+ Nhãm nhiÒu h¹ng tö sao cho thÝch hîp... + Nhãm nhiÒu h¹ng tö sao cho thÝch hîp.[r]
(1)Giáo viên: Nguyn Thanh Quỳnh
(2)Tit 12 luyện tập: Phân tích đa thức thành nhân tử
Kiểm tra củ:
Các em học đ ợc những ph ơng phỏp
phân tích đa thức thành nhân tử ?
HÃy nêu cách làm
của ph ơng pháp ?
* Nhng ph ơng pháp phân tích đa thức thành nhân tử đã học:
+ Đặt nhân tử chung. + Dùng đẳng thức. + Nhóm hạng tử
* Cách làm ph ơng ph¸p:
+ Khi hạng tử đa thức có chung nhân tử, ta có thể đặt nhân tử chung ngồi dấu ngoặc theo cơng thức: AB + AC - AD = A(B + C - D)
Nh©n tư chung đa thức gồm:
a) Hệ số ƯCLN hệ số hạng tử.
b) Các luỹ thừa chữ số có mặt mäi h¹ng tư víi sè mị nhá nhÊt cđa nã.
+ Nếu đa thức chứa vế bảy đẳng thức đáng nhớ, ta dùng đẳng thức để viết đa thức thành tích nhân tử.
(3)Tit 12 luyện tập: Phân tích đa thức thành nhân tử Dạng 1: Phân tích đa thức thành nhân tử.
Ph ơng pháp giải: áp dụng ph ơng pháp:
+ Đặt nhân tử chung dấu ngoặc: AB + AC - AD = A(B + C - D)
+ Sử dụng đẳng thức đáng nhớ. + Nhóm nhiều hạng tử cho thích hợp. (Th ờng dùng cho loại đa thức có bốn hạng t tr lờn)
Gồm tập: 39; 43; 44; 47; 48 SGK D·y 1: Lµm bµi tËp 39c
D·y 2: Lµm bµi tËp 44e D·y 3: Lµm bµi tËp 47c
Bµi 39c: 14x y2 21xy2 28x y2 2 7x xy 7y xy 7xy xy
7 (2xy x 3y 4 )xy
Bµi 44e: x3 9x2 27x 27
3
(x 9x 27x 27)
3 2
(x .3 .3x x )
3
(x 3) ( x 3)
Bµi 47c: 3x2 3xy 5x 5y
2
(3x 3 ) (5xy x 5 )y
3 (x x y) 5(x y)
(x y)(3x 5)
Bµi 48b: 3x2 6xy 3y2 3z2
2 2
3(x 2xy y z )
2 2
3 ( x 2xy y ) z
2
3 ( x y) z
3(x y z x y z)( )
2 2
14x y 21xy 28x y
3 9 27 27
x x x
2
(4)Tiết 12 luyÖn tËp: Phân tích đa thức thành nhân tử
Dng 2: Tìm x thoả mãn đẳng thức cho tr ớc.
Ph ơng pháp giải:
+ Chuyn tt c hạng tử vế trái đẳng thức, vế phải 0.
+ Phân tích vế trái thành nhân tử để đ ợc A.B = Với A.B =
+ Lần l ợt tìm x từ đẳng thức A = 0, B = ta đ ợc kết quả.
Gồm tập: 41; 45; 50 SGK
Bµi 41b: x3 13x 0
2
( 13)
x x 0 13 x x 0 13 x x
Vậy x 0 x 13
Bài 45b:
4
x x 0 A B 2 2 .1 0
2
x x
2 x 1 2 x
Bµi 50b: 5 (x x 3) x 3 0
5 (x x 3) (x 3)
(x 3)(5x 1) 3 1 x x
Dãy + Dãy 2: Làm 45b
Dãy 3: Làm 50b
2 0 13 0 x x
2 0
4
x x
5 (x x 3) x 3 0 x 0
(5)Tit 12 luyện tập: Phân tích đa thức thành nhân tử
Dạng 3: Tính nhanh.
Gồm tập: 46; 49 SGK Ph ơng pháp giải:
Phân tích biểu thức cần tính nhanh ra thừa sè, råi tÝnh.
HS n÷:
37,5.6,5 - 7,5.3,4 - 6,6.7,5 + 3,5.37,5 = HS nam:
2 2
45 40 15 80.45
Bµi 49a: 37,5.6,5 7,5.3, 6, 6.7,5 3,5.37,5
(37,5.6,5 3,5.37,5) (7,5.3, 6,6.7,5)
37,5(6,5 3,5) 7,5(3, 6,6)
37,5.10 7,5.10
10(37,5 7,5) 10.30 300
Bµi 49b: 452 402 152 80.45
2 2
45 80.45 40 15
2 2
(45 2.45.40 40 ) 15
2
(45 40) 15
(45 40 15)(45 40 15)
100.70 7000
(6)Tiết 12 lun tËp: Ph©n tÝch đa thức thành nhân tử
Dạng 3: Tính nhanh.
Dạng 1: Phân tích đa thức thành nhân tử. Ph ơng pháp giải:
áp dụng ph ơng pháp:
+ Đặt nhân tử chung dấu ngoặc: AB + AC - AD = A(B + C - D)
+ Sử dụng đẳng thức đáng nhớ. + Nhóm nhiều hạng tử cho thích hợp. (Th ờng dùng cho loại đa thức có bốn hạng tử trở lên)
Dạng 2: Tìm x thoả mãn đẳng thức cho tr c.
Ph ơng pháp giải:
+ Chuyển tất hạng tử vế trái đẳng thức, vế phải 0.
+ Phân tích vế trái thành nhân tử để đ ợc A.B = Với A.B =
+ Lần l ợt tìm x từ đẳng thức A = 0, B = ta đ ợc kết quả.
0
A B
* Những ph ơng pháp phân tích đa thức thành nhân tử đ ợc sử dụng: Đặt NTC Dùng đẳng thức - Nhóm hạng tử * Cách làm ph ơng pháp:
+ Khi hạng tử đa thức có chung nhân tử, ta đặt NTC ngồi dấu ngoặc theo công thức:
AB + AC - AD = A(B + C - D).
Nhân tử chung đa thức gồm:
a) Hệ số ƯCLN hệ số hạng tử
b) Các luỹ thừa chữ số có mặt hạng tử với số mũ nhá nhÊt cña nã
+ Nếu đa thức chứa vế bảy đẳng thức đáng nhớ, ta dùng đẳng thức để viết đa thức thành tích nhân tử
(7)Tiết 12 lun tËp: Ph©n tÝch đa thức thành nhân tử
Dạng 3: Tính nhanh. Ph ơng pháp giải:
Phân tích biểu thức cần tính nhanh ra
Dạng 1: Phân tích đa thức thành nhân tử. Ph ơng pháp giải:
áp dụng ph ơng pháp:
+ Đặt nhân tử chung dấu ngoặc: AB + AC - AD = A(B + C - D)
+ Sử dụng đẳng thức đáng nhớ. + Nhóm nhiều hạng tử cho thích hợp.
(Th ờng dùng cho loại đa thức có bốn hạng tử trở lên) Dạng 2: Tìm x thoả mãn ng thc cho tr c.
Ph ơng pháp giải:
+ Chuyển tất hạng tử vế trái đẳng thức, vế phải 0.
+ Phân tích vế trái thành nhân tử để đ ợc A.B = Với A.B =
+ Lần l ợt tìm x từ đẳng thức A = 0, B = ta đ ợc kết quả.
0
A B
Hướngưdẫnưvềưnhà
Xem lại dạng tập chữa, ý ph ơng pháp giải
D¹ng 4: TÝnh giá trị biểu thức
Bài tập 40/ 19 SGK
Dạng 5: áp dụng vào số học
Gm tập: 42; 52; 58 SGK Tìm tập có dạng để luyện tập
Bµi tËp vỊ nhµ: 31; 32; 33 SBT
(8)