1. Trang chủ
  2. » Kinh Tế - Quản Lý

Đề thi thử đại học môn thi: Toán; khối B - THPT Nhã Nam

5 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 190,54 KB

Nội dung

Câu VII.a 1 điểm Có bao nhiêu số tự nhiên có 4 chữ số khác nhau và khác 0 mà trong mỗi số luôn luôn có mặt hai chữ số chẵn và hai chữ số lẻ... Theo chương trình Nâng cao Câu VI.b 2 điểm [r]

(1)THPT NHÃ NAM ĐỀ THI THỬ ĐẠI HỌC NĂM HỌC 2010-2011 Môn thi : TOÁN ; Khối : B Thời gian làm bài 180 phút, không kể thời gian giao đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm): Câu I: (2 điểm) Cho hàm số y  2x  (C) x 1 Khảo sát và vẽ đồ thị hàm số Tìm m để đường thẳng d: y = 2x + m cắt đồ thị (C) điểm phân biệt A, B cho AB = Câu II: (2 điểm) Giải phương trình: cos x cos 3x  sin x  cos x , (x  R)  x  y  x  y  y Giải hệ phương trình:   x  y  (x, y R) ln Câu III: (1 điểm) Tính tích phân sau: I   e x  1dx ln Câu IV: (1 điểm) Cho hình chóp S.ABCD đáy ABCD là hình thoi SA = x (0 < x < ) các cạnh còn lại Tính thể tích hình chóp S.ABCD theo x x Câu V: (1 điểm) Cho x,y  R và x, y > Tìm giá trị nhỏ P   y3    x2  y2  ( x  1)( y  1) PHẦN RIÊNG (3 điểm) : Thí sinh làm hai phần ( phần A B) A Theo chương trình Chuẩn Câu VI.a (2 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): x2 + y2 - 2x - 2my + m2 - 24 = có tâm I và đường thẳng : mx + 4y = Tìm m biết đường thẳng  cắt đường tròn (C) hai điểm phân biệt A,B thỏa mãn diện tích tam giác IAB 12 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: d2: x 1 y 1 z 1   ; 1 x 1 y  z 1   và mặt phẳng (P): x - y - 2z + = Viết phương trình chính tắc 1 đường thẳng , biết  nằm trên mặt phẳng (P) và  cắt hai đường thẳng d1 , d2 Câu VII.a (1 điểm) Có bao nhiêu số tự nhiên có chữ số khác và khác mà số luôn luôn có mặt hai chữ số chẵn và hai chữ số lẻ B Theo chương trình Nâng cao Câu VI.b (2 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh AB: x - y - = 0, phương trình cạnh AC: x + 2y - = Biết trọng tâm tam giác G(3; 2) Viết phương trình cạnh BC Trong không gian với hệ trục toạ độ Oxyz cho điểm A(1 ;0 ; 1), B(2 ; ; 2) và mặt phẳng (Q): x + 2y + 3z + = Lập phương trình mặt phẳng (P) qua A, B và vuông góc với (Q) Câu VII.b (1 điểm) Giải bất phương trình sau:  2x  log 21  4  4 x 2 .… Hết … Thí sinh không sử dụng tài liệu Cán coi thi không giải thích gì thêm Họ và tên thí sinh: ………………………………………………; Số báo danh: ……… Lop12.net (2) ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC TÓAN KHỐI B NĂM HỌC : 2010-2011 CÂU NỘI DUNG ĐIỂM Tập xác định D = R\- 1 Sự biến thiên: -Chiều biến thiên: y '   0, x  D ( x  1) 0,25 Hàm số đồng biến biến trên các khoảng (- ; - 1) và (- ; + ) I-1 (1 điểm) - Cực trị: Hàm số không có cực trị - Giới hạn vô cực, giới hạn vô cực và tiệm cận: 2x  2x  lim  ; lim  Đường thẳng y = là tiệm cận ngang x  x  x  x  2x  2x  lim   ; lim   Đường thẳng x = - là tiệm cận đứng x 1 x 1 x 1 x 1 -Bảng biến thiên: x - -1 + y’ + + + 0,25 0,25 y - Đồ thị: -Đồ thị hàm số cắt trục Ox điểm (1;0) -Đồ thị hàm số cắt trục Oy điểm (0;- 2) - Đồ thị hàm số có tâm đối xứng là giao điểm hai tiệm cận I(- 1; 2) y -1 y=2 0,25 O x -2 x= -1 I-2 (1 điểm) Phương trình hoành độ giao điểm: 2x2 + mx + m + = , (x≠ - 1) (1) d cắt (C) điểm phân biệt  PT(1) có nghiệm phân biệt khác -1  m2 - 8m - 16 > (2) Gọi A(x1; 2x1 + m) , B(x2; 2x2 + m) Ta có x1, x2 là nghiệm PT(1) m   x1  x2   Theo ĐL Viét ta có   x1 x2  m   AB2 =  ( x1  x2 )  4( x1  x2 )   ( x1  x2 )  4x1 x2   m2 - 8m - 20 =  m = 10 , m = - ( Thỏa mãn (2)) KL: m = 10, m = - Lop12.net 0,25 0,25 0,25 0,25 (3) II-1 (1 điểm) PT  cos2x + cos8x + sinx = cos8x  1- 2sin2x + sinx =  sinx = sin x    x   k 2 ; x     k 2 ; x  ĐK: x + y  , x - y  0, y  II-2 (1 điểm) 0,25 0,25 0,25 7  k 2 , ( k  Z ) 0,25 0,25  y  x  (3) PT(1)  x  x  y  y  x  y  y  x   5 y  xy (4) Từ PT(4)  y = v 5y = 4x Với y = vào PT(2) ta có x = (Không thỏa mãn đk (3)) Với 5y = 4x vào PT(2) ta có x  x   x   4 KL: HPT có nghiệm ( x; y )   1;   5 0,25 0,25 0,25 ln I  e x  1dx ; Đặt t  e x   t  e x   e x  t  0,25 ln Khi x = ln3 thì t = ; Khi x = ln8 thì t = 3; Ta có 2tdt = exdx  dx  III (1 điểm) 2t dt t 1 0,25 2t 2   Do đó I   dt      dt  t 1 t 1  2 0,25 t 1    3 =  2t  ln   ln    t 1  2  0,25 0.5 Ta có SBD  DCB (c.c.c)  SO  CO Tương tự ta có SO = OA tam giác SCA vuông S S  CA   x Mặt khác ta có IV (1 điểm)  BD   x (do  x  3)  S ABCD   x2  x2 AC  BD  AB  BC  CD C D H O B A Gọi H là hình chiếu S xuống (CAB) Vì SB = SD nên HB = HD  H  CO 0.25 1 x    SH  2 SH SC SA  x2 Vậy V = x  x (dvtt) 0.25 Mà Lop12.net (4) Đặt t = x + y ; t > Áp dụng BĐT 4xy  (x + y)2 ta có xy  P t2 0,25 t  t  xy (3t  2) t2 Do 3t - > và  xy   nên ta có xy  t  t (3t  2) t2 P  t2 t2  t 1 t2 t  4t ; f '(t )  ; f’(t) =  t = v t = Xét hàm số f (t )  t2 (t  2) 0,25 t3  t2  V (1 điểm) t f’(t) - + + + 0,25 + f(t) x  y  x    xy  y  VI.a -1 (1 điểm) Do đó P = f (t ) = f(4) = đạt  (2; ) 0,25 Đường tròn (C) có tâm I(1; m), bán kính R = Gọi H là trung điểm dây cung AB Ta có IH là đường cao tam giác IAB | m  4m | | 5m |  IH = d ( I ,  )  m  16 m  16 0,25 AH  IA2  IH  25  (5m )  m  16 Diện tích tam giác IAB là SIAB A I  H B 20 m  16  12  2S IAH  12  m  3  d ( I ,  ) AH  12  25 | m | 3( m  16)   16 m    Gọi A = d1(P) suy A(1; ; 2) ; B = d2  (P) suy B(2; 3; 1) VI.a -2 (1 điểm) 0,25 Đường thẳng  thỏa mãn bài toán qua A và B  Một vectơ phương đường thẳng  là u  (1; 3; 1) x 1 y z    Phương trình chính tắc đường thẳng  là: 1 Từ giả thiết bài toán ta thấy có C  cách chọn chữ số chẵn (vì không có số 0)và C 52  10 0,25 0,25 0,25 0,25 0,25 0,25 0,5 cách chọn chữ số lẽ => có C 52 C 52 = 60 số thỏa mãn bài toán VII.a (1 điểm) Mỗi số có 4! số thành lập Vậy có tất C 42 C 52 4! = 1440 số Lop12.net 0,5 (5) VI.b- (1 điểm) VI.b-2 (1 điểm) x - y -  Tọa độ điểm A là nghiệm HPT:   A(3; 1) x  y -  0,25 Gọi B(b; b- 2)  AB, C(5- 2c; c)  AC 0,25 3  b   2c  b  Do G là trọng tâm tam giác ABC nên    Hay B(5; 3), C(1; 2) 1  b   c  c    Một vectơ phương cạnh BC là u  BC  ( 4; 1) Phương trình cạnh BC là: x - 4y + =     Ta có AB(1;1;1), nQ (1; 2;3),  AB; nQ   (1; 2;1) 0,25 0,25 0.5      Vì  AB; nQ   nên mặt phẳng (P) nhận  AB; nQ  làm véc tơ pháp tuyến 0.25 Vậy (P) có phương trình x - 2y + z - = 0.25 Giải bất phương trình  log  Bpt   log  12 VII.b (1 điểm) 2x 40 4 x 2x 9 4 x 2x    log  x  2(1)   2x  3(2) 2  log 4 x   3x    x  2x 16 8   x Giải (1): (1)   4 x  x  16    x 17 x    x  2x 4    x Giải (2): (2)   4 x 17 9x     x Lop12.net 0,5 0,25 0,25 (6)

Ngày đăng: 01/04/2021, 07:43

w