THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 52 |
Dung lượng | 5,25 MB |
Nội dung
Ngày đăng: 28/04/2021, 13:40
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết | ||
---|---|---|---|---|
[2] Yuste SB, Acedo L, Lindenberg K. Reaction front in an A + B → C reaction-subdiffusion process. Phys Rev E. 2004;69(3):036126 | Sách, tạp chí |
|
||
[1] Hall MG, Barrick TR. From diffusion-weighted MRI to anomalous diffusion imaging. Magnet Reson Med. 2008;59(3):447–455 | Khác | |||
[3] Scalas E, Gorenflo R, Mainardi F. Fractional calculus and continuous-time finance. Phys A.2000;284(1):376–384 | Khác | |||
[4] Kohlmann M, Tang T. Fractional calculus and continuous-time finance III: the diffusion limit.In: Mathematical finance; 2001. p. 171–180, Birkhauser Verlag, Basel-Boton-Berlin | Khác | |||
[5] Meerschaert MM, Scalas E. Coupled continuous time random walks in finance. Phys A.2006;370(1):114–118 | Khác | |||
[6] Mainardi F, Raberto M, Gorenflo R, et al. Fractional calculus and continuous-time finance II:the waiting-time distribution. Phys A. 2000;287(3-4):468–481 | Khác | |||
[7] Li ZX. An iterative ensemble Kalman method for an inverse scattering problem in acoustics.Mod Phys Lett B. 2020;34(28):12 | Khác | |||
[8] Luchko Y. Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J Math Anal Appl. 2011;374(2):538–548 | Khác | |||
[9] Luchko Y. Some uniqueness and existence results for the initial-boundary value problems for the generalized time-fractional diffusion equation. Comput Math Appl. 2010;59(5):1766–1772 | Khác | |||
[10] Luchko Y. Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Fract Calc Appl Anal. 2012;15(1):141–160 | Khác | |||
[11] Luchko Y. Maximum principle for the generalized time-fractional diffusion equation. J Math Anal Appl. 2009;351(1):218–223 | Khác | |||
[12] Li ZY, Luchko Y, Yamamoto M. Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations. Fract Calc Appl Anal.2014;17(4):1114–1136 | Khác | |||
[13] Hossein J, Afshin B, Seddigheh B. A novel approach for solving an inverse reaction-diffusion- convection problem. J Optim Theory Appl. 2019;183(2):688–704 | Khác | |||
[14] Afshin B, Seddigheh B. Reconstructing unknown nonlinear boundary conditions in a time-fractional inverse reaction-diffusion-convection problem. Numer Meth Part D E.2019;35(3):976–992 | Khác | |||
[15] Luchko Y. Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract Calc Appl Anal. 2009;12(4):409–422 | Khác | |||
[16] Bai ZB, Qiu TT. Existence of positive solution for singular fractional differential equation. Appl Math Comput. 2008;215(7):2761–2767 | Khác | |||
[17] Kemppainen J. Existence and uniqueness of the solution for a time-fractional diffusion equation. Fract Calc Appl Anal. 2011;14(3):411–417 | Khác | |||
[18] Wang JG, Wei T. Quasi-reversibility method to identify a space-dependent source for the time- fractional diffusion equation. Appl Math Model. 2015;39(20):6139–6149 | Khác | |||
[19] Zhang ZQ, Wei T. Identifying an unknown source in time-fractional diffusion equation by a truncation method. Appl Math Comput. 2013;219(11):5972–5983 | Khác | |||
[20] Wang JG, Zhou YB, Wei T. Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation. Appl Numer Math. 2013;68(68):39–57 | Khác |
TRÍCH ĐOẠN
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN