1. Trang chủ
  2. » Văn Hóa - Nghệ Thuật

trường thcs hoàng xuân hãn

6 6 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 173,98 KB

Nội dung

Supposetheareaof△ ABC is6 3, AB =6, A isanobtuseangle, D isapointon BC sothat.. BD =2 DC.?[r]

(1)

2011WorldMathematicsTeamChampionship AdvancedLevel

Team Round·Problems

1.SupposeA={x|x2-x<0}andB=x x+1

3

é ë

ù

û+ x+

2

é ë

ù

û=1,x∈A

{ }

FindA∩BC whereBCisthecomplementofBand [a]representsthelargestintegernot

greaterthana

2.SupposethelengthsofthethreesidesthatareoppositetothethreeinterioranglesA,B,and

Cof△ABCarea,b,andc,respectively,andsatisfy

a2+b2+c2-2 7a-4b-6c+20=0.

Findtheareaof△ABC

3.Supposemax{|a+b|,|a-b|,|2012-a|}≥C,whereC

isaconstant,holdstrueforanyre-alnumbersaandb.FindthelargestvalueofC.(Note:max{x,y,z}representsthelargest ofx,y,z)

4.LetA(-3,2),B(5,6)andC(9,-2)bethreepointsontheplane.IfABCDisasquare, findthecoordinatesforDandfindtheareaofthepartofthesquarethatisinQuadrantII

5.Iftheinequality3t2-2t-1≥ 1

3

ỉ è

ư ø

22sin2x-22sinxcosx-

holdsforanyrealnumberx, findtherangeofvaluesfort

6.Findthesolutionsetforinequality 2x-8+2 4-2x-2≤ 2+π.

7.LetSnandTnbethesumofthefirstntermsofarithmeticsequences{an}and{bn

},respec-tively.Supposeb a5

3+b2n-3+ a2n-5 b7+b2n-7=

n

2n+1foranyintegern.Find

S23 T23

Fig.1 8.Ifa,b,andcarepositiverealnumbersanda+b+c

=1,findthein-tegerportionofthenumber 3a2+1+ 3b2+1+ 3c2+1.

9.AsinFig.1,thereare12pointsAi(i

=1,2,3,…,12)ontheel-lipseE:x2 +

y2

3 =1.IfO istheoriginandtheincludedanglesbe-tweenOA→iandOAi+1→(i<12)areallequaltoπ6,find

∑12

i=1

1 |OA→|i

(2)

totalprofitinmillionfromthesetwoinvestments?

11.LetObethecenterofthecircumscribedsphereofrectangularboxABCD-A1B1C1D1with

volume32π3 LabelAB=a,BC=b,andCC1=c

If94isthesmallestvaluefora12+b42,findtheminimumdistancebetweenAandCalongthe

surfaceofthesphere

12.Supposeθ∈ 0,π

2

ỉ è

ư

øandequationx

2-

sin2θx+1=0hasarealrootsinθ

Thenwhatisthevalueforcosθ?

Fig.2 13.Supposeequationx2-ax+b=0hastwopositiverealroots.Thenwhatis

thevaluerangefora+1-ab?

14.AsitisshowninFig.2,theunitcubeABCD-A1B1C1D1hasedgeof1

LetMbeapointonedgeCDandΩbeaplanesectionthatisinsidethe cubeandpassesthroughpointsM,A,andC1.Whatisthisplanesection 'sareawhenthisplaneformsadihedralangle(ortheanglebetweenthese

twoplanes)of60°withplaneABCD?

15.SupposeM=(11+3)2011and(M)representsthedecimalportionofM

FindthevalueofM·(M)

16.Suppose∠xOy=2α,0°<α<90°,Ozbisects ∠xOy,pointAisonOzandOA=a,and

MANisalinethatpassesthroughAandintersectsOxandOyatMandN,respectively FindthevalueforOM1 +ON1 intermsofαanda

17.Supposetheareaof△ABCis6 3,AB=6,Aisanobtuseangle,DisapointonBCsothat

BD=2DC.IfAB→·AD→=4,findcossinBC.

Fig.3 18.SupposeF1andF2arethetwofociofellipsex

2 a2+

y2

b2=1(a>b>0)

Also,asintheFig.3,supposetherightdirectrixoftheellipsetangentto thecirclewithcenteratIandpassesthroughbothF1andF2andthat

IF1→·IF→2= a

2a2-2b2

Findtheeccentricityoftheellipse

19.Letf0(x)= 11-xandf1(x)=xx -1

Definefn+2(x)=fn+1(fn(x)),n=0,1,2,…

Expressf2011(2011)infractionqpofmostreducedterm.Findp+q

20.Ifpositivenumbersx,y,andzsatisfyx+y+z=1and

(3)

Team RoundAnswers

1.{x0<x<13 or23≤x<1}

2.32 3

3.1006

4.(1,-6);294

5.t≤-1ort≥3

6.[3,4]

7.1225

8.3

9.3

10.4

11.23π

12.5-12

13.[3,+∞)

14.5-1

15.22011.

16.2cosa α

17.2 37

18.22

19.4021

(4)

RelayRound·Problems

FirstRound

Fig.1

1A.TherearethreevectorsOA→,OB→,andOC→onaplaneasinthe Fig.1

SupposeOA→,OB→andOA→,OC→haveincludedanglesof150°and60°, respectively.Also,|OA→|=|OB→|=1and

|OC→|=2.IfOC→=λOA→+μOB→whereλ,μ∈R,findλ2+μ2.

1B.LetT = TNYWR (TheNumberYou WillReceive).

Therealvaluefunctionfisdefinedasf(x+y)=f(x)+yforanyrealnumbersxandy

Iff(T)=2011,findf(2011)

SecondRound

2A.Findthesumofallrealrootsoftheequation(x+1)(x2+1)(x3+1)=30x3.

2B.LetT = TNYWR

LetA(x1,y1)andB(x2,y2)bepointsmovingalongtheparabolay2=4xandellipse x2

4 +y

2

T=1,respectively.LetN(1,0)beafixedpoint.IfAB∥x-axisandx1<x2,findthe

intervalwhere△NABcantakeasitsperimeter

ThirdRound

3A.LetBbethereflectionpointofA(4,1)overtheaxisofsymmetrylinex-y-1=0

Findthesmallestvaluefor9a+27b+1wherethelineax+by

-2=0passesthroughB

3B.LetT=TNYWR

Ifthefunctionf(x)= T+2tx-xtakesonlargestvalueM wheretandMarepositive

naturalnumbers,findM

RelayRoundAnswers

FirstRound 1A.28. 1B.3994

SecondRound 2A.3.

2B.10

3,4

æ è

ö ø

(5)

IndividualRound·Problems

FirstRound

1.Solvetheinequality x+5>x-1

2.Ifwedefineafunctionf(x+a)=|x-2|-|x+2|andf[f(a)]=3,findthevaluefora

3.Ifthecoefficientsa,b,andcofthequadraticequationax2+bx+c=0(abc

≠0)formageo-metricsequenceandtheratioofitstworootsx1andx2isλ,findλ+λ 1

4.LetP(1,1)beapointinsidecirclex2+y2=4andletABandCDbetwochordsofthecircle

passingthroughP.IfthetangentstoAandBintersectatMandthetangentstoCandD in-tersectatN,findtheequationofthelineMN

SecondRound

5.Supposearectangularboxhasintegeredgelengthsanditsmaindiagonalis25.Whatisthe smallestfaceintermsofareaamongallsuchpossibleboxes?

6.Ifrealnumbersx,y,andzsatisfytheequation

x2+2y2+5z2+2xy+4yz-2x+2y+2z+11=0,

findtherangeofvaluesx+2y+3ztakes

7.LetM(x0,y0)beapointinsidecirclex2+y2=r2(r>0)andx0y0≠0.Findthenumberof

pointsthatthelinex0x+y0y=r2intersectsthecircle

Fig.1 8.AsintheFig.1,AB1C1,C1B2C2andC2B3C3areequilateral

trianglesallwithedgelengthof2sittingonastraightlinenext toeachotherwithcommonverticesatC1andC2.VerticesB1, B2,B3areallonthesamesideofthatline.Supposethereare

10pointsP1,P2,…,P10onsideB3C3anddefine mi=AB→2·AP→i(i=1,2,…,10)

Findm1+m2+…+m10

ThirdRound

9.Ifxisanacuteangleandtanx= 2-1,findx

10.In △ABC,leta,b,andcbetheoppositesidesof∠A,∠B,and∠C,respectively If∠C=3∠B,comparethesizerelationshipbetweencand3b

11.Supposethethreerealrootsfortheequationx3-(4+d)x2+5dx-d2=0,wheredisa

naturalnumber,representthesquareofsomerighttriangle'sthreesides.Findd

12.SupposeF1andF2arebothfocifortheellipsex m +

y2

n =1andfociforthehyperbola x2

p -y2

q=1(m,n,p,q∈R+).IfMisanintersectionoftheellipseandthehyperbolaand

|MF1→|·|MF2→|=1

(6)

FourthRound

13.Ifx=sin35°cos65°-cos65°cos5°-cos55°cos5°,whatisthevalueforx?

14.A-BCDisaregulartetrahedronwithedgelengthof24.O isasphereinscribedinsidethetet-rahedron.O1isasmallspherethatistangenttotheupperthreesidesofthetetrahedronand

thelargesphere.Whatisthevolumeofthatsmallsphere? (Expressyouranswerinterms ofπ)

FifthRound

15.Findtheintervalsforxwherethefunctiony=|log2|x+1||ismonotonicallydecreasing

16.DetermineS100ifSn+1= S n

1+nSn,n=0,1,2,3,… andS0=

1

100.(Expresstheanswerin fractionoflowestterm)

IndividualRoundAnswers

FirstRound

1.[-5,4)

2.32

3.-1

4.x+y=4

SecondRound

5.108

6.[-1,5]

7.0

8.180

ThirdRound

9.22.5°

10.c<3b

11.4

12.92

FourthRound

13.-34

14.8 6π

FifthRound

15.(-∞,-2]and(-1,0]

Ngày đăng: 09/04/2021, 21:56

w