+ Hai là, rèn luyện cho học sinh các phương pháp suy nghĩ, kỹ nãng, thuật toán hoặc nguyên tắc giải toán dựa trên cơ sở nội dung lý thuyết đã học và phù hợp với đa số học sinh một lớp([r]
(1)Phòng giáo dục huyện năm
Trêng THCS x· HiƯp Tïng
Ph¬ng ÁN tỉ chøc tiÕt lun tËp
I. đặt vấn đề.
Tốn học môn học rèn luện kỹ thực hành giải tốn yiết luện tập tốn có vai trị quan trọng khơng chiếm tỉ lệ cao số tiết giảng dạy mà chủ yếu là:
+ Luyện tập có tác dụng củng cố nâng cao kiến thức lý thuyết đến chừng mực có thể, làm cho học sinh nhớ khắc sâu vấn đề lý thuyết học
+ Luyện tập tạo điều kiện cho học sinh thực hành, vận dụng kiến thức học vào việc giải toán cụ thể, thực tế, tốn có tác dụng rèn kỹ tính tốn, rèn khả tư để phát triển khả sáng tạo sau
+ Trong qua trình luyện tập học sinh vận dụng kiến thức học vào giải tập bộc lộ đơn vị kiến thức yếu giúp giáo viên nắm bắt kịp thời có hướng chỉnh phù hợp
Tiết luyện tập không đơn tiết giải tập cho học sinh làm nhà Trong tiết luyện tập ta phải biết: "Thầy phải luyện cho học sinh gì?"; "Trị phải tập gì?"
Tuy nhiên thực tế giảng dạy số giáo viên lúng túng dạy tiết Luyện Tập, chưa tìm phương pháp phù hợp cho loại giảng nên chất lượng tiết dạy chưa đạt kết cao Nhằm giúp giảng dạy tiết Luyện tập hiệu quả, hướng phát huy tính tích cực học sinh xin đưa số Phương án tổ chức tiết Luyện tập đạt yêu cầu tiết dạy nâng cao chất lượng dạy Luyện tập Toán cho học sinh
II. Giải vấn đề: A Cơ sở xuất phỏt:
- Căn vào yêu cầu đổi phương pháp dạy học phát huy tính tích cực sáng tạo học sinh
- Căn mục tiêu tiết luyện tập:
+ Một là, củng cố, bổ xung, hoàn thiện nâng cao mức độ phổ thông cho phép phần lý thuyết tiết học trước thông qua số tiết học trước, thông qua hệ thống tập xếp hợp lý theo kế hoạch lên lớp
(2)phù hợp với đa số học sinh lớp (phương pháp, hệ thống tập, thời gian cho phù hợp), thông qua hệ thống tập xếp theo chủ ý giáo viên
+ Ba là, nhìn lại kiến thức kỹ phần học, phân biệt kiến thức kỹ chủ yếu
+ Bốn là, thấy tiết giảng sau có vấn đề liên quan để từ kỹ luyện hướng vào vấn đề
+ Năm là, thơng qua phương pháp nội dung rèn luyện cho học sinh nề nếp làm việc có tính khoa học, phương pháp tư cần thiết
B Nội dung:
GV phải tuỳ theo đối tượng học sinh để có kế hoạch giảng dạy phù hợp Để tiết dạy thành công giáo viên cần làm tốt hai vấn đề sau:
+ Thực tốt quy trình soạn bài; giúp giáo viên nắm đựơc mục tiêu dạy từ lựa chọn tập cụ thể phù hợp với đối tượng học sinh vừa đạt mục tiêu dạy
+ Lựa chọn phương án thể phù hợp 1 Phương án thể hiện:
Trong luyện tập có nhiều phương án tổ chức khác nhau, xin đưa hai phương án tổ chức hoạt động tiết luyện tập tương đối hiệu quả:
PHƯƠNG ÁN 1 1/ Bước 1:
- Nhắc lại cách có hệ thống nội dung lý thuyết học, ý đến phương pháp giải dạng tốn
- Sau giáo viên mở rộng phần lý thuyết mức cho phép cần thiết
* Giáo viên nên thể thông qua phần kiểm tra cũ đầu tiết học 2/ Bước 2:
- Cho học sinh trình bày lời giải tập làm nhà mà giáo viên quy định, nhằm kiểm tra vận dụng lý thuyết việc giải tập học sinh
* Kiểm tra kỹ năng: tính tốn, diễn đạt ngơn ngữ, ký hiệu, trình bày lời giải học sinh
- Sau cho học sinh lớp nhận xét ưu khuyết điểm lời giải, đánh giá sai, đưa cách giải khác hay
(3)Khẳng định chỗ làm đúng, làm tốt học sinh để kịp thời động viên Đưa cách giải khác ngắn gọn hơn, hay vận dụng lý thuyết linh hoạt hơn( có thể giúp hs có thêm cơng cụ ) Phân tích sai
lầm nguyên nhân dẫn đến sai lầm đó( có):
+ Do học sinh không nắm kiến thức , kỹ học
+ Có kiến thức khơng có nội dung giảng (kiến thức cũ, kiến thức nâng cao )
3/ Bước 3:
Giáo viên cho học sinh làm số tập ( có hệ thống tập mà HS chưa làm GV biên soạn theo mục tiêu đề tiết luyện tập) tiết luyện tập nhằm mục đích ( Bài tập chọn phải có tính mẫu mực để đối tượng hs tham gia giải)
- Kiểm tra hiểu biết học sinh phần lý thuyết mở rộng mà giáo viên đưa đầu học (nếu có)
- Khắc sâu hoàn thiện lý thuyết qua tập có tính chất phản ví dụ, tập vui có tính thiết thực
* Lưu ý : Khi hướng giải tập toán, cần qua bước:
- Đọc đề bài, tóm tắt, phân tích tìm hướng giải.( hình học, giáo viên tập cho học sinh cách phân tích lên để tìm phương pháp chứng minh)
- Thực hành lời giải, trình bày lời giải có đường lối đúng, hay
- Khai thác cách giải khác (hoặc hướng dẫn học sinh sử dụng để giải tập phức tạp phát triển toán sở tốn có, tập tương tự, khái qt, tập mở có tính chất khái quát mà tập cho trường hợp riêng giúp nâng cao nhận thức, gây hứng thú học tập cho học sinh)
- Tổng kết kiến thức, kỹ vận dụng ( Ví dụ :Trong tập em vận dụng kiến thức nào?)
PHƯƠNG ÁN 2 1/ Bước :
Cho học sinh trình bày lời giải tập cũ cho học sinh làm nhà, nhằm kiểm tra:
- HS hiểu lý thuyết đến đâu
(4)- Cách trình bày lời giải ngơn ngữ, kí hiệu chuẩn xác chưa ? 2/ Bước 2:
Giáo viên chốt lại vấn đề có tính chất trọng tâm:
- Nhắc lại số vấn đề chủ yếu lý thuyết mà học sinh chưa vận dụng giải tập
- Chỉ sai sót học sinh, sai sót thường mắc phải mà giáo viên tích luỹ q trình giảng dạy
- Hướng dẫn cho HS cách trình bày, diễn đạt ngơn ngữ, ký hiệu tốn học…
3/ Bước 3:
Giống Bước phương án
Làm thêm tập mới, nhằm đạt yêu cầu:
- Hoàn thiện lý thuyết, khắc phục sai lầm HS thường mắc phải
- Rèn luyện vài thuật toán mà HS cần ghi nhớ trình học tập
- Rèn luyện cách phân tích tốn, tìm phương hướng giải tốn Tóm lại: Dù sử dụng phương án có ba phần chủ yếu:
- Hoàn thiện lý thuyết
- Rèn luyện kỹ thực hành
- Phát huy tính tích cực chủ động sáng tạo học sinh 2 Quy trình soạn bài:
2.1 Nghiên cứu tài liệu:
- Trước hết phải nghiên cứu lại phần lý thuyết mà học sinh học Qua phải xác định kiến thức kiến thức bản, trọng tâm, kiến thức nâng cao, mở rộng cho phép
- Tiếp theo nghiên cứu tập SGK, sách tập theo yêu cầu sau:
+ Cách giải toán nào?
+ Có thể có cách giải toán
+ Cách giải thường gặp? Cách giải bản? + Ý đồ tác giả đưa tốn để làm ?
(5)- Nghiên cứu sách tham khảo, sách giáo viên kỹ sau tập trung xây dựng nội dung tiết luyện tập phương pháp luyện tập
Một số lưu ý lựa chọn tập cho tiết dạy:
- Bài tập cũ tập bản, mà đa số học sinh vận dụng trực tiếp phần kiến thức học tiết trước để làm.(thường từ 1- bài, kết hợp tập trắc nghiệm)
- Bài tập chữa:
+ Vẫn tiết tục chọn bản, vừa phải nhằm khảo sát kiến thức hs; phân tích cách giải, khắc sâu kiến thức
+ Bài tập phối hợp đơn vị kiến thức có nâng cao phạp vi phù hợp 2.2 Nội dung soạn:
Để lựa chọn nội dung phù hợp giáo viên cần thể yêu cầu sau: Xác định mục tiêu tiết luyện tập cần đạt
Cấu trúc tiết luyện tập: a Chữa tập cũ :
- Số lượng tập, dự kiến thời gian.( Cho hs tự trình bày lời giải, tự kiểm tra lời giải, tìm cách khác, … Chú ý đến kiến thức hay vận dung kinh
nghiện giải toán)
- Chốt lại vấn đề qua tập ? b Cho học sinh làm tập
( Chọn SGK, SBT hay GV soạn ra.) - Số lượng tập, dự kiến thời gian - Bài tập đưa có dụng ý ?
c Hướng dẫn học sinh học bài, làm nhà sau tiết tập.
- Hệ thống tập cho nhà làm.(Chọn SGK, SBT hay GV soạn ra.)
- Gợi ý tập cho học sinh yếu, học sinh giỏi?
Tiến trình thực lớp phải phát huy tính tích cực chủ động sáng tạo học sinh theo tinh thần đổi phương pháp dạy học
Tóm lại: Trong luyện tập GV phải cho hs nắm vững kiến thức
(6)VÍ DỤ : Tiết 49 - HÌNH HỌC 9 LUYỆN TẬP VỀ TỨ GIÁC NỘI TIẾP.
( Nhắc lại cách có hệ thống nội dung lý thuyết học thông qua kiểm tra bài cũ (định nghĩa, tính chất, phơng pháp để chứng minh tứ giác tứ giác nội tiếp) )
Mục tiêu tiết dạy :
- Cng c định nghĩa, tính chất, cách chứng minh tứ giác nội tiếp
- Rèn kỹ vẽ hình, kỹ chứng minh, sử dụng đợc tính chất tứ giác nội tiếp để giải số tập
- Rèn cho học sinh t lôgic sáng tạo, thái độ tích cực học tập, đồn kết hoạt động tập thể
ChuÈn bÞ néi dung tiÕt dạy: Kiểm tra cũ:
? Phát biểu ®/n, t/c tø gi¸c néi tiÕp?
GV : Chốt lại ghi sơ đồ hệ thống kiến thức học: - Tứ giác có bốn đỉnh đờng trịn - Tứ giác có tổng hai góc đối 2v
tứ giác nội tiếp đờng tròn ? Chữa tập 58 SGK trang 90
Cho tam giác ABC Trên mặt phẳng bờ BC khơng chứa điểm A, lấy
®iĨm D cho BD = DC vµ
DCB= ACB
2 .
a Chứng minh tứ giác ABCD nội tiếp đờng tròn? b Xác định tâm đờng tròn qua điểm A, B, C, D?
Gi¶i:
a Từ giả thiết cho hs tính đợc
B2 C2 30
ABD 90
vµACD 90
ABD ACD 180 ®pcm
b.Vì ABD ACD 90 0nên tứ giác ABCD nội tiếp
được đường trịn đường kính AD Vậy tâm
2
1
D A
(7)của đường tròn qua bốn điểm A; B ; C ; D trung điểm AD
GV: Cho hs nhận xét lời giải ? Bạn chứng minh tứ giác nội pp nào? Còn cách khác để chứng minh?
HS : Bạn sử dụng t/c : Tứ giác có tổng hai góc đối 2v nội tiếp đờng trịn
HS chøng minh theo c¸ch kh¸c : C¸ch 2: TÝnh
C =302
;AB = AC, DB = DC (GT) AD đờng trung trực ΔABC nên AD đờng phân giác
A =C
1 A , C cung chøa gãc
300 dựng BD ABCD tứ gi¸c néi tiÕp.
Cách 3: Hs chứng minh A, B, C, D cách trung điểm AD GV : Trong cách trên, cách ngắn gọn, dễ hiểu …nhất?
GV : NÕu xÐt mét c¸ch tổng thể cách cách ngắn ngọn, dễ hiểu phục vụ cho câu
GV : Bổ sung vào sơ đồ kiểm tra thêm phơng pháp chứng minh: Tứ giác có hai đỉnh kề nhìn đoạn nối hai đỉnh cịn lại dới góc tứ giác nội tiếp.
Nh vậy : Từ việc kiểm tra lý thuyết, chữa tập nhà, giáo viên hệ thống lại định nghĩa, tính chất, hai phơng pháp chứng minh tứ giác nội tiếp
2 HƯ thèng bµi tËp lun.
* Dạng 1: Sử dụng tính chất tứ giác nội tiếp để tính góc(định lý thuận). Bài 56 SGK trang 89 Cho hình vẽ Tính số đo góc tứ giác ABCD? Phơng pháp tiến hành:
GV : Đa lên bảng phụ gợi ý :
? Để tính góc tứ giác ABCD, trớc hết ta cần tính góc nào?
GV : Gỵi ý tiÕp: Gọi sđ BCE x Hãy tìm mối
liên hệ ABC, ADC với với x Từ tính x
HS : ABC ADC = 1800 ( tứ giác ABCD nội tiếp )
ABC 40 x ADC 20 x(t/c góc ngồi tam giác )
400 + x + 200 + x = 1800
x x
20
40 C B
O E
A
D
(8) 2x = 1200
x = 600 Từ tìm đợc góc tứ giác
GV chèt l¹i : ở tập cho tứ giác ABCD nội tiếp nên dựa vào tính chất :
A+C=B+D=180 để tính góc đó.
* Dạng 2: Vận dụng tính chất tứ giác nội tiếp để chứng minh (đ/l thuận). Bài 60 SGK trang 90: Cho hỡnh vẽ Chứng minh QR//ST?
Phơng pháp tiến hành:
GV : Đề hình vẽ lên bảng phụ HS :Trình bày lời giải tập phiếu học tập Lời gi¶i
HS : Có
R1 R2= 1800 ( hai góc kề bù )
Mà R E1 = 1800(t/c tứ giác nội tiếp )
R1 E1
(1 )
Ta coù:
0 E +E =1801 2
( hai goùc kề bù )
vµ
E +K =180
2 (t/c tứ giác nội tiếp ) E =K1 1 ( )
Mặt khác :
K +K =180
1 ( hai goùc kề bù )
vµ
K +S =180
2 (t/c tứ giác nội tiếp ) K 1S1 ( )
Từ ( ); (2 ); ( )
R1 S1
Mµ hai gãc ë vÞ trÝ so le QR // ST
? Để chứng minh tập ta vËn dơng kiÕn thøc nµo? HS : T/c hai gãc kỊ bï, tính chất tø gi¸c néi tiÕp
GV : Qua tập, em có nhận xét góc ngồi tứ giác nội tiếp đỉnh góc đối diện với đỉnh đó?
HS : Góc ngồi tứ giác nội tiếp góc tứ giác đối diện với đỉnh
GV chốt lại: Khi cho tứ giác nội tiếp ta chứng minh đợc góc ngồi đỉnh bằng góc đối diện với đỉnh ngợc lại.
(9)* Dạng 3: Bài tập sử dụng đ/luyện tập đảo, định nghĩa định lý thuận.
Bài tập : Cho tam giác ABC có ba góc nhọn nội tiếp đờng trịn tâm O Các đờng cao AD, BK, CF cắt H
a Tìm tứ giác nội tiếp? b Chng minh FE AO?
c Chứng minh H tâm đờng tròn ni tip DEF ?
a Tìm tứ gi¸c néi tiÕp
GV : Híng dÉn hs vÏ h×nh, ghi gt + kl Gäi hs tr×nh bày câu a
HS : Tỡm c t giác nội cách
- Có tứ giác nội tiếp tổng góc đối 1800.
- Có tứ giác nội tiếp có hai đỉnh kề nhìn đoạn nối hai đỉnh cịn lại dới góc( 900)
GV chốt lại: Khi cho tam giác với ba đờng cao ta viết đợc tứ giác nội tiếp. b Cho hs hoạt động nhóm nhận xét kết hoạt động nhóm.
KỴ tia tiÕp tun Ax
Tứ giác BFEC nội tiếp đờng tròn AEF=ABC Mà ABC=xAC xAC=AEF
Ax//EF
mà Ax AO nên EFAO
c GV: hớng dẫn hs theo sơ đồ phân tích lên yêu cầu hs nhà làm H tâm đờng tròn nội tiếp tam giác DEF
EB phân giác củaFED FC phân giác củaEFD
E =E1 T¬ng tù
E1 C1vµ C1 E
Tø gi¸c BEFC néi tiÕp III. KẾT THÚC VẤN ĐỀ:
F
E O H
D C
(10)1. Kết thực hiện:
- Trong tiết dạy luyện tập tuỳ nội dung kiến thức giaó viên sử dụng phương pháp giảng dạy phù hợp Phương pháp tổ chức tiết luyện tập phù hợp mục tiêu dạy vừa phù hợp với đối tượng học sinh giúp tạo nên hứng thú cho học sinh, tích cực tư tìm tịi giải tốn đồng thời tránh cho em tâm lý chán nản, "sợ" mơn Tốn
- Phương pháp tổ chức phù hợp giúp em củng cố kiến thức học đồng thời tìm kiến thức mới, học sinh dễ nắm bài, khắc sâu kiến thức rèn kỹ giải Toán, khả tư linh hoạt sáng tạo
- Qua trính áp dụng chất lượng giảng dạy mơn Tốn khối phụ trách nâng cao qua năm, giảm đáng kể học sinh yếu đặc biệt khơng cịn học sinh
Kết chất lượng giảng dạy mơn Tốn:
2. Bài học kinh nghiệm:
Để tổ chức thành công tiết Luyện tập trước tiên người giáo viên phải nắm vững kiến thức, xác định rõ mục tiêu tiết luyện tập là:
+ Một là, củng cố, bổ xung, hoàn thiện nâng cao mức độ phổ thông cho phép phần lý thuyết tiết học trước thông qua số tiết học trước, thông qua hệ thống tập xếp hợp lý theo kế hoạch lên lớp
+ Hai là, rèn luyện cho học sinh phương pháp suy nghĩ, kỹ nãng, thuật toán nguyên tắc giải toán dựa sở nội dung lý thuyết học phù hợp với đa số học sinh lớp(phương pháp, hệ thống tập, thời gian cho phù hợp), thông qua hệ thống tập xếp theo chủ ý giáo viên
+ Ba là, nhìn lại kiến thức kỹ phần học, phân biệt kiến thức kỹ chủ yếu
+ Bốn là, thấy tiết giảng sau có vấn đề liên quan để từ kỹ luyện hướng vào vấn đề
(11)Thứ hai cần xác định đối tượng học sinh, lựa chọn phương án tổ chức xây dựng hệ thống tập phù hợp với đặc điểm học sinh, học sinh cần chuẩn bị tốt nhà, giáo viên sử dụng hiệu dụng cụ hỗ trợ dạy học
3. Kết luận:
Lựa chọn phương án tổ chức tiết luyện tập hiệu có ý nghĩa đặc biệt quan trọng dạy học mơn Tốn nói chung dạy học luyện tập Tốn nói riêng khơng giúp giáo viên chủ động tiết dạy, thực mục tiêu tiết học; mà việc lựa chọn phương án dạy học phù hợp gây hứng thú cho học sinh, kích thích em chủ động hoạt động học phát huy tính tích cực chủ động sáng tạo
Mỗi tiết dạy , giáo viên có nhiều phương án tổ chức khác để tổ chức tiết luyện tập cho học sinh mang lại hiệu cao giảng dạy, xin đưa hai phương án tổ chức tiết luyện tập, mong đóng góp ý kiến chun mơn, q thầy với mục đích nâng cao chun mơn, nâng cao chất lượng giảng dạy tiết luyện tập Tốn nói riêng mơn Tốn trường THCS nói chung
Hiệp Tùng, ngày 19 tháng 10 năm 2010 Người viết
(12)PHẦN NHẬN XÉT ĐÁNH GIÁ, XẾP LOẠI SÁNG KIẾN KINH NGHIỆM
Tên đề tài: "Phương án tổ chức tiết Luyện Tập"
Trường THCS xã Hiệp Tùng Phòng GD&ĐT Năm Căn
Nội dung Điểm Nội dung Điểm
T Kq T Kq
Đặt vấn đề Đặt vấn đề
Biện pháp Biện pháp
Kết phổ biến ứng dụng Kết phổ biến ứng dụng Tính khoa học Tính khoa học
Tính sáng tạo Tính sáng tạo Tổng điểm:
Hiệp Tùng, ngày tháng năm 2010 Hiệu trưởng
Tổng điểm: Năm Căn, ngày tháng năm 2010
Thủ trưởng đơn vị
Căn kết xét, thẩm định Hội đồng khoa học nghành GD&ĐT cấp tỉnh; Giám đốc sở GD&ĐT Cà Mau thống công nhận SKKN
Xếp loại: