1. Trang chủ
  2. » Cao đẳng - Đại học

2020, trường THCS Trịnh Phong tổ chức các khóa học bài mới trực tuyến trên VNPT E-Learning, các em HS theo dõi lịch và tham gia các khóa học cho đầy đủ.

23 11 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 23
Dung lượng 554 KB

Nội dung

Các bước cơ bản để giải phương trình đưa được về dạng phương trình tích3. Vì vậy, trong khi biến đổi pt, chú ý phát hiện các nhân tử.[r]

(1)

KIỂM TRA

Phân tích đa thức sau thành nhân tử:

( ) ( 1) ( 1)( 2)

P xx   xx

Đáp án: P x( ) (x2 1) (x 1)(x 2)

    

(2)

Muốn giải phương trình P(x) = 0, với P(x) = ( x2 – 1) + ( x +1)( x – 2)

Tức giải phương trình : ( x2 – 1) + ( x +1)( x – 2) = (1)

ta sử dụng kết phân tích :

P(x) = ( x2 – 1) + ( x +1)( x – 2) = (2x – 3)(x + 1)

để chuyển từ việc giải pt (1) thành giải pt: (2x – 3)(x + 1) = (2)

(3)

-Vậy phương trình tích có dạng

tổng quát nào?

- Cách giải phương trình tích

(4)

TIẾT:45

(5)

I PHƯƠNG TRÌNH TÍCH VÀ CÁCH GIẢI:

- Trong tích, có thừa số

- Ngược lại, tích thừa số tích

tích 0.

phải 0.

a.b = a = b = 0

?1

Hãy nhớ lại tính chất số, phát biểu tiếp khẳng định sau:

(6)

I PHƯƠNG TRÌNH TÍCH VÀ CÁCH GIẢI:

a.b = a = b = 0

?2

VD1: Giải phương trình: (2x – 3)(x + 1) =

PHƯƠNG PHÁP GIẢI:

( 2x – ) ( x + ) = 0

 2x – = x + =

Do ta phải giải hai phương trình :

Vậy: Tập nghiệm phương trình S = { 1,5; -1 }

Ptrình VD1 gọi là phương trình tích

* Phương trình tích có dạng : A(x).B(x) = (*) * Phương pháp giải: (*) A(x) = B(x) = 0

{

giống a giống b

{

* 2x – = * x + =

(7)

I.PHƯƠNG TRÌNH TÍCH VÀ CÁCH GIẢI:

a.b = a = b = 0

?2

II.ÁP DỤNG:

VD2 : giải phương trình:

(x + 1)( x + 4) = ( - x)( + x)

x2 + 4x + x + = – x2 x2 + 4x + – + x2 = 0

2x2 + 5x = 0 x(2x + 5) = 0 x = hoặc 2x + = 0

1) x =

2) 2x + = 0

Phương trình có tập nghiệm S = { 0; - 2,5 } Phương trình tích có dạng : A(x).B(x) = (*) Phương pháp giải: (*) A(x) = B(x) = 0

(8)

VD Giải phương trình :

(x + 1)( x + 4) = ( - x)( + x)

x2 + 4x + x + = – x2 x2 + 4x + – + x2 = 0

2x2 + 5x = 0 x(2x + 5) = 0 x = hoặc 2x + = 0

1) x =

2) 2x + = x = - 2,5

Ptrình có tập nghiệm S = { 0; - 2,5 }

(Đưa pt cho dạng pt tích)

(Giải pt tích kết luận)

Nêu bước giải phương trình ở Ví dụ 2?

(9)

Trong VD2 ta thực bước giải sau:

Đưa phương trình cho

về dạng phương trình tích.

Bước 2. Bước 1.

Chuyển tất hạng tử sang vế trái (lúc vế phải 0)

rút gọn vế trái

phân tích đa thức vế trái thành nhân tử

Giải phương trình tích rồi kết luận.

(10)

Khi giải phương trình, sau biến đổi:

-Nếu số mũ x đưa phương trình dạng ax + b = (Tiết 43)

-Nếu số mũ x lớn đưa phương trình dạng pt tích để giải: A(x)B(x) = A(x) = B(x) = 0

(Nếu vế trái có nhiều nhân tử, cách giải tương tự ) Trong cách giải pt theo phương pháp chủ yếu việc phân tích đa thức thành nhân tử Vì vậy, biến đổi pt, ý phát nhân

tử chung sẵn có để biến đổi cho gọn

(11)

?3 Giải phương trình:

( x - 1)( x2 + 3x - 2) - ( x3 - 1) = (3)

(12)

I PHƯƠNG TRÌNH TÍCH VÀ CÁCH GIẢI: II ÁP DỤNG:

VD 3: Giải phương trình: 2x3 = x2 + 2x - (3) Giải

2x3 - x2 - 2x + = 0

  

(2x3 – x2) - (2x - 1) = 0

x2(2x -1) - (2x - 1) =

(2x - 1) (x2- 1) =

2x – = x - = x + = 1) 2x - 1=

2) x -1 =

 x = 1

(3) 

3) x +1 =  x = -

Vậy tập nghiệm trình S = {-1; 0,5;1}

(2x - 1)(x- 1)(x +1) =

(13)

HS TỰ GIẢI

?4 Giải phương trình:

(14)

Bài 23/17: Giải phương trình: a) x(2x – 9) = 3x(x – 5)

Hs tự giải

(15)

b) 0,5x(x – 3) = (x -3)(1,5x – 1)

 0,5x(x – 3) – (x – 3)(1,5x – 1) = 0

 (x – 3)(0,5x – 1,5x + 1) = 0

 (x – 3)(- x + 1) = 0

x – = - x + = 0

Ta thay 1), 2) dấu ngoặc vuông

Phương trình có tập nghiệm S = {1; 3}

Bài 23/17: Giải phương trình:

   

  

    

x 0 x 3

(16)

c) 3x – 15 = 2x(x – 5) Hs tự giải

Phương trình có tập nghiệm S =

Bài 23/17: Giải phương trình:

 

 

 

3 5;

(17)

 3x – = x(3x – 7)

 x(3x – 7) – (3x – 7) = 0  (3x – 7)(x – 1) = 0

 3x – 7= x – = 0

Phương trình có tập nghiệm S =

Bài 23/17: Giải phương trình:

MC: 7              7

3x 0 x

3

x 0 x 1

(18)

Bài 24/17: Giải phương trình:

a) (x2 – 2x + 1) – = 0

 (x – 1)2 – 22 = 0

 (x – + 2)(x – – 2) = 0  (x + 1)(x – 3) = 0

 x + = x – = 0 1) x + =  x = - 1

2) x – =  x = 3

(19)

Bài 24/17: Giải phương trình:

d) x2 – 5x + = 0

 x2 – 2x – 3x + = 0

 x(x – 2) – 3(x – 2) = 0  (x - 2)(x - 3) = 0

 x – = x – = 0 1) x – =  x = 2

2) x – =  x = 3

(20)

Bài 25/17: Giải phương trình:

a) 2x3 + 6x2 = x2 + 3x

 2x3 + 6x2 – x2 – 3x = 0  2x2(x + 3) – x(x + 3) = 0  x(x + 3)(2x – 1) = 0

 x = x + = 2x - = 0

PT có tập nghiệm S =

                  x 0

x 0 x 3

1

2x 0 x

(21)

Bài 25/17: Giải phương trình:

b) (3x – 1)(x2 + 2) = (3x – 1)(7x – 10)

 (3x – 1)(x2 + 2) - (3x – 1)(7x – 10) = 0  (3x -1)(x2 + – 7x + 10) = 0

 (3x - 1)(x2 – 7x + 12) = 0

 (3x - 1)(x – 3)(x – 4) = 0

 3x - = x - = x - = 0

PT có tập nghiệm S =

1

3 1 0

3

3 0 3

4 0 4

(22)

Kiến thức cần nhớ

1. Nắm dạng phương trình tích cách giải phương trình tích

2. Các bước để giải phương trình đưa dạng phương trình tích

3. Khi giải phương trình, sau biến đổi:

- Nếu số mũ x đưa phương trình dạng ax + b = (Tiết 43) - Nếu số mũ x lớn đưa phương trình dạng pt tích để giải:

A(x)B(x) =  A(x) = B(x) = 0

(Nếu vế trái có nhiều nhân tử, cách giải tương tự)

Trong cách giải pt theo phương pháp chủ yếu việc phân tích đa thức thành nhân tử Vì vậy, biến đổi pt, ý phát nhân tử

chung sẵn có để biến đổi cho gọn

1. Nắm dạng phương trình tích cách giải phương trình tích

2. Các bước để giải phương trình đưa dạng phương trình tích

3. Khi giải phương trình, sau biến đổi:

- Nếu số mũ x đưa phương trình dạng ax + b = (Tiết 43) - Nếu số mũ x lớn đưa phương trình dạng pt tích để giải:

A(x)B(x) =  A(x) = B(x) = 0

(Nếu vế trái có nhiều nhân tử, cách giải tương tự)

Trong cách giải pt theo phương pháp chủ yếu việc phân tích đa thức thành nhân tử Vì vậy, biến đổi pt, ý phát nhân tử

(23)

- Biết cách đưa phương trình dạng phương trình tích giải phương trình tích

- Học kỹ bài,nhận dạng phương trình tích và cách giải phương trình tích.

-Làm tập 21, 22, 23a,23c, 24b,24d ( ?3,?4– SGK )

-Ơn lại phương pháp phân tích đa thức thành nhân tử đẳng thức.

Ngày đăng: 01/04/2021, 21:12

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w