1. Trang chủ
  2. » Giáo án - Bài giảng

Tài liệu Đè thị HSG Tỉnh 2008-2009

8 359 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 210,5 KB

Nội dung

Đề thi học sinh giỏi tỉnh lớp 9 Năm học 2008 -2009 Môn thi :Toán Bảng A Thời gian :150 phút (Không kể thời gian giao đề ) Câu 1 (4,5 điểm ). a) Cho A= k 4 +2k 3 -16k 2 -2k +15 với k Z .Tìm điều kiện của k để A chia hết cho16 b) Cho 2 số tự nhiên a và b . Chứng minh rằng nếu tích a.b là số chẵn thì luôn luôn tìm đợc số nguyên c sao cho a 2 + b 2 + c 2 là số chính phơng . Câu 2 ( 5,5 điểm ). a) Giải phơng trình :x 2 x - 2 1 16x+ = 2 b) Cho x ,y thoả mãn : 3 2 2 2 2 2 4 3 0 2 0 x y y x x y y + + = + = Tính Q = x 2 + y 2 . Câu 3 (3,0 điểm ). Tìm giá trị nhỏ nhất của biểu thức : 1 1 1 1 1 1 (3 )(3 )(3 )P a b b c a c = + + + + + + Trong đó các số dơng a, b, c thoả mãn điều kiện : 3 2 a b c+ + Câu 4 (5,5 điểm) Cho đờng tròn (O;R), hai đờng kính AB và CD vuông góc với nhau. E là một điểm trên cung nhỏ AD (E không trùng với A và D). Nối EC cắt OA tại M; nối EB cắt OD tại N. a) Chứng minh rằng : . 2 .AM ED OM EA= . b) Xác định vị trí điểm E để tổng OM ON AM DN + đạt GTNN. Câu 5 (1,5 điểm) Cho tam giác ABC, lấy điểm C 1 thuộc cạnh AB, A 1 thuộc cạnh BC, B 1 thuộc cạnh CA. Biết rằng độ dài các đoạn thẳng AA 1 , BB 1 , CC 1 không lớn hơn 1. Chứng minh rằng : 1 3 ABC S (S ABC là diện tích tam giác ABC). Trang 1/4 hớng dẫn và biểu điểm Chấm đề chính thức (Hớng dẫn và biểu điểm chấm gồm 04 trang) Môn: toán - bảng A ---------------------------------------------- CâuNội dungĐiểm14,5a/ 2,5Cho A = k 4 + 2k 3 - 16k 2 - 2k +15 với k Z Vì k Z ta xét các trờng hợp: TH1: k chẵn A = k 4 + 2k 3 - 16k 2 - 2k +15 là một số lẻ A không chia hết cho 2 A không chia hết cho 16 (loại) (1) 1,0 TH2: k lẻ, ta có: A = k 4 + 2k 3 - 16k 2 - 2k +15 = (k 2 - 1)(k 2 + 2k - 15) = (k - 1)(k + 1)(k - 3)(k + 5) Do k lẻ k - 1; k + 1; k - 3; k + 5 đều chẵn A = (k - 1)(k + 1)(k - 3)(k + 5) M 2.2.2.2 = 16 (thoả mãn) (2) Từ (1) và (2) với k Z mà k lẻ thì A luôn chia hết cho 161,0 0,5b/Do tích a.b chẵn nên ta xét các trờng hợp sau: Sở Gd&Đt Nghệ an Kỳ thi chọn học sinh giỏi tỉnh lớp 9 THCS Năm học 2008 - 2009 Trang 2/4 2,0TH1: Trong 2 số a, b có 1 số chẵn và 1 số lẻ. Không mất tính tổng quát, giả sử a chẵn, b lẻ a 2 M 4; b 2 chia cho 4 d 1 a 2 + b 2 chia cho 4 d 1 a 2 + b 2 = 4m + 1 (m N) Chọn c = 2m a 2 + b 2 + c 2 = 4m 2 + 4m + 1 = (2m + 1) 2 (thoả mãn) (1)1,0TH2: Cả 2 số a, b cùng chẵn. a 2 + b 2 M 4 a 2 + b 2 = 4n (n N) Chọn c = n - 1 a 2 + b 2 + c 2 = n 2 + 2n + 1 = (n + 1) 2 (thoả mãn) (2) Từ (1) và (2) suy ra ta luôn tìm c Z thoả mãn bài toán.1,025,5 3,0/Giải phơng trình x 2 - x - 2 1 16x 2+ = . ĐKXĐ: 1 x 16 Khi đó phơng trình x 2 - x = 2( 1 16x 1)+ + Đặt: 1 16x 1 2y+ + = ( 1 y 2 ) 1 + 16x = 4y 2 -4y + 1 4y 2 - 4y = 16x y 2 - y = 4x (*) 2 2 y y 4x (x y)(x y 3) 0 x x 4y = + + = = x y 1 1 x y 3 0 (loại vì x - và y ) 16 2 = + + = Với x = y thay vào (*) x 2 - x = 4x x 2 - 5x = 0 x(x - 5) = 0 = = x 5 (thoả mãn) x 0 (loại) Vậy phơng trình có nghiệm duy nhất là: x = 5 0,25 Trang 3/4 2,25 0,5 b/ 2,5Cho x, y tho¶ m·n:  + − + =   + − =   3 2 2 2 2 x 2y 4y 3 0 (1) x x y 2xy 0 (2) Tõ (1) ⇒ x 3 = -2y 2 + 4y -3 ⇔ x 3 = -2(y 2 - 2y + 1) - 1 ⇔ x 3 = -2(y - 1) 2 - 1 ≤ -1 víi ∀ y ⇒ x 3 ≤ -1 ⇔ x ≤ -1 (*) Tõ (2) ⇒ x 2 (y 2 + 1) = 2y ⇔ x 2 = ≤ + 2 2y 1 y 1 víi ∀ y ⇒ x 2 ≤ 1 ⇔ | x | ≤ 1 ⇔ -1 ≤ x ≤ 1 (**) Tõ (*) vµ (**) ⇒ x = -1 thay vµo (2) ta ®îc: y 2 - 2y + 1 = 0 ⇔ (y - 1) 2 = 0 ⇔ y = 1 ⇒ (x; y) = (-1; 1) (tho¶ m·n) ⇒ Q = x 2 + y 2 = (-1) 2 + 1 2 = 2 1,0 1,0 Trang 4/4 0,533,0§Æt + = 1 1 x a b ; + = 1 1 y b c ; + = 1 1 z c a ⇒ (x, y, z > 0) ⇒ P = (3 + x)(3 + y)(3 + z) = 27 + 3(xy+ yz + zx) + 9(x + y+ z) + xyz ≥ 2 3 3 27 9 (xyz) 27 xyz xyz+ + + (*) L¹i cã: 1 1 1 1 1 1 8 xyz a b b c c a abc     = + + + ≥  ÷ ÷ ÷     (v× a, b, c > 0) mµ 3 3 3 1 a b c 3 abc abc 2 2 ≥ + + ≥ ⇒ ≥ ⇒ ≤ ⇒ ≥ ⇒ ≥ ≥ 1 8 8 abc 64 xyz 64 8 abc abc Thay vµo (*) ta ®îc: 23 3 P 27 9 64 27 64 64≥ + + + = 27 + 144 + 108 + 64 = 343 DÊu = cã khi a = b = c = 1 2 ⇒ P min = 343 Khi a = b = c = 1 2 1,5 0,75 0,5 0,25 45,5a/ Trang 5/4 N M D C O B A E 1 1 3,0XÐt ∆COM vµ ∆CED cã:  = =     0 ˆ ˆ O E 90 ˆ C chung ⇒ ∆COM ∆CED (g-g) ⇒ = CO OM CE ED (1) Do AB, CD lµ 2 ®êng kÝnh vu«ng gãc víi nhau ⇒ = = 0 1 1 ˆ ˆ E A 45 XÐt ∆AMC vµ ∆EAC cã:  = =     0 1 1 ˆ ˆ E A 45 ˆ C chung ⇒ ∆AMC ∆EAC (g-g) ⇒ = AC AM CE AE mµ AC 2 CO= (do ∆ACO vu«ng c©n t¹i O) ⇒ = = AM 2 CO 2 OM AE CE ED (do (1)) ⇒ AM.ED = 2 OM.AE (§PCM) 1,0 1,0 1,0b/ Trang 6/4 S S 2,5Tơng tự câu a ta có: BON BEA = BO ON BE EA BND BDE = = DN BD 2BO DE BE BE DN 2 ON DE EA = ON DN ON EA EA DN 2 DE 2 DE = = Từ câu a ta có: AM.ED = 2 .OM.AE = OM ED AM 2 EA nên suy ra = OM ON 1 . AM DN 2 mà + = = OM ON OM ON 1 2 . 2 2 AM DN AM DN 2 Dấu = xẩy ra khi và chỉ khi: = = = OM ON ED EA ED EA AM DN 2EA 2ED E là điểm chính giữa cung nhỏ AD Vậy giá trị nhỏ nhất của + = OM ON 2 AM DN E là điểm chính giữa của cung nhỏ AD 1,0 Trang 7/4 S S 0,5 1,051,5Kh«ng mÊt tÝnh tæng qu¸t, gi¶ sö ≥ ≥ ⇒ ≥ 0 ˆ ˆ ˆ ˆ A B C A 60 TH1: ≤ < 0 0 ˆ 60 A 90 kÎ CH ⊥ AB; BK ⊥ AC ABC 1 S CH.AB 2 ⇒ = mµ CH ≤ CC 1 ≤ 1 ta cã: 1 0 BB BK 1 1 2 AB SinA SinA SinA Sin60 3 = ≤ ≤ ≤ = ABC 1 2 1 S .1. 2 3 3 ⇒ ≤ = (1) TH2: 0 ˆ A 90≥ ⇒ AB ≤ BB 1 ≤ 1, CH ≤ CC 1 ≤ 1 ABC 1 1 1 S .1.1 2 2 3 ⇒ ≤ = < (2) Tõ (1) vµ (2) ABC 1 S 3 ⇒ ≤ 0,5 0,5 0,5 Trang 8/4 K H A B C A 1 B 1 C 1 . Đề thi học sinh giỏi tỉnh lớp 9 Năm học 2008 -2009 Môn thi :Toán Bảng A Thời gian :150 phút (Không. nên ta xét các trờng hợp sau: Sở Gd&Đt Nghệ an Kỳ thi chọn học sinh giỏi tỉnh lớp 9 THCS Năm học 2008 - 2009 Trang 2/4 2,0TH1: Trong 2 số a, b có 1

Ngày đăng: 01/12/2013, 06:11

TỪ KHÓA LIÊN QUAN

w