cầu (S) đi qua bốn điểm O , A , B , C . 3. Viết phương trình của mặt phẳng vuông góc với đường thẳng OG và tiếp xúc với mặt cầu (S). Câu 5(1,0điểm)Giải phương trình 2 3 9 0x x− + = trên tập số phức ĐỀ 9 I.PHẦN CHUNG (7,0 điểm) Câu 1(3,0điểm) Cho hàm số y = x 3 - 3x có đồ thị (C) 1. Khảo sát sự biến thiên và vẽ đồ thị (C ) 2. Dùng (C) , tìm các giá trị của m để phương trình sau có ba nghiệm thực Câu 2(3,0 điểm) 1. Giải phương trình 27 12 2.8 x x x + = . 2. Tính tích phân ln5 2 ln2 1 x x e I dx e = − ∫ Trang - 4 - TRUỜNG THPT LỘC THÁI GV:DƯƠNG THỊ HẰNG 3. Tìm GTLN,GTNN của hàm số 2 4y x x= + − Câu 3:(1,0 điểm)Cho tứ diện đều ABCD có cạnh bằng 2 3 b 1. Tính chiều cao của tứ diện ABCD 2. Tính thể tích của tứ diện ABCD II.PHẦN DÀNH CHO THÍ SINH TỪNG BAN (3,0 điểm) Câu 4:(2,0điểm)Cho đường thẳng 2 1 1 ( ) : 1 2 3 x y z d − + − = = và mặt phẳng ( ) α : x – y + 3z + 2 = 0 . Tìm tọa độ giao điểm M của đường thẳng (d) và mặt phẳng ( ) α . ĐỀ 10 I.PHẦN CHUNG (7,0 điểm) Câu 1(3,0điểm) Cho hàm số y = -x 3 + 3x 2 - 4x + 2 có đồ thị (C) 1. Khảo sát sự biến thiên và vẽ đồ thị (C ) 2. Viết phương trình tiếp tuyến của (C ) tại điểm có hoành độ 0 1x = − . Câu 2(3,0 điểm) 1. Giải phương trình 5 x+5 – 5 1- x = 24 . 2. Tính tích phân 2 5 1 (1 2 )I x x dx= − ∫ 3. Tìm GTLN,GTNN của hàm số 2 3 6 1 x x y x − + = − trên khoảng ( ) 1;+∞ Câu 3:(1,0 điểm)Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2 b , góc giữa mặt bên và đáy bằng 60 0 1 Tính diện tích mặt cầu và thể tích khối cầu ngoại tiếp hình chóp S.ABCD 2. Tính thể tích của tứ diện S.ABCD II.PHẦN DÀNH CHO THÍ SINH TỪNG BAN (3,0 điểm) Câu 4:(2,0điểm)Cho mặt phẳng ( ) α : x + y – 2z – 4 = 0 và điểm M(-1 ; -1 ; 0) . 1. Viết phương trình mặt phẳng ( ) β qua M và song song với ( ) α . 2. viết phương trình đường thẳng (d) qua M và vuông góc với ( ) α . 3. Tìm tọa độ giao điểm H của (d) và ( ) α . Câu 5(1,0điểm)Giải phương trình 2 2 0x x+ + = trên tập số phức . ĐỀ 11 I.PHẦN CHUNG (7,0 điểm) Câu 1(3,0điểm) Cho hàm số y = -2x 3 + 3x 2 - 1 có đồ thị (C) 1. Khảo sát sự biến thiên và vẽ đồ thị (C ) 2. Viết phương trình tiếp tuyến của (C ) tại điểm tại điểm cực đại của nó . Câu 2(3,0 điểm) 1. Giải phương trình 2 1 2 2 log log 2x x+ = . 2. Tính tích phân 3 1 2 lnI x xdx= ∫ 3. Tìm GTLN,GTNN của hàm số 2 . 9y x x= − Trang - 5 - TRUỜNG THPT LỘC THÁI GV:DƯƠNG THỊ HẰNG Câu 3:(1,0 điểm)Cho hình chóp đều S.ABC có cạnh SA = AB = 3 2 1. Tính chiều cao của S.ABC 2. Tính thể tích của S.ABC II.PHẦN DÀNH CHO THÍ SINH TỪNG BAN (3,0 điểm) Câu 4:(2,0điểm)Cho bốn điểm A(1;-1;2) B(1;3;2) C(4;3;2) D(4;0;0) . 1. Lập phương trình mặt phẳng (BCD) . Từ đó suy ra ABCD là một tứ diện . 2. Tính thể tích tứ diện . 3. Lập phương trình mặt phẳng ( ) α qua góc tọa độ và song song với mặt phẳng (BCD). Câu 5(1,0điểm)Giải phương trình 2 2 2 0x x+ + = trên tập số phức . ĐỀ 12 I.PHẦN CHUNG (7,0 điểm) Câu 1(3,0điểm) Cho hàm số y = -x 3 + 3x 2 - 4 có đồ thị (C) 1. Khảo sát sự biến thiên và vẽ đồ thị (C ) 2. Tính diện tích hình phẳng giới hạn bởi đồ thị (C) , trục hoành và hai đường thẳng x = 0 và x = 1 Câu 2(3,0 điểm) 1. Giải bất phương trình 2 3 1 4 2 x x− ≥ ÷ 2. Tính tích phân 1 2 0 x I x e dx − = ∫ 3. Tìm GTLN,GTNN của hàm số cos siny x x= + trên [ ] 0; π Câu 3:(1,0 điểm)Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A . cạnh bên SA vuông góc với mặt phẳng đáy . SA = AB = 2a , BC = 3a. Tính thể tích của S.ABC II.PHẦN DÀNH CHO THÍ SINH TỪNG BAN (3,0 điểm) Câu 4:(2,0điểm)Cho bốn điểm A(0;-1;1) B(1;-3;2) C(-1;3;2) D(0;1;0) . 1. Lập phương trình mặt phẳng (ABC) . Từ đó suy ra ABCD là một tứ diện . 2. Lập phương trình đường thẳng (d) qua trọng tâm G của tam giác ABC và đi qua góc tọa độ . Câu 5(1,0điểm)Giải phương trình 2 9 0x x+ + = trên tập số phức . ĐỀ 13 I.PHẦN CHUNG (7,0 điểm) Câu 1(3,0điểm) Cho hàm số y = x 3 + 3x 2 - 2 có đồ thị (C) 1. Khảo sát sự biến thiên và vẽ đồ thị (C ) 2. Tính diện tích giới hạn bởi đồ thị (C ) , trục hoành và hai đường thẳng x = -2 và x = -1 . Câu 2(3,0 điểm) 1. Giải bất phương trình 2 3 2 9 1 3 25 x x− ≥ ÷ . 2. Tính tích phân 2 2 sin 0 ( )sin 2 x I e x xdx π = + ∫ 3. Tìm GTLN,GTNN của hàm số 2 16y x= − Trang - 6 - TRUỜNG THPT LỘC THÁI GV:DƯƠNG THỊ HẰNG Câu 3:(1,0 điểm)Cho hình chóp S.ABC là tam giác vuông tại B , có cạnh SA vuông góc với mặt phẳng đáy , SA = AB = 2a , BC = 3a 1. Tính thể tích của S.ABC 2. Tính diên tích xung quanh và thể tích của khối nón tròn xoay khi quay đường gấp khúc ASB quanh cạnh AB II.PHẦN DÀNH CHO THÍ SINH TỪNG BAN (3,0 điểm) Câu 4:(2,0điểm)Cho điểm A(0;-1;1) và mặt phẳng ( ) α : 2x + 3y – z – 7 = 0 1. Lập phương trình đường phẳng (d) chứa A và vuông góc với mặt phẳng ( ) α . 2. Tính khoảng cách từ A tới mặt phẳng ( ) α . 3.Tìm tọa độ điểm A’ đối xứng với A qua mp ( ) α Câu 5 (1,0điểm)Giải phương trình 2 8 0x x+ + = trên tập số phức . ĐỀ 14 I.PHẦN CHUNG (7,0 điểm) Câu 1(3,0điểm) Cho hàm số y = x 3 + 3x 2 - 4 có đồ thị (C) 1. Khảo sát sự biến thiên và vẽ đồ thị (C ) 2. Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ 0 x là nghiệm của phương trình y” 0 ( )x = 6 Câu 2(3,0 điểm) 1. Giải phương trình 25 6.5 5 0 x x − + < 2. Tính tích phân 1 ln e I x xdx= ∫ 3. Giải bất phương trình 2 0,2 0,2 log 5log 6x x− ≤ − Câu 3:(1,0 điểm)Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C . cạnh bên SA vuông góc với mặt phẳng đáy . SA = AB = 5a , BC = 3a. Tính thể tích của S.ABC II.PHẦN DÀNH CHO THÍ SINH TỪNG BAN (3,0 điểm) Câu 4:(2,0điểm)Cho ba điểm A(1;0;4) B(-1;1;2) C(0;1;1). 1. Chứng minh tam giác ABC vuông . 2. Lập phương trình đường thẳng (d) qua trọng tâm G của tam giác ABC và đi qua góc tọa độ . Câu 5 (1,0điểm) Tính giá trị biểu thức 2 2 ( 3 ) ( 3 ) i p i + = − . ĐỀ 15 I.PHẦN CHUNG (7,0 điểm) Câu 1(3,0điểm) Cho hàm số y = -x 4 + 2x 2 - 2 có đồ thị (C) 1. Khảo sát sự biến thiên và vẽ đồ thị (C ) 2. Dùng đồ thị (C) , biện luận theo m số nghiệm của phương trình –x 4 + 2x 2 – 2 = m Câu 2(3,0 điểm) 1. Giải phương trình 2 2 2 6 4 3 log 2 logx x + = 2. Tính tích phân 3 2 0 4 1 x I dx x = + ∫ 3. Giải bất phương trình 2009 2009 log(2 3) log(2 3)A = + + − Trang - 7 - TRUỜNG THPT LỘC THÁI GV:DƯƠNG THỊ HẰNG Câu 3:(1,0 điểm)Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A . cạnh bên SB vuông góc với mặt phẳng đáy . SA = 5a , AB = 2a , BC = 3a. Tính thể tích của S.ABC II.PHẦN DÀNH CHO THÍ SINH TỪNG BAN (3,0 điểm) Câu 4:(2,0điểm)Cho hai điểm A(1;2;-1) B(7;-2;3) và đường thẳng 1 3 ( ) : 2 2 2 2 x t d y t z t = − + = − = + 1. Lập phương trình đường thẳng AB . 2. Chứng minh đường thằng AB và đường thẳng (d) cùng nằm trong một mặt phẳng . Câu 5 (1,0điểm) Giải phương trình 2 2 9 0x x+ + = trên tập số phức . ĐỀ 16 I.PHẦN CHUNG (7,0 điểm) Câu 1(3,0điểm) Cho hàm số y = 1 3 x 3 + x 2 - 2 có đồ thị (C) 1. Khảo sát sự biến thiên và vẽ đồ thị (C ) 2. Viết phương trình tiếp tuyến của (C) tại tâm đối xứng của nó . Câu 2(3,0 điểm) 1. Giải phương trình 2 4 log log ( 3) 2x x− − = 2. Tính tích phân 2 2 1 3I x x dx= + ∫ 3. Tìm GTLN,GTNN của hàm số 3 2 3 7 1y x x x= − − + trên khoảng [ ] 0;3 Câu 3:(1,0 điểm)Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C . cạnh bên SA vuông góc với mặt phẳng đáy . SA = BC , biết CA = 3a , BA = 5a 1. Tính thể tích của S.ABC 2. Tính diện tích mặt cầu và thể tích khối cầu ngoại tiếp hình chóp S.ABC II.PHẦN DÀNH CHO THÍ SINH TỪNG BAN (3,0 điểm) Câu 4:(2,0điểm)Cho ba điểm A(0;2;1) B(3;0;1) C(1;0;0). 1. Lập phương trình mặt phằng (ABC) . 2. Lập phương trình đường thẳng (d) qua M(1;-2;1/2) và vuông góc với mặt phẳng (ABC) . 3. Tính khoảng cách M đến mặt phẳng (ABC). Câu 5(1,0điểm) Tính giá trị biểu thức 2 5 3 3 1 2 3 i p i + = ÷ ÷ − . ĐỀ 17 I.PHẦN CHUNG (7,0 điểm) Câu 1(3,0điểm) Cho hàm số y = - 1 4 x 4 + x 2 có đồ thị (C) 1. Khảo sát sự biến thiên và vẽ đồ thị (C ) 2. Dùng đồ thị (C) , tìm các giá trị m để phương trình sau có bốn nghiệm thực 4 2 2 0 4 x x m− + − = Câu 2(3,0 điểm) 1. Giải phương trình 1 2 2 log (2 3) log (3 1) 1x x+ + + = Trang - 8 - TRUỜNG THPT LỘC THÁI GV:DƯƠNG THỊ HẰNG 2. Tính tích phân 2 1 ln e x I dx x = ∫ 3. Giải bất phương trình 2 1 3 3 28 x x+ − + ≥ Câu 3:(1,0 điểm)Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A . cạnh bên SA vuông góc với mặt phẳng đáy . SA = AB = 2a Tính thể tích của S.ABC II.PHẦN DÀNH CHO THÍ SINH TỪNG BAN (3,0 điểm) Câu 4:(2,0điểm)Cho hai điểm A(1;0;-2) B(0;1;1) 1. Lập phương trình đường thẳng đi hai A và B . 2. Lập phương mặt cầu (S) có dường kính là AB . Câu 5(1,0điểm) Tính giá trị của biểu thức 2010 1 1 i ÷ + . ĐỀ 18 I.PHẦN CHUNG (7,0 điểm) Câu 1(3,0điểm) Cho hàm số y = - x 4 + 2x 2 + 3 có đồ thị (C) 1. Khảo sát sự biến thiên và vẽ đồ thị (C ) 2. Dùng đồ thị (C) , biện luận theo m số nghiệm của phương trình x 4 – 2x 2 - m = 0 Câu 2(3,0 điểm) 1. Giải phương trình 1 1 4 6.2 8 0 x x+ + − + = 2. Tính tích phân 2 2 3 0 2.I x x dx= + ∫ 3. Tìm GTLN,GTNN của hàm số 2 4x x y e − = trên đoạn [ ] 2;2− Câu 3:(1,0 điểm)Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B . cạnh bên SC vuông góc với mặt phẳng đáy . SC = AB = a/2 ; BC = 3a Tính thể tích của S.ABC II.PHẦN DÀNH CHO THÍ SINH TỪNG BAN (3,0 điểm) Câu 4:(2,0điểm)Cho hai điểm A(3;-4;5) B(1;0;-2) 1. Lập phương trình mặt cầu đi qua M và có tâm là N . 2. Lập phương mặt phẳng qua M tiếp xúc với mặt cầu Câu 5(1,0điểm) Giải phương trình 2x 2 + 3x +11 = 0 trên tập số thực . ĐỀ 19 I.PHẦN CHUNG (7,0 điểm) Câu 1(3,0điểm) Cho hàm số y = 1 2 x 4 - x 2 + 1 có đồ thị (C) 1. Khảo sát sự biến thiên và vẽ đồ thị (C ) 2. Lập phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng 2 Câu 2(3,0 điểm) 1. Giải phương trình 2 6 2 5 5 2 x x− ≥ ÷ ÷ 2. Tính tích phân 2 0 1 3cos .sinI x xdx π = + ∫ 3. Giải phương trình 3 3 log log ( 2) 1x x+ + = Trang - 9 - TRUỜNG THPT LỘC THÁI GV:DƯƠNG THỊ HẰNG Câu 3:(1,0 điểm)Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a . Cạnh bên SA vuông góc với mặt phẳng đáy . SA = 2a . Tính thể tích của S.ABCD II.PHẦN DÀNH CHO THÍ SINH TỪNG BAN (3,0 điểm) Câu 4:(2,0điểm)Cho điểm H(1;0;-2) và mặt phẳng ( ) α : 3x - 2y + z + 7 = 0 . 1. Tính khoảng cách từ H đến mặt phẳng ( ) α . 2. Lập phương trình mặt cầu có tâm H và tiếp xúc với mặt phẳng ( ) α . Câu 5(1,0điểm) : Tính giá trị của (1 + i) 2010 . ĐỀ 20 I.PHẦN CHUNG (7,0 điểm) Câu 1(3,0điểm) Cho hàm số y = - 1 4 x 4 - x 2 + 3 2 có đồ thị (C) 1. Khảo sát sự biến thiên và vẽ đồ thị (C ) 2. Dùng đồ thị (C) , biện luận theo m số nghiệm của phương trình -x 4 – 4x 2 + 3 = m Câu 2(3,0 điểm) 1. Giải phương trình 2 4 2.5 10 x x x − = 2. Tìm nguyên hàm của hàm số y = cos 3 x . sinx 3. Tìm GTLN,GTNN của hàm số 2 2 5 4 2 x x y x + + = + trên đoạn [ ] 0;1 Câu 3:(1,0 điểm)Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật . Cạnh bên SC vuông góc với mặt phẳng đáy . SA = AC , AB = a ; BC = 2AB Tính thể tích của S.ABCD II.PHẦN DÀNH CHO THÍ SINH TỪNG BAN (3,0 điểm) Câu 4:(2,0điểm)Cho điểm M(1;4;2) và và mặt phẳng ( ) α : x + y +z -1 = 0 1. Lập phương trình đường thẳng (d) qua M và vuông góc với mặt phẳng ( ) α 2. Tìm tọa độ giao điểm H của (d) và mặt phẳng ( ) α . Câu 5(1,0điểm) : Tính giá trị của biểu thức ( ) ( ) 2 2 3 3p i i= + + − ĐỀ 21 I.PHẦN CHUNG (7,0 điểm) Câu 1(3,0điểm) Cho hàm số 1 1 x y x + = − có đồ thị (C) 1. Khảo sát sự biến thiên và vẽ đồ thị (C ) 2. Lập phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng -2 Câu 2(3,0 điểm) 1. Giải phương trình 4 4 4 log ( 3) log ( 1) 2 log 8x x+ − − = − 2. Tính tích phân 1 1 ln e x I dx x + = ∫ 3. Tìm GTLN , GTNN của hàm số 1 1 ( 5) 5 y x x x = + + 〉 − Câu 3:(1,0 điểm) Cho hình chóp S.ABCD có SA vuông góc với đáy.Đáy là hình vuông cạnh a.Góc giữa (SBC) và đáy bằng 30 0 .Tính diện tích mặt cầu và thể tích khối cầu ngoại tiếp hình chóp S.ABCD II.PHẦN DÀNH CHO THÍ SINH TỪNG BAN (3,0 điểm) Trang - 10 - [...]... khối chóp A’.ABC II.PHẦN DÀNH CHO THÍ SINH TỪNG BAN (3,0 điểm) Câu 4:(2,0điểm)Cho mặt cầu (S) : x2 + y2 +z2 + 4x + 8y – 2z – 4 = 0 và mặt phẳng (α ) : x +3y - 5z + =0 1 Xác định tọa độ tâm I và độ dài bán kính r của mặt cầu (S) 2 Lập phương trình đường thẳng (d) qua điểm I và vuông góc với mặt phẳng (α ) Câu 5(1,0điểm) Tính giá trị biểu thức p = ( ( ) 3 − i) 3 +i 2 2 ĐỀ 24 I.PHẦN CHUNG (7,0 điểm) . (S) : x 2 + y 2 + z 2 – 10x + 2y + 26z + 170 = 0 . 1.Tìm tọa độ I và độ dài bán kính r của mặt cầu (S) 2.Lập phương trình mặt phẳng (d) qua điểm I vuông. và mặt phẳng ( ) α : x +3y - 5z + = 0 . 1. Xác định tọa độ tâm I và độ dài bán kính r của mặt cầu (S) . 2. Lập phương trình đường thẳng (d) qua điểm I và