Bài 1. Cho tam giác ABC, đường cao AH. Gọi M, N lần lượt là trung điểm của HC, CE. Các đường thẳng AM, AN cắt HE tại G và K.. a) Chứng minh tứ giác AHCE là hình chữ nhật. Cho tứ giác AB[r]
(1)CHUYÊN ĐỀ TỨ GIÁC TOÁN LỚP
NĂM HỌC 2019 – 2020 I TỨ GIÁC
VẤN ĐỀ I Sử dụng tính chất góc tứ giác để tính góc
Bài 1. Cho tứ giác ABCD có B 120 ,0C 60 ,0 D 900 Tính góc A góc ngồi đỉnh A Bài 2. Cho tứ giác ABCD có AB = AD, CB = CD, C60 ,0 A1000
a) Chứng minh AC đường trung trực BD b) Tính B D, ĐS: b) B D 1000
Bài 3. Cho tứ giác ABCD có phân giác góc A góc B cắt E, phân giác ngồi góc A góc B cắt F Chứng minh: AEB C D
2
AFB A B
2
Bài 4. Cho tứ giác ABCD có B D 180 ,0 CB CD Trên tia đối tia DA lấy điểm E cho DE = AB Chứng minh:
a) Các tam giác ABC EDC b) AC phân giác góc A
Bài 5. Cho tứ giác ABCD biết số đo góc A B C D, , , tỉ lệ thuận với 5; 8; 13 10 a) Tính số đo góc tứ giác ABCD
b) Kéo dài hai cạnh AB DC cắt E, kéo dài hai cạnh AD BC cắt F Hai tia phân giác góc AED góc AFB cắt O Phân giác góc AFB cắt cạnh CD AB M N Chứng minh O trung điểm đoạn MN
Bài 6. Cho tứ giác ABCD có B D 1800, AC tia phân giác góc A Chứng minh CB = CD
(2)VẤN ĐỀ II Sử dụng bất đẳng thức tam giác để giải toán liên hệ đến cạnh tứ giác
Bài 1. Cho tứ giác ABCD Chứng minh:
a) ABBC CD AD b) AC BD AB BC CD AD Bài 2. Cho tứ giác ABCD có AB BD AC CD Chứng minh: AB AC Bài 3. Cho tứ giác ABCD Gọi O giao điểm hai đường chéo AC BD
a) Chứng minh: AB BC CD AD OA OB OC OD AB BC CD AD
b) * Khi O điểm thuộc miền tứ giác ABCD, kết luận có khơng? Bài 4. Chứng minh tứ giác thì:
a) Tổng độ dài cạnh đối diện nhỏ tổng độ dài hai đường chéo b) Tổng độ dài hai đường chéo lớn nửa chu vi tứ giác
II HÌNH THANG – HÌNH THANG VNG
1 Định nghĩa:
Hình thang tứ giác có hai cạnh đối song song Hình thang vng hình thang có góc vng 2 Tính chất:
Nếu hình thang có hai cạnh bên song song hai cạnh bên nhau, hai cạnh đáy bằng
Nếu hình thang có hai cạnh đáy hai cạnh bên song song
VẤN ĐỀ I Tính chất góc hình thang
Bài 1. Cho hình thang ABCD (AB // CD) có A D 20 ,0 B2C Tính góc hình thang Bài 2. Cho hình thang ABCD (AB // CD) có AB < CD, AD = BC = AB, BDC300 Tính
góc hình thang
Bài 3. Cho hình thang ABCD (AB // CD) có AB < CD Chứng minh rằng: A B C D
(3)Bài 5. Cho hình thang ABCD (AB // CD)
a) Chứng minh hai tia phân giác hai góc A D qua trung điểm F cạnh bên BC cạnh bên AD tổng hai đáy
b) Chứng minh AD = AB + CD hai tia phân giác hai góc A D cắt trung điểm cạnh bên BC
Bài 6. Cho hình thang ABCD có A B 900 BC AB AD
Lấy điểm M thuộc đáy nhỏ BC Kẻ Mx MA, Mx cắt CD N Chứng minh tam giác AMN vuông cân
VẤN ĐỀ II Chứng minh tứ giác hình thang, hình thang vng
Bài 1. Cho tứ giác ABCD có AB = BC AC tia phân giác góc A Chứng minh ABCD hình thang
Bài 2. Cho tam giác ABC vuông A Lấy điểm M thuộc cạnh BC cho AM 1BC
, N trung điểm cạnh AB Chứng minh:
a) Tam giác AMB cân
b) Tứ giác MNAC hình thang vuông
Bài 3. Cho tam giác ABC vuông A Kẻ đường cao AH Từ H kẻ AB Gọi M, N trung điểm đoạn thẳng HB, HC Chứng minh tứ giác DEMN hình thang vng
III HÌNH THANG CÂN 1 Định nghĩa:
Hình thang cân hình thang có hai góc kề đáy 2 Tính chất: Trong hình thang cân:
Hai cạnh bên Hai đường chéo 3 Dấu hiệu nhận biết:
(4)VẤN ĐỀ I Sử dụng tính chất hình thang cân để tính tốn chứng minh
Bài 1. Cho hình thang cân ABCD (AB // CD, AB < CD) Kẻ đường cao AE, BF hình thang Chứng minh DE = CF
Bài 2. Cho hình thang cân ABCD (AB // CD) a) Chứng minh: ACDBDC
b) Gọi E giao điểm AC BD Chứng minh: EA EB
Bài 3. Cho hình thang cân ABCD (AB // CD, AB > CD) có CDa, A B 1(C D)
Đường chéo AC vng góc với cạnh bên BC
a) Tính góc hình thang
b) Chứng minh AC phân giác góc DAB c) Tính diện tích hình thang
Bài 4. Cho hình thang cân ABCD (AB // CD) có BDC450 Gọi O giao điểm AC BD a) Chứng minh tam giác DOC vng cân
b) Tính diện tích hình thang ABCD, biết BD = (cm) ĐS: b) S18(cm2)
VẤN ĐỀ II Chứng minh tứ giác hình thang cân
Bài 1. Cho tam giác ABC cân A, đường phân giác BD, CE (D AC, E AB) Chứng minh BEDC hình thang cân có đáy nhỏ cạnh bên
Bài 2. Cho hình thang ABCD (AB // CD) có ACDBDC Chứng minh ABCD hình thang cân
Bài 3. Cho tam giác ABC cân A Trên cạnh AB, AC lấy điểm D E cho AD = AE
a) Chứng minh BDEC hình thang cân
b) Tính góc hình thang cân đó, biết A500 ĐS: b) B C 65 ,0 CEDBDE1150
Bài 4. Cho hình thang ABCD (AB // CD) có AC = BD Qua B kẻ đường thẳng song song với AC cắt đường thẳng DC E Chứng minh:
a) Tam giác BDE tam giác cân
(5)c) ABCD hình thang cân
Bài 5. Cho tam giác ABC điểm M thuộc miền tam giác Qua M kẻ đường thẳng song song với BC cắt AB D, đường thẳng song song với AC cắt BC E, đường thẳng song song với AB cắt AC F Chứng minh:
a) Các tứ giác BDME, CFME, ADMF hình thang cân
b) Chu vi tam giác DEF tổng khoảng cách từ M đến đỉnh tam giác ABC
c) DMEDMFEMF
ĐS: c) DMEDMFEMF1200
Bài 6. Cho hình thang ABCD (AD // BC, AD > BC) có đường chéo AC vng góc với cạnh bên CD, BACCAD D600
a) Chứng minh ABCD hình thang cân
b) Tính độ dài cạnh đáy AD, biết chu vi hình thang 20 cm ĐS: b) AD8(cm)
IV ĐƯỜNG TRUNG BÌNH CỦA TAM GIÁC, CỦA HÌNH THANG
1 Đường trung bình tam giác:
Đường trung bình tam giác đoạn thẳng nối trung điểm hai cạnh tam giác
Đường thẳng qua trung điểm cạnh tam giác song song với cạnh thứ hai qua trung điểm cạnh thứ ba
Đường trung bình tam giác song song với cạnh thứ ba nửa cạnh 2 Đường trung bình hình thang
Đường trung bình hình thang đoạn thẳng nối trung điểm hai cạnh bên hình thang
Đường thẳng qua trung điểm cạnh bên hình thang song song với hai đáy đi qua trung điểm cạnh bên thứ hai
Đường trung bình hình thang song song với hai đáy nửa tổng hai đáy
(6)= EB Gọi I giao điểm AM với CD Chứng minh: AI = IM
Bài 2. Cho tam giác ABC hai đường trung tuyến BD, CE cắt G Gọi M, N trung điểm BG, CG Chứng minh tứ giác MNDE có cặp cạnh đối song song
Bài 3. Cho tam giác ABC Trên tia BA lấy điểm D cho A trung điểm BD Trên tia CB lấy điểm E cho B trung điểm CE Hai đường thẳng AC DE cắt I Chứng minh rằng: DI DE
3
Bài 4. Cho tứ giác ABCD có góc C400, D800, AD = BC Gọi E, F theo thứ tự trung điểm AB CD Tính góc nhọn tạo đường thẳng FE với đường thẳng AD BC Bài 5. Cho A, B, C theo thứ tự nằm đường thẳng d (AB > BC) Trên nửa mặt phẳng bờ
là d, vẽ tam giác AMB BNC Gọi P, Q, R, S trung điểm BM, CM, BN, AN Chứng minh:
a) PQRS hình thang cân b) SQ 1MN
2
Bài 6. Cho tam giác ABC, trung tuyến AM Gọi I trung điểm AM, D giao điểm BI AC
a) Chứng minh: AD 1DC
b) So sánh độ dài BD ID
Bài 7. Cho hình thang ABCD (AB // CD) Gọi M, N, P, Q trung điểm đoạn thẳng AD, BC, AC, BD
a) Chứng minh bốn điểm M, N, P, Q nằm đường thẳng
b) Tính MN, PQ, biết cạnh đáy hình thang ABa CD, b a( b) c) Chứng minh MP = PQ = QN a2b
Bài 8. Cho hình thang ABCD (AB // CD) Gọi E, F, K trung điểm AD, BC, BD Chứng minh ba điểm E, K, F thẳng hàng
Bài 9. Cho hình thang ABCD (AB // CD) Gọi E, F trung điểm AD BC Đường thẳng EF cắt BD I, cắt AC K
a) Chứng minh: AK = KC, BI = ID
b) Cho AB = 6, CD = 10 Tính EI, KF, IK
Bài 10. Cho tứ giác ABCD Gọi E, F, K trung điểm AD, BC, AC a) So sánh độ dài đoạn thẳng EK CD, KF AB
b) Chứng minh: EF AB CD
c) Khi EF AB CD
(7)ĐS: c) ABCD hình thang
Bài 11. Tính độ dài đường trung bình hình thang cân biết đường chéo vng góc với đường cao 10 cm
Bài 12. Cho tam giác ABC, trọng tâm G Vẽ đường thẳng d qua G cắt đoạn thẳng AB, AC Gọi A’, B’ C’ thứ tự hình chiếu A, B, C d Tìm liên hệ độ dài AA’, BB’, CC’
Bài 13. Cho tam giác ABC, trọng tâm G Vẽ đường thẳng d nằm tam giác ABC Gọi A’, B’ C’, G’ thứ tự hình chiếu A, B, C d Tìm liên hệ độ dài AA’, BB’, CC’ , GG’
V ĐỐI XỨNG TRỤC
Bài 1. Cho góc xOy500 điểm A nằm góc Vẽ điểm B đối xứng với A qua Ox, điểm C đối xứng với A qua Oy
a) So sánh độ dài OB OC b) Tính số đo góc BOC
ĐS: b) BOC1000
Bài 2. Cho tam giác nhọn ABC, trực tâm H Gọi K điểm đối xứng với H qua BC a) Chứng minh hai tam giác BHC BKC
b) Cho BAC700 Tính số đo góc BKC ĐS: b) BKC1100
Bài 3. Cho hình thang vng ABCD (AD900) Gọi K điểm đối xứng với B qua AD, E giao điểm CK AD Chứng minh CEDAEB
Bài 4. Cho tam giác ABC vuông A, đường cao AH Gọi I, K điểm đối xứng với điểm H qua cạnh AB, AC Chứng minh:
a) Ba điểm I, A, K thẳng hàng b) Tứ giác BIKC hình thang c) IK2AH
Bài 5. Cho tam giác ABC, phân giác BM CN cắt I Từ A vẽ đường vng góc với BM CN, chúng cắt BC thứ tự E F Gọi I hình chiếu I BC Chứng minh E F đối xứng qua II
Bài 6. Cho hai điểm A, B nằm nửa mặt phẳng bờ đường thẳng d Tìm điểm Md cho MA MB ngắn
(8)với điểm A qua Ox Oy,
a) Chứng minh tam giác BOC tam giác cân Tính góc tam giác b) Tìm điểm I Ox điểm KOy cho tam giác AIK có chu vi nhỏ
ĐS: a) BOC120 ,0 OBCOCB300 b) I, K giao điểm đường thẳng BC với tia Ox Oy
Bài 8. Cho tam giác ABC, Cx phân giác ngồi góc C Trên Cx lấy điểm M (khác C) Chứng minh rằng: MA + MB > CA + CB
Bài 9. Cho góc nhọn xOy điểm A góc Tìm điểm B tia Ox điểm C tia Oy cho chu vi tam giác ABC nhỏ
VI HÌNH BÌNH HÀNH
1 Định nghĩa:
Hình bình hành tứ giác có cặp cạnh đối song song 2 Tính chất: Trong hình bình hành:
Các cạnh đối Các góc đối
Hai đường chéo cắt trung điểm đường 3 Dấu hiệu nhận biết:
Tứ giác có cạnh đối song song hình bình hành Tứ giác có cạnh đối hình bình hành
Tứ giác có hai cạnh đối song song hình bình hành
Tứ giác có hai đường chéo cắt trung điểm đường hình bình hành
VẤN ĐỀ I Vận dụng tính chất hình bình hành để chứng minh tính chất hình học
(9)b) Chứng minh tứ giác EBFD hình bình hành
c) Chứng minh đường thẳng EF, DB AC đồng qui
Bài 2. Cho hình bình hành ABCD (AB > BC) Tia phân giác góc D cắt AB E, tia phân giác góc B cắt CD F
a) Chứng minh DE BF b) Tứ giác DEBF hình gì?
Bài 3. Cho hình bình hành ABCD Gọi K, I trung điểm cạnh AB vad CD, M N giao điểm AI CK với BD
a) Chứng minh: AI CK b) Chứng minh: DMMNNB
VẤN ĐỀ II Vận dụng dấu hiệu nhận biết để chứng minh tứ giác hình bình hành
Bài 1. Cho hình bình hành ABCD, đường chéo BD Kẻ AH vng góc với BD H, CK vng góc với BD K Chứng minh tứ giác AHCK hình bình hành
Bài 2. Cho hình bình hành ABCD Gọi O giao điểm hai đường chéo AC BD Qua điểm O, vẽ đường thẳng a cắt hai đường thẳng AD, BC E, F, vẽ đường thẳng b cắt hai cạnh AB, CD K, H Chứng minh tứ giác EKFH hình bình hành
Bài 3. Cho tam giác ABC Từ điểm E cạnh AC vẽ đường thẳng song song với BC cắt AB F đường thẳng song song với AB cắt BC D Giả sử AE = BF
a) Chứng minh tam giác AED cân b) Chứng minh AD phân giác góc A Bài 4. Cho tứ giác ABCD Gọi M, N, P, Q trung điểm cạnh AB, BC, CD, DA
và I, K trung điểm đường chéo AC, BD Chứng minh: a) Các tứ giác MNPQ, INKQ hình bình hành
b) Các đường thẳng MP, NQ, IK đồng qui
Bài 5. Cho tam giác ABC H trực tâm Các đường thẳng vng góc với AB B, vng góc với AC C cắt D
a) Chứng minh tứ giác BDCH hình bình hành b) Tính số đo góc BDC, biết BAC600
Bài 6. Cho hình bình hành ABCD, AD2AB Từ C vẽ CE vng góc với AB Nối E với trung điểm M AD Từ M vẽ MF vng góc với CE, MF cắt BC N
a) Tứ giác MNCD hình gì? b) Tam giác EMC tam giác gì? c) Chứng minh: BAD2AEM
Bài 7. Cho tứ giác ABCD Gọi E, F giao điểm AB CD, AD BC; M, N, P, Q trung điểm AE, EC, CF, FA Chứng minh tứ giác MNPQ hình bình hành Bài 8. Cho hình bình hành ABCD Các điểm E, F thuộc đường chéo AC cho AE = EF = FC
(10)Bài 9. Cho hình thang vng ABCD, có A B 900 AD = 2BC Kẻ AH vng góc với BD (H thuộc BD) Gọi I trung điểm HD Chứng minh rằng: CI AI
Bài 10. Cho tam giác ABC O điểm thuộc miền tam giác Gọi D, E, F trung điểm cạnh AB, BC, CA L, M, N trung điểm đoạn OA, OB, OC Chứng minh rằng: đoạn thẳng EL, FM DN đồng qui
VII ĐỐI XỨNG TÂM
Bài 1. Cho hình bình hành ABCD Gọi E điểm đối xứng với D qua A, F điểm đối xứng với D qua C Chứng minh:
a) AC EF b) Điểm E đối xứng với điểm F qua điểm B
Bài 2. Cho tam giác ABC, trung tuyến BD, CE Gọi H điểm đối xứng với B qua D, K điểm đối xứng với C qua E Chứng minh điểm H đối xứng với điểm K qua điểm A
Bài 3. Cho hình bình hành ABCD điểm E cạnh AB, I K trung điểm cạnh AD BC Gọi điểm M, N đối xứng với điểm E qua điểm I điểm K
a) Chứng minh điểm M, N thuộc đường thẳng CD b) Chứng minh MN2CD
Bài 4. Cho góc vng xOy, điểm A nằm góc Gọi B điểm đối xứng với A qua Ox, C điểm đối xứng với A qua Oy Chứng minh B đối xứng với C qua O
Bài 5. Cho hình bình hành ABCD, O giao điểm hai đường chéo Một đường thẳng qua O cắt cạnh AB CD theo thứ tự M N Chứng minh điểm M đối xứng với điểm N qua O
Bài 6. Cho hình bình hành ABCD có tâm đối xứng O, điểm E đoạn OD Gọi F điểm đối xứng điểm C qua E
a) Chứng minh tứ giác ODFA hình thang
b) Xác định vị trí điểm E OD để hình thang ODFA hình bình hành
Bài 7. Cho tam giác ABC, trọng tâm G Gọi M, N, P theo thứ tự điểm đối xứng A, B, C qua tâm G
a) Chứng minh tứ giác BPNC hình bình hành b) Chứng minh tam giác ABC, MNP
c) Chứng minh tam giác ABC, MNP có trọng tâm
Bài 8. Cho tam giác ABC, H trực tâm, I giao điểm đường trung trực K điểm đối xứng với H qua trung điểm đoạn thẳng BC Chứng minh K đối xứng với A qua I
Bài 9. Cho hình bình hành ABCD Gọi O giao điểm hai đường chéo AC BD Trên AB lấy điểm E, CD lấy điểm F cho AE = CF
(11)b) Từ E dựng Ex // AC cắt BC I, dựng Fy // AC cắt AD K Chứng minh rằng: EF = FK; I K đối xứng với qua O
Bài 10. Cho tam giác ABC Gọi A' điểm đối xứng với A qua C, B' điểm đối xứng với B qua A, C' điểm đối xứng với C qua B Gọi BM trung tuyến tam giác ABC, B'M' trung tuyến tam giác A'B'C'
a) Chứng minh ABM'M hình bình hành
b) Gọi G giao điểm BM B'M' Chứng minh G trọng tâm hai tam giác ABC tam giác A'B'C'
VIII HÌNH CHỮ NHẬT
1 Định nghĩa:
Hình chữ nhật tứ giác có bốn góc vng 2 Tính chất:
Trong hình chữ nhật, hai đường chéo cắt trung điểm đường 3 Dấu hiệu nhận biết:
Tứ giác có ba góc vng hình chữ nhật
Hình thang cân có góc vng hình chữ nhật Hình bình hành có góc vng hình chữ nhật
Hình bình hành có hai đường chéo hình chữ nhật 4 Áp dụng vào tam giác:
Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền nửa cạnh huyền Nếu tam giác có đường trung tuyến ứng với cạnh nửa cạnh tam giác đó tam giác vng
VẤN ĐỀ I Vận dụng dấu hiệu nhận biết để chứng minh tứ giác hình chữ nhật
(12)a) Chứng minh tứ giác AHCE hình chữ nhật b) Chứng minh HG = GK = KE
Bài 2. Cho tứ giác ABCD có hai đường chéo vng góc với Gọi E, F, G, H theo thứ tự trung điểm cạnh AB, BC, CD, DA Tứ giác EFGH hình gì?
ĐS: EFGH hình chữ nhật
Bài 3. Cho tam giác ABC vuông A Về phía ngồi tam giác ABC, vẽ hai tam giác vng cân ADB (DA = DB) ACE (EA = EC) Gọi M trung điểm BC, I giao điểm DM với AB, K giao điểm EM với AC Chứng minh:
a) Ba điểm D, A, E thẳng hàng b) Tứ giác IAKM hình chữ nhật c) Tam giác DME tam giác vng cân
Bài 4. Cho hình thang cân ABCD (AB // CD, AB < CD) Gọi M, N, P, Q trung điểm đoạn thẳng AD, BD, AC, BC
a) Chứng minh bốn điểm M, N, P, Q thẳng hàng b) Chứng minh tứ giác ABPN hình thang cân
c) Tìm hệ thức liên hệ AB CD để ABPN hình chữ nhật ĐS: c) DC3AB ABPN hình chữ nhật
Bài 5. Cho tam giác ABC Gọi O điểm thuộc miền tam giác, M, N, P, Q trung điểm đoạn thẳng OB, OC, AC, AB
a) Chứng minh tứ giác MNPQ hình bình hành
b) Xác định vị trí điểm O đế tứ giác MNPQ hình chữ nhật ĐS: b) O thuộc đường cao AH ABC
Bài 6. Cho tam giác ABC vuông cân C Trên cạnh AC, BC lấy điểm P, Q cho AP = CQ Từ điểm P vẽ PM song song với BC (M AB)
a) Chứng minh tứ giác PCQM hình chữ nhật
b) Gọi I trung điểm PQ Chứng minh P di chuyển cạnh AC, Q di chuyển cạnh BC điểm I di chuyển đoạn thẳng cố định
ĐS: b) I di chuyển đường trung bình ABC
Bài 7. Cho hình chữ nhật ABCD Nối C với điểm E đường chéo BD Trên tia đối tia EC lấy điểm F cho EF = EC Vẽ FH FK vuông góc với AB AD Chứng minh rằng:
a) Tứ giác AHFK hình chữ nhật
(13)c) Ba điểm E, H, K thẳng hàng
Bài 8. Cho tam giác ABC H trực tâm Gọi M, N, P trung điểm cạnh AB, BC CA; D, E, F trung điểm đoạn HA, HB HC
a) Chứng minh tứ giác MNFD MEFP hình chữ nhật
b) Để đoạn MD, ME DP tam giác ABC phải tam giác gì?
VẤN ĐỀ II Vận dụng kiến thức hình chữ nhật để giải tốn
Bài 1. Tính độ dài trung tuyến ứng với cạnh huyền tam giác vuông có cạnh góc vng 7cm 24cm
Bài 2. ĐS: AM12,5(cm)
Bài 3. Cho tam giác ABC cân A, CH đường cao (H AB) Gọi D điểm đối xứng với điểm B qua A
a) Chứng minh tam giác DCB tam giác vuông b) Chứng minh DCAHCB
Bài 4. Cho hình chữ nhật ABCD Vẽ BH AC (H AC) Gọi M, K trung điểm AH DC; I, O trung điểm AB IC
a) Chứng minh ICKB MO 1IC
b) Tính số đo góc BMK ĐS: b) BMK900
Bài 5. Cho tam giác ABC vuông A M điểm thuộc cạnh BC Vẽ MD AB, ME AC O trung điểm DE
a) Chứng minh ba điểm A, O, M thẳng hàng
b) Khi điểm M di chuyển cạnh BC điểm O di chuyển đường nào? c) Điểm M vị trí cạnh BC AM có độ dài ngắn
ĐS: b) O di chuyển đường trung bình ABC c) MH (AH BC)
Bài 6. Cho hình chữ nhật ABCD, AB = 2AD Vẽ tia AM (M thuộc cạnh DC) cho DAM150 Chứng minh tam giác ABM tam giác cân
Bài 7. Cho tam giác ABC vuông A, AC > AB AH đường cao Trên tia HC lấy HD = HA, đường vng góc với BC D cắt AC E
a) Chứng minh AE = AB
b) Gọi M trung điểm BE Tính số đo góc AHM
(14)điểm D E cho AD = DE = EC Tính ACBAEB
Bài 9. Cho hình chữ nhật ABCD Kẻ AH BD Gọi I trung điểm DH Kẻ đường thẳng vuông góc với AI I cắt cạnh BC K Chứng minh K trung điểm cạnh BC
IX HÌNH THOI
1 Định nghĩa:
Hình thoi tứ giác có bốn cạnh 2 Tính chất: Trong hình thoi:
Hai đường chéo vng góc với
Hai đường chéo đường phân giác góc hình thoi 3 Dấu hiệu nhận biết:
Tứ giác có bốn cạnh hình thoi
Hình bình hành có hai cạnh kề hình thoi
Hình bình hành có hai đường chéo vng góc với hình thoi
Hình bình hành có đường chéo đường phân giác góc hình thoi
VẤN ĐỀ I Vận dụng dấu hiệu nhận biết để chứng minh tứ giác hình thoi
Bài 1. Cho hình chữ nhật ABCD Gọi M, N, P, Q trung điểm cạnh AB, BC, CD, AD Chứng minh tứ giác MNPQ hình thoi
Bài 2. Cho tứ giác ABCD có C400, D800, ADBC Gọi E, F, M, N trung điểm AB, DC, DB, AC
a) Chứng minh tứ giác EMFN hình thoi b) Tính góc MFN
ĐS: b) MFN600
Bài 3. Cho hình bình hành ABCD, O giao điểm hai đường chéo AC BD Gọi E, F, G, H giao điểm phân giác tam giác OAB, OBC, ODC, ODA a) Chứng minh: ba điểm E, O, G thẳng hàng, ba điểm H, O, F thẳng hàng
(15)c) Chứng minh tứ giác EFGH hình thoi
Bài 4. Cho tam giác ABC điểm M thuộc cạnh BC Qua M vẽ đường thẳng song song với AB, cắt AC E đường thẳng song song với AC, cắt AB F
a) Chứng minh tứ giác AFME hình bình hành
b) Xác định vị trí điểm M cạnh BC để tứ giác AFME hình thoi ĐS: b) M chân đường phân giác góc B ABC
Bài 5. Cho hình bình hành ABCD có AB = 2AD, D700 Vẽ BH AD (H AD) Gọi M, N trung điểm cạnh CD, AB
a) Chứng minh tứ giác ANMD hình thoi b) Tính góc HMC
ĐS: b) HMC1050
Bài 6. Cho tam giác ABC Gọi H trực tâm tam giác, AD đường cao Trên cạnh BC lấy điểm M Từ M vẽ ME AB (E AB) MF AC (F AC) Gọi I trung điểm AM
a) Chứng minh tứ giác DEIF hình thoi
b) Chứng minh đường thẳng MH, ID, EF đồng qui
Bài 7. Cho hình bình hành ABCD, hai đường chéo cắt O Hai đường thẳng d1 d2
đi qua O vng góc với Đường thẳng d1 cắt cạnh AB CD M P
Đường thẳng d2 cắt cạnh BC AD N Q Chứng minh tứ giác MNPQ hình
thoi
VẤN ĐỀ II Vận dụng kiến thức hình thoi để giải tốn
Bài 1. Cho hình thoi ABCD có AC = 8cm, BD = 10cm Tính độ dài cạnh hình thoi ĐS: AB 41 (cm)
Bài 2. Cho hình thoi ABCD có A600 Trên cạnh AB, AC lấy hai điểm M, N cho BM = CN Chứng minh tam giác MDN tam giác
Bài 3. Cho hình thoi ABCD có A600 Trên AD CD lấy điểm M, N cho AM + CN = AD Gọi P điểm đối xứng N qua BC, MP cắt BC Q Tứ giác MDCQ hình ? Bài 4. Cho P điểm chuyển động tam giác ABC cho PBAPCA Hạ PM AB;
(16)X HÌNH VNG
1 Định nghĩa:
Hình vng tứ giác có bốn góc vng có bốn cạnh 2 Tính chất:
Hình vng có tất tính chất hình chữ nhật hình thoi 3 Dấu hiệu nhận biết:
Hình chữ nhật có hai cạnh kề hình vng
Hình chữ nhật có hai đường chéo vng góc với hình vng
Hình chữ nhật có đường chéo đường phân giác góc hình vng Hình thoi có góc vng hình vng
Hình thoi có hai đường chéo hình vng
Một tứ giác vừa hình chữ nhật, vừa hình thoi tứ giác hình vng
VẤN ĐỀ I Vận dụng dấu hiệu nhận biết để chứng minh tứ giác hình vng
Bài 1. Cho tam giác ABC vng A Phân giác AD góc A (D BC) Vẽ DF AC, DE AB Chứng minh tứ giác AEDF hình vng
Bài 2. Cho hình vng ABCD Trên cạnh AB, BC, CD, DA lấy điểm E, F, G, H cho AE = BF = CG = DH Chứng minh tứ giác EFGH hình vng
Bài 3. Cho tam giác ABC vuông A, M điểm thuộc cạnh BC Qua M vẽ đường thẳng song song với AB AC, chúng cắt cạnh AB, AC theo thứ tự E F
a) Tứ giác AFME hình gì?
b) Xác định vị trí điểm M cạnh BC để tứ giác AFME hình vng
Bài 4. Cho hình chữ nhật ABCD có AB = 2AD Gọi E, F theo thứ tự trung điểm AB, CD Gọi M giao điểm AF DE, N giao điểm BF CE
a) Tứ giác ADFE hình gì? b) Tứ giác EMFN hình gì?
(17)VẤN ĐỀ II Vận dụng kiến thức hình vng để giải tốn
Bài 1. Cho hình vng ABCD Trên cạnh AD, DC lấy điểm E, F cho AE = DF Gọi M, N trung điểm EF, BF
a) Chứng minh tam giác ADF BAE b) Chứng minh MN vng góc với AF
Bài 2. Cho hình vuông ABCD Trên tia đối tia BA lấy điểm E, tia đối tia CB lấy điểm F cho AE = CF
a) Chứng minh tam giác EDF vuông cân
b) Gọi I trung điểm EF Chứng minh BI = DI
c) Gọi O giao điểm hai đường chéo AC BD Chứng minh O, C, I thẳng hàng
Bài 3. Cho tam giác ABC, dựng phía ngồi tam giác hình vng ABCD ACEF Vẽ đường cao AH kéo dài HA gặp DF E Chứng minh DI = IF
Bài 4. Cho hình bình hành ABCD Vẽ phía ngồi hình bình hành, hai hình vng ABEF ADGH Chứng minh:
a) AC = FH AC FH
b) Tam giác CEG tam giác vuông cân
Bài 5. Cho đoạn thẳng AB điểm M thuộc đoạn thẳng Vẽ phía AB, hình vng AMCD, BMEF
a) Chứng minh AE vng góc với BC
b) Gọi H giao điểm AE BC Chứng minh ba điểm D, H, F thẳng hàng
c) Chứng minh đường thẳng DF qua điểm cố định M di chuyển đoạn thẳng cố định AB
ĐS: c) DF qua K (K = AF AC)
Bài 6. Cho hình vng ABCD Trên cạnh CD lấy điểm M Tia phân giác góc ABM cắt AD I Chứng minh rằng: BI MI
Bài 7. Cho hình vng ABCD Lấy điểm E thuộc đường chéo AC Kẻ EF AD, EG CD a) Chứng minh rằng: EB = FG EB FG
b) Chứng minh rằng: Các đường thẳng BE, AG, CF đồng qui
Bài 8. Cho tam giác ABC Vẽ phía ngồi tam giác ABC, hình vng ABDE ACFG Vẽ hình bình hành EAGH Chứng minh rằng:
a) AK = BC AH BC
(18)Website HOC247 cung cấp môi trường học trực tuyến sinh động, nhiều tiện ích thơng minh, nội dung giảng biên soạn công phu giảng dạy giáo viên nhiều năm kinh nghiệm,
giỏi kiến thức chuyên môn lẫn kỹ sư phạm đến từ trường Đại học trường chuyên
danh tiếng
I. Luyện Thi Online
- Luyên thi ĐH, THPT QG: Đội ngũ GV Giỏi, Kinh nghiệm từ Trường ĐH THPT danh tiếng xây dựng khóa luyện thi THPTQG các mơn: Tốn, Ngữ Văn, Tiếng Anh, Vật Lý, Hóa Học Sinh Học
- Luyện thi vào lớp 10 chun Tốn: Ơn thi HSG lớp 9 luyện thi vào lớp 10 chuyên Toán trường PTNK, Chuyên HCM (LHP-TĐN-NTH-GĐ), Chuyên Phan Bội Châu Nghệ An trường Chuyên khác TS.Trần Nam Dũng, TS Pham Sỹ Nam, TS Trịnh Thanh Đèo Thầy Nguyễn Đức Tấn.
II. Khoá Học Nâng Cao HSG
- Toán Nâng Cao THCS: Cung cấp chương trình Tốn Nâng Cao, Tốn Chun dành cho em HS THCS lớp 6, 7, 8, u thích mơn Tốn phát triển tư duy, nâng cao thành tích học tập trường đạt điểm tốt kỳ thi HSG
- Bồi dưỡng HSG Toán: Bồi dưỡng phân mơn Đại Số, Số Học, Giải Tích, Hình Học và Tổ Hợp dành cho học sinh khối lớp 10, 11, 12 Đội ngũ Giảng Viên giàu kinh nghiệm: TS Lê Bá Khánh Trình, TS Trần Nam Dũng, TS Pham Sỹ Nam, TS Lưu Bá Thắng, Thầy Lê Phúc Lữ, Thầy Võ Quốc
Bá Cẩn đơi HLV đạt thành tích cao HSG Quốc Gia
III. Kênh học tập miễn phí
- HOC247 NET: Website hoc miễn phí học theo chương trình SGK từ lớp đến lớp 12 tất môn học với nội dung giảng chi tiết, sửa tập SGK, luyện tập trắc nghiệm mễn phí, kho tư liệu tham khảo phong phú cộng đồng hỏi đáp sôi động
- HOC247 TV: Kênh Youtube cung cấp Video giảng, chuyên đề, ôn tập, sửa tập, sửa đề thi miễn phí từ lớp đến lớp 12 tất mơn Tốn- Lý - Hố, Sinh- Sử - Địa, Ngữ Văn, Tin Học Tiếng Anh
Vững vàng tảng, Khai sáng tương lai
Học lúc, nơi, thiết bi – Tiết kiệm 90%
Học Toán Online Chuyên Gia