Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 176 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
176
Dung lượng
6,94 MB
Nội dung
Ph.D Thesis Biomimetic functional surfaces with tailored wettability for water harvesting and anti-icing applications Nguyen Thanh Binh Nano-Mechatronics UNIVERSITY OF SCIENCE AND TECHNOLOGY February 2019 Biomimetic functional surfaces with tailored wettability for water harvesting and anti-icing applications 2019 Nguyen Thanh Binh Biomimetic functional surfaces with tailored wettability for water harvesting and anti-icing applications Nguyen Thanh Binh A Dissertation Submitted in Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy / Master February 2019 UNIVERSITY OF SCIENCE AND TECHNOLOGY Major of Nano-Mechatronics Supervisor Hyuneui LIM We hereby approve the Ph.D thesis of Nguyen Thanh Binh February 2019 Dr Seungchul PARK Chairman of Thesis Committee Dr Wandoo KIM Thesis Committee Member Dr Changdae PARK Thesis Committee Member Dr Junhee LEE Thesis Committee Member Dr Hyoungsoo KIM Thesis Committee Member Dr Youngdo JUNG Thesis Committee Member Dr Hyuneui LIM Thesis Committee Member / Supervisor UNIVERSITY OF SCIENCE AND TECHNOLOGY ACKNOWLEDGEMENT This study is the result of my PhD thesis carried out at Nature-Inspired Nanoconvergence Systems Department – Nano - Convergence Mechanical Systems Research Division – Korea Institute of Machinery and Materials, Korea with tremendous amount of support First, I would like to express my sincere gratitude to my advisor, Professor Hyuneui Lim, for giving me the opportunity to become her student at Nanomechatronics Department (UST), for giving me all the support, encouragement and advice over past six and half years, and for spending long hours editing this thesis Her insightful guidance will be great inspiration for my future work in my university afterwards I would like to thank Dr Wandoo Kim for his valuable advice and encouragement during my Ph.D’s degree I would like to convey my great gratefulness to the members of my dissertation defense committee, Dr Changdae Park, Dr Junhee Lee, Dr Hyoungsoo Kim, Dr Youngdo Jung for giving me all valuable comments and suggestions Specifically, I would like to thank Dr Seungchul Park for his honest advice, valuable support and i encouragement, who served as Chairman of my thesis committee I am also thankful to Dr Duckgyu Lee for assistance regarding experiment process and theoretical support when I started my PhD’s degree A special thank should be given to all my laboratory members, Dr Sunjong Oh, Dr Cholong Jung, Dr Seonggi Kim, Cheonji Lee, Gyuhyeon Han for their enthusiastic support Finally, I dedicate this thesis to my parents, my wife and my daughter for their sincere love, outstanding support, for always beside and encouragement during my PhD’s degree This would have been impossible without them ii ABSTRACT iii Biomimetic functional surfaces with tailored wettability for water harvesting and anti-icing applications * Biomimetic or Biomimicry refers to an approach that imitates nature’s timeproved models, elements and strategies to solve sustainability human challenges In this study, we proposed the fabrication and investigation process on several bioinspired functional surfaces with tunable wettability towards solving specific problems: water harvesting and anti-icing Water condensation is a phenomenon which refers to the changing physical state of a matter from gaseous into liquid phase The simplest process can be imagined is water condensation on objects near earth’s surfaces such as: fog, dew, frost, etc In this work, we will focus on optimizing suitable surface morphology for durable and high efficiency water harvesting performance Several geometries and surface energies will have been conducted on Aluminum (Al) plates in order to maximize harvesting efficiency On the other hand, icing phenomenon refers to a process when liquid transferring its physical state to solid phase Ice accumulation on functional surfaces had illustrated many bizarre effects and disadvantages in aviation, industry and human activities Several passive approaches including water iv repellency, Slippery Liquid-Infused Porous Surfaces (SLIPS) and unique design structure in order to optimize anti-icing performance will be introduced throughout this study Totally, we propose different physicochemical processes which arm to manipulate surface wettability towards solving specific problems including water condensation and anti-icing The understanding about mechanism and fabrication process is useful for designing water harvesting system and icephobic applications _ *A thesis submitted to committee of the University of Science and Technology in a partial fulfillment of the requirement for the degree of Doctor of Science conferred in February, 2019 초록 v ICING PROBLEM Nav Eng J 1968, 80 (1), 63–72 (31) Farzaneh, M Ice Accretions on High-Voltage Conductors and Insulators and Related Phenomena Philos Trans Math Phys Eng Sci 2000, 358 (1776), 2971–3005 (32) Laforte, J L.; Allaire, M A.; Laflamme, J State-of-the-Art on Power Line deIcing Atmos Res 1998, 46 (1), 143–158 (33) Tadros, T Interfacial Forces in Aqueous Media, Carel J van Oss, Marcel Dekker Inc., New York, 1994, Viii + 440 Pp., Price US$165.00 ISBN 8247 9168 J Chem Technol Biotechnol 2018, 64 (3), 311 (34) Della Volpe, C.; Maniglio, D.; Siboni, S.; Morra, M An Experimental Procedure to Obtain the Equilibrium Contact Angle from the Wilhelmy Method Oil Gas Sci Technol - Rev IFP 2001, 56 (1), 9–22 (35) Mohammadi, R.; Amirfazli, A Contact Angle Measurement for Dispersed Microspheres Using Scanning Confocal Microscopy J Dispers Sci Technol 2005, 25 (5), 567–574 (36) de Gennes, P G Wetting: Statics and Dynamics Rev Mod Phys 1985, 57 (3), 827–863 (37) Good, R J Contact Angle, Wetting, and Adhesion: A Critical Review J Adhes Sci Technol 1992, (12), 1269–1302 (38) Tadmor, R Line Energy and the Relation between Advancing, Receding, and Young Contact Angles Langmuir 2004, 20 (18), 7659–7664 (39) Schrader, M E Young-Dupre Revisited Langmuir 1995, 11 (9), 3585–3589 (40) Wenzel, R N RESISTANCE OF SOLID SURFACES TO WETTING BY WATER Ind Eng Chem 1936, 28 (8), 988–994 (41) Cassie, A B D.; Baxter, S Wettability of Porous Surfaces Trans Faraday Soc 1944, 40 (0), 546–551 140 (42) Bormashenko, E Why Does the Cassie–Baxter Equation Apply? Colloids Surfaces A Physicochem Eng Asp 2008, 324 (1), 47–50 (43) Feng, L.; Zhang, Y.; Xi, J.; Zhu, Y.; Wang, N.; Xia, F.; Jiang, L Petal Effect: A Superhydrophobic State with High Adhesive Force Langmuir 2008, 24 (8), 4114–4119 (44) Taboryski, N K M and R The Rose Petal Effect and the Role of Advancing Water Contact Angles for Drop Confinement Surf Topogr Metrol Prop 2017, (2), 24001 (45) Bhushan, B.; Nosonovsky, M The Rose Petal Effect and the Modes of Superhydrophobicity Philos Trans R Soc A Math Phys Eng Sci 2010, 368 (1929), 4713 LP-4728 (46) Deng, T.; Varanasi, K K.; Hsu, M.; Bhate, N.; Keimel, C.; Stein, J.; Blohm, M Nonwetting of Impinging Droplets on Textured Surfaces Appl Phys Lett 2009, 94 (13), 133109 (47) Murakami, D.; Jinnai, H.; Takahara, A Wetting Transition from the Cassie– Baxter State to the Wenzel State on Textured Polymer Surfaces Langmuir 2014, 30 (8), 2061–2067 (48) Yeomans, H K and M L B and A D and J M The Collapse Transition on Superhydrophobic Surfaces EPL (Europhysics Lett 2008, 81 (3), 36003 (49) Jung, Y C.; Bhushan, B Wetting Transition of Water Droplets on Superhydrophobic Patterned Surfaces Scr Mater 2007, 57 (12), 1057–1060 (50) Bico, J.; Thiele, U.; Quéré, D Wetting of Textured Surfaces Colloids Surfaces A Physicochem Eng Asp 2002, 206 (1), 41–46 (51) Shibuichi, S.; Onda, T.; Satoh, N.; Tsujii, K Super Water-Repellent Surfaces Resulting from Fractal Structure J Phys Chem 1996, 100 (50), 19512–19517 (52) Ruckenstein, E.; Berim, G O.; Narsimhan, G A Novel Approach to the Theory of Homogeneous and Heterogeneous Nucleation Adv Colloid Interface Sci 141 2015, 215, 13–27 (53) Sear, R P Quantitative Studies of Crystal Nucleation at Constant Supersaturation: Experimental Data and Models CrystEngComm 2014, 16 (29), 6506–6522 (54) Wyslouzil, B E.; Wölk, J Overview: Homogeneous Nucleation from the Vapor Phase—The Experimental Science J Chem Phys 2016, 145 (21), 211702 (55) Sear, R P Nucleation: Theory and Applications to Protein Solutions and Colloidal Suspensions J Phys Condens Matter 2007, 19 (3), 33101 (56) Viisanen, Y.; Strey, R.; Reiss, H Homogeneous Nucleation Rates for Water J Chem Phys 1993, 99 (6), 4680–4692 (57) Fladerer, A.; Strey, R Homogeneous Nucleation and Droplet Growth in Supersaturated Argon Vapor: The Cryogenic Nucleation Pulse Chamber J Chem Phys 2006, 124 (16), 164710 (58) Tomellini, M.; Politi, S Kinetics of Phase Transformations with Heterogeneous Correlated-Nucleation Phys A Stat Mech its Appl 2019, 513, 175–188 (59) Mendez-Villuendas, E.; Bowles, R K Surface Nucleation in the Freezing of Gold Nanoparticles Phys Rev Lett 2007, 98 (18), 185503 (60) Faulkner, R G.; Shvindlerman, L S.; Yin, Y Heterogeneous Nucleation Theory Revisited: Effect of Triple Junction Line Energy Mater Lett 2016, 174, 180– 183 (61) Abyzov, A S.; Fokin, V M.; Zanotto, E D Predicting Homogeneous Nucleation Rates in Silicate Glass-Formers J Non Cryst Solids 2018, 500, 231–234 (62) Bar-Kohany, T.; Amsalem, Y Nucleation Temperature under Various Heating Rates Int J Heat Mass Transf 2018, 126, 411–415 (63) Yang, C H.; Qiu, H Theory of Homogeneous Nucleation: A Chemical Kinetic View J Chem Phys 1986, 84 (1), 416–423 142 (64) Hodgson, A W Homogeneous Nucleation Adv Colloid Interface Sci 1984, 21 (3), 303–327 (65) McDonald, J E Homogeneous Nucleation of Vapor Condensation II Kinetic Aspects Am J Phys 1963, 31 (1), 31–41 (66) McDonald, J E Homogeneous Nucleation of Vapor Condensation I Thermodynamic Aspects Am J Phys 1962, 30 (12), 870–877 (67) Volmer, M.; Weber, A No Title Z Phys Chem (Leipzig), Abt A 1925, 156, 277 (68) Hollomon, J H.; Turnbull, D Nucleation Prog Met Phys 1953, 4, 333–388 (69) Keimbildung in Übersättigten Gebilden Zeitschrift für Physikalische Chemie 1926, p 277 (70) Lee, A.; Moon, M.-W.; Lim, H.; Kim, W.-D.; Kim, H.-Y Water Harvest via Dewing Langmuir 2012, 28 (27), 10183–10191 (71) Varanasi, K K.; Hsu, M.; Bhate, N.; Yang, W.; Deng, T Spatial Control in the Heterogeneous Nucleation of Water Appl Phys Lett 2009, 95 (9), 94101 (72) Narhe, R D.; Beysens, D A Growth Dynamics of Water Drops on a SquarePattern Rough Hydrophobic Surface Langmuir 2007, 23 (12), 6486–6489 (73) Tan, S H.; Nguyen, N T.; Chua, Y C.; Kang, T G Oxygen Plasma Treatment for Reducing Hydrophobicity of a Sealed Polydimethylsiloxane Microchannel Biomicrofluidics 2010, (3), 1–8 (74) Niu, D.; Guo, L.; Hu, H W.; Tang, G H Dropwise Condensation Heat Transfer Model Considering the Liquid-Solid Interfacial Thermal Resistance Int J Heat Mass Transf 2017, 112, 333–342 (75) Carey, V P Liquid-Vapor Phase-Change Phenomena : An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, 2nd ed.; New York : Taylor and Francis, 2008 143 (76) Richard, D.; Quéré, D Bouncing Water Drops Eur Lett 2000, 50 (6), 769–775 (77) Richard, D.; Clanet, C.; Quéré, D Contact Time of a Bouncing Drop Nature 2002, 417, 811 (78) Mishchenko, L.; Hatton, B.; Bahadur, V.; Taylor, J A.; Krupenkin, T.; Aizenberg, J Design of Ice-Free Nanostructured Surfaces Based on Repulsion of Impacting Water Droplets ACS Nano 2010, (12), 7699–7707 (79) Bahadur, V.; Garimella, S V Preventing the Cassie−Wenzel Transition Using Surfaces with Noncommunicating Roughness Elements Langmuir 2009, 25 (8), 4815–4820 (80) Moulinet, D B and F B and É V and A B and P S and S Bouncing or Sticky Droplets: Impalement Transitions on Superhydrophobic Micropatterned Surfaces EPL (Europhysics Lett 2006, 74 (2), 299 (81) Liu, B.; Lange, F F Pressure Induced Transition between Superhydrophobic States: Configuration Diagrams and Effect of Surface Feature Size J Colloid Interface Sci 2006, 298 (2), 899–909 (82) Eberle, P.; Tiwari, M K.; Maitra, T.; Poulikakos, D Rational Nanostructuring of Surfaces for Extraordinary Icephobicity Nanoscale 2014, (9), 4874–4881 (83) Alizadeh, A.; Yamada, M.; Li, R.; Shang, W.; Otta, S.; Zhong, S.; Ge, L.; Dhinojwala, A.; Conway, K R.; Bahadur, V.; et al Dynamics of Ice Nucleation on Water Repellent Surfaces Langmuir 2012, 28 (6), 3180–3186 (84) Bahadur, V.; Mishchenko, L.; Hatton, B.; Taylor, J A.; Aizenberg, J.; Krupenkin, T Predictive Model for Ice Formation on Superhydrophobic Surfaces Langmuir 2011, 27 (23), 14143–14150 (85) Tourkine, P.; Le Merrer, M.; Quéré, D Delayed Freezing on Water Repellent Materials Langmuir 2009, 25 (13), 7214–7216 (86) Wen, M.; Wang, L.; Zhang, M.; Jiang, L.; Zheng, Y Antifogging and IcingDelay Properties of Composite Micro- and Nanostructured Surfaces ACS Appl 144 Mater Interfaces 2014, (6), 3963–3968 (87) Zhang, Q.; He, M.; Zeng, X.; Li, K.; Cui, D.; Chen, J.; Wang, J.; Song, Y.; Jiang, L Condensation Mode Determines the Freezing of Condensed Water on Solid Surfaces Soft Matter 2012, (32), 8285–8288 (88) Guo, P.; Zheng, Y.; Wen, M.; Song, C.; Lin, Y.; Jiang, L Icephobic/Anti-Icing Properties of Micro/Nanostructured Surfaces Adv Mater 2012, 24 (19), 2642– 2648 (89) Rykaczewski, K.; Anand, S.; Subramanyam, S B.; Varanasi, K K Mechanism of Frost Formation on Lubricant-Impregnated Surfaces Langmuir 2013, 29 (17), 5230–5238 (90) Kim, P.; Wong, T.-S.; Alvarenga, J.; Kreder, M J.; Adorno-Martinez, W E.; Aizenberg, J Liquid-Infused Nanostructured Surfaces with Extreme Anti-Ice and Anti-Frost Performance ACS Nano 2012, (8), 6569–6577 (91) Li, K.; Zeng, X.; Li, H.; Lai, X A Study on the Fabrication of Superhydrophobic Iron Surfaces by Chemical Etching and Galvanic Replacement Methods and Their Anti-Icing Properties Appl Surf Sci 2015, 346, 458–463 (92) Zuo, Z.; Liao, R.; Guo, C.; Yuan, Y.; Zhao, X.; Zhuang, A.; Zhang, Y Fabrication and Anti-Icing Property of Coral-like Superhydrophobic Aluminum Surface Appl Surf Sci 2015, 331, 132–139 (93) Sarshar, M A.; Swarctz, C.; Hunter, S.; Simpson, J.; Choi, C.-H Effects of Contact Angle Hysteresis on Ice Adhesion and Growth on Superhydrophobic Surfaces under Dynamic Flow Conditions Colloid Polym Sci 2013, 291 (2), 427–435 (94) Yang, J.; Li, W Preparation of Superhydrophobic Surfaces on Al Substrates and the Anti-Icing Behavior J Alloys Compd 2013, 576, 215–219 (95) Wang, H.; He, G.; Tian, Q Effects of Nano-Fluorocarbon Coating on Icing Appl Surf Sci 2012, 258 (18), 7219–7224 145 (96) Yin, L.; Xia, Q.; Xue, J.; Yang, S.; Wang, Q.; Chen, Q In Situ Investigation of Ice Formation on Surfaces with Representative Wettability Appl Surf Sci 2010, 256 (22), 6764–6769 (97) Cao, L.; Jones, A K.; Sikka, V K.; Wu, J.; Gao, D Anti-Icing Superhydrophobic Coatings Langmuir 2009, 25 (21), 12444–12448 (98) Helmreich, B.; Horn, H Opportunities in Rainwater Harvesting Desalination 2009, 248 (1), 118–124 (99) Azad, M A K.; Krause, T.; Danter, L.; Baars, A.; Koch, K.; Barthlott, W Fog Collection on Polyethylene Terephthalate (PET) Fibers: Influence of Cross Section and Surface Structure Langmuir 2017, 33 (22), 5555–5564 (100) Xu, T.; Lin, Y.; Zhang, M.; Shi, W.; Zheng, Y High-Efficiency Fog Collector: Water Unidirectional Transport on Heterogeneous Rough Conical Wires ACS Nano 2016, 10 (12), 10681–10688 (101) Thickett, S C.; Neto, C.; Harris, A T Biomimetic Surface Coatings for Atmospheric Water Capture Prepared by Dewetting of Polymer Films Adv Mater 2011, 23 (32), 3718–3722 (102) Chen, C.-H.; Cai, Q.; Tsai, C.; Chen, C.-L.; Xiong, G.; Yu, Y.; Ren, Z Dropwise Condensation on Superhydrophobic Surfaces with Two-Tier Roughness Appl Phys Lett 2007, 90 (17), 173108 (103) Song, K.; Kim, G.; Oh, S.; Lim, H Enhanced Water Collection through a Periodic Array of Tiny Holes in Dropwise Condensation Appl Phys Lett 2018, 112 (7), 71602 (104) Im, H.; Ji, S.; Moon, D.-I.; Lim, H.; Choi, Y.-K Enhanced Water Droplet Mobility on Superhydrophobic Rippled Nanoshell Array Appl Phys Lett 2016, 109 (15), 151601 (105) Garrod, R P.; Harris, L G.; Schofield, W C E.; McGettrick, J.; Ward, L J.; Teare, D O H.; Badyal, J P S Mimicking a Stenocara Beetle’s Back for Microcondensation Using Plasmachemical Patterned 146 Superhydrophobic−Superhydrophilic Surfaces Langmuir 2007, 23 (2), 689–693 (106) Comanns, P.; Effertz, C.; Hischen, F.; Staudt, K.; Böhme, W.; Baumgartner, W Moisture Harvesting and Water Transport through Specialized Micro-Structures on the Integument of Lizards Beilstein J Nanotechnol 2011, 2, 204–214 (107) Ju, J.; Bai, H.; Zheng, Y.; Zhao, T.; Fang, R.; Jiang, L A Multi-Structural and Multi-Functional Integrated Fog Collection System in Cactus Nat Commun 2012, 3, 1247 (108) Jie, J.; Xi, Y.; Shuai, Y.; Lin, W.; Ruize, S.; Yaxu, H.; Lei, J Cactus Stem Inspired Cone-Arrayed Surfaces for Efficient Fog Collection Adv Funct Mater 2014, 24 (44), 6933–6938 (109) Zhai, L.; Berg, M C.; Cebeci, F Ç.; Kim, Y.; Milwid, J M.; Rubner, M F.; Cohen, R E Patterned Superhydrophobic Surfaces: Toward a Synthetic Mimic of the Namib Desert Beetle Nano Lett 2006, (6), 1213–1217 (110) Dorrer, C Mimicking the Stenocara Beetle s Dewetting of Drops from a Patterned Superhydrophobic Surface 2008, No 20, 6154–6158 (111) Al-Khayat, O.; Hong, J K.; Beck, D M.; Minett, A I.; Neto, C Patterned Polymer Coatings Increase the Efficiency of Dew Harvesting ACS Appl Mater Interfaces 2017, (15), 13676–13684 (112) Xuemei, C.; Jun, W.; Ruiyuan, M.; Meng, H.; Nikhil, K.; Shuhuai, Y.; Zuankai, W Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation Adv Funct Mater 2011, 21 (24), 4617–4623 (113) Ji, S.; Ramadhianti, P A.; Nguyen, T.-B.; Kim, W.; Lim, H Simple Fabrication Approach for Superhydrophobic and Superoleophobic Al Surface Microelectron Eng 2013, 111, 404–408 (114) Wilkins, D G.; Bromley, L A.; Read, S M Dropwise and Filmwise Condensation of Water Vapor on Gold AIChE J 2018, 19 (1), 119–123 (115) Rose, J W Dropwise Condensation Theory and Experiment: A Review Proc 147 Inst Mech Eng Part A J Power Energy 2002, 216 (2), 115–128 (116) Cho, H.; Kim, H.-Y.; Kang, J Y.; Kim, T S How the Capillary Burst Microvalve Works J Colloid Interface Sci 2007, 306 (2), 379–385 (117) Kim, S.; Kim, K J Dropwise Condensation Modeling Suitable for Superhydrophobic Surfaces J Heat Transfer 2011, 133 (8), 81502–81508 (118) Furmidge, C G L Studies at Phase Interfaces I The Sliding of Liquid Drops on Solid Surfaces and a Theory for Spray Retention J Colloid Sci 1962, 17 (4), 309–324 (119) Kim, H.-Y.; Lee, H J.; Kang, B H Sliding of Liquid Drops Down an Inclined Solid Surface J Colloid Interface Sci 2002, 247 (2), 372–380 (120) Shajiee, S.; Pao, L Y.; Wagner, P N.; Moore, E D.; McLeod, R R Direct Ice Sensing and Localized Closed-Loop Heating for Active de-Icing of Wind Turbine Blades In 2013 American Control Conference; 2013; pp 634–639 (121) Giamati, M J Electrothermal De-Icing System (122) Palacios, J.; Smith, E.; Rose, J.; Royer, R Ultrasonic De-Icing of Wind-Tunnel Impact Icing J Aircr 2011, 48 (3), 1020–1027 (123) MARTIN, C A.; PUTT, J C Advanced Pneumatic Impulse Ice Protection System (PIIP) for Aircraft J Aircr 1992, 29 (4), 714–716 (124) Ju, J.; Zheng, Y.; Jiang, L Bioinspired One-Dimensional Materials for Directional Liquid Transport Acc Chem Res 2014, 47 (8), 2342–2352 (125) Liu, B.; Zhang, K.; Tao, C.; Zhao, Y.; Li, X.; Zhu, K.; Yuan, X Strategies for Anti-Icing: Low Surface Energy or Liquid-Infused? RSC Adv 2016, (74), 70251–70260 (126) Kreder, M J.; Alvarenga, J.; Kim, P.; Aizenberg, J Design of Anti-Icing Surfaces: Smooth, Textured or Slippery? Nat Rev Mater 2016, 1, 15003 (127) Wang, M.; Yu, W.; Zhang, Y.; Woo, J.-Y.; Chen, Y.; Wang, B.; Yun, Y.; Liu, G.; 148 Lee, J K.; Wang, L A Novel Flexible Micro-Ratchet/ZnO Nano-Rods Surface with Rapid Recovery Icephobic Performance J Ind Eng Chem 2018, 62, 52– 57 (128) Wang, L.; Teng, C.; Liu, J.; Wang, M.; Liu, G.; Kim, J Y.; Mei, Q.; Lee, J K.; Wang, J Robust Anti-Icing Performance of Silicon Wafer with Hollow Micro/Nano-Structured ZnO J Ind Eng Chem 2018, 62, 46–51 (129) Nguyen, T.-B.; Park, S.; Lim, H Effects of Morphology Parameters on AntiIcing Performance in Superhydrophobic Surfaces Appl Surf Sci 2018, 435, 585–591 (130) Cho, H.; Lee, J.; Lee, S.; Hwang, W Durable Superhydrophilic/Phobic Surfaces Based on Green Patina with Corrosion Resistance Phys Chem Chem Phys 2015, 17 (10), 6786–6793 (131) Zhang, G.; Hu, J.; Tu, Y.; He, G.; Li, F.; Zou, H.; Lin, S.; Yang, G Preparation of Superhydrophobic Films Based on the Diblock Copolymer P(TFEMA-r-Sty)b-PCEMA Phys Chem Chem Phys 2015, 17 (29), 19457–19464 (132) Boreyko, J B.; Srijanto, B R.; Nguyen, T D.; Vega, C.; Fuentes-Cabrera, M.; Collier, C P Dynamic Defrosting on Nanostructured Superhydrophobic Surfaces Langmuir 2013, 29 (30), 9516–9524 (133) Zhang, Y.; Yu, X.; Wu, H.; Wu, J Facile Fabrication of Superhydrophobic Nanostructures on Aluminum Foils with Controlled-Condensation and DelayedIcing Effects Appl Surf Sci 2012, 258 (20), 8253–8257 (134) Kulinich, S A.; Farzaneh, M On Ice-Releasing Properties of Rough Hydrophobic Coatings Cold Reg Sci Technol 2011, 65 (1), 60–64 (135) Farhadi, S.; Farzaneh, M.; Kulinich, S A Anti-Icing Performance of Superhydrophobic Surfaces Appl Surf Sci 2011, 257 (14), 6264–6269 (136) Sarkar, D K.; Farzaneh, M Superhydrophobic Coatings with Reduced Ice Adhesion J Adhes Sci Technol 2009, 23 (9), 1215–1237 149 (137) Kulinich, S A.; Farzaneh, M Ice Adhesion on Super-Hydrophobic Surfaces Appl Surf Sci 2009, 255 (18), 8153–8157 (138) Shiu, J.-Y.; Kuo, C.-W.; Chen, P.; Mou, C.-Y Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography Chem Mater 2004, 16 (4), 561–564 (139) Pozzato, A.; Zilio, S D.; Fois, G.; Vendramin, D.; Mistura, G.; Belotti, M.; Chen, Y.; Natali, M Superhydrophobic Surfaces Fabricated by Nanoimprint Lithography Microelectron Eng 2006, 83 (4), 884–888 (140) Kulinich, S A.; Farzaneh, M How Wetting Hysteresis Influences Ice Adhesion Strength on Superhydrophobic Surfaces Langmuir 2009, 25 (16), 8854–8856 (141) Dotan, A.; Dodiuk, H.; Laforte, C.; Kenig, S The Relationship between Water Wetting and Ice Adhesion J Adhes Sci Technol 2009, 23 (15), 1907–1915 (142) Meuler, A J.; Smith, J D.; Varanasi, K K.; Mabry, J M.; McKinley, G H.; Cohen, R E Relationships between Water Wettability and Ice Adhesion ACS Appl Mater Interfaces 2010, (11), 3100–3110 (143) Yang, S.; Xia, Q.; Zhu, L.; Xue, J.; Wang, Q.; Chen, Q Research on the Icephobic Properties of Fluoropolymer-Based Materials Appl Surf Sci 2011, 257 (11), 4956–4962 (144) Liu, Q.; Yang, Y.; Huang, M.; Zhou, Y.; Liu, Y.; Liang, X Durability of a Lubricant-Infused Electrospray Silicon Rubber Surface as an Anti-Icing Coating Appl Surf Sci 2015, 346, 68–76 (145) Arianpour, F.; Farzaneh, M.; Kulinich, S A Hydrophobic and Ice-Retarding Properties of Doped Silicone Rubber Coatings Appl Surf Sci 2013, 265, 546– 552 (146) Wier, K A.; McCarthy, T J Condensation on Ultrahydrophobic Surfaces and Its Effect on Droplet Mobility: Ultrahydrophobic Surfaces Are Not Always Water Repellant Langmuir 2006, 22 (6), 2433–2436 150 (147) Varanasi, K K.; Deng, T.; Smith, J D.; Hsu, M.; Bhate, N Frost Formation and Ice Adhesion on Superhydrophobic Surfaces Appl Phys Lett 2010, 97 (23), 234102 (148) Jung, S.; Dorrestijn, M.; Raps, D.; Das, A.; Megaridis, C M.; Poulikakos, D Are Superhydrophobic Surfaces Best for Icephobicity? Langmuir 2011, 27 (6), 3059– 3066 (149) Zou, M.; Beckford, S.; Wei, R.; Ellis, C.; Hatton, G.; Miller, M A Effects of Surface Roughness and Energy on Ice Adhesion Strength Appl Surf Sci 2011, 257 (8), 3786–3792 (150) Kulinich, S A.; Farhadi, S.; Nose, K.; Du, X W Superhydrophobic Surfaces: Are They Really Ice-Repellent? Langmuir 2011, 27 (1), 25–29 (151) Chen, J.; Liu, J.; He, M.; Li, K.; Cui, D.; Zhang, Q.; Zeng, X.; Zhang, Y.; Wang, J.; Song, Y Superhydrophobic Surfaces Cannot Reduce Ice Adhesion Appl Phys Lett 2012, 101 (11), 111603 (152) Bengaluru Subramanyam, S.; Kondrashov, V.; Rühe, J.; Varanasi, K K Low Ice Adhesion on Nano-Textured Superhydrophobic Surfaces under Supersaturated Conditions ACS Appl Mater Interfaces 2016, (20), 12583–12587 (153) Chu, F.; Wu, X.; Wang, L Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces ACS Appl Mater Interfaces 2017, (9), 8420–8425 (154) Chu, F.; Wu, X.; Wang, L Meltwater Evolution during Defrosting on Superhydrophobic Surfaces ACS Appl Mater Interfaces 2018, 10 (1), 1415– 1421 (155) Bohn, H F.; Federle, W Insect Aquaplaning: Nepenthes Pitcher Plants Capture Prey with the Peristome, a Fully Wettable Water-Lubricated Anisotropic Surface Proc Natl Acad Sci U S A 2004, 101 (39), 14138–14143 (156) Dou, R.; Chen, J.; Zhang, Y.; Wang, X.; Cui, D.; Song, Y.; Jiang, L.; Wang, J Anti-Icing Coating with an Aqueous Lubricating Layer ACS Appl Mater 151 Interfaces 2014, (10), 6998–7003 (157) Subramanyam, S B.; Rykaczewski, K.; Varanasi, K K Ice Adhesion on Lubricant-Impregnated Textured Surfaces Langmuir 2013, 29 (44), 13414– 13418 (158) Chen, J.; Dou, R.; Cui, D.; Zhang, Q.; Zhang, Y.; Xu, F.; Zhou, X.; Wang, J.; Song, Y.; Jiang, L Robust Prototypical Anti-Icing Coatings with a SelfLubricating Liquid Water Layer between Ice and Substrate ACS Appl Mater Interfaces 2013, (10), 4026–4030 (159) Ozbay, S.; Yuceel, C.; Erbil, H Y Improved Icephobic Properties on Surfaces with a Hydrophilic Lubricating Liquid ACS Appl Mater Interfaces 2015, (39), 22067–22077 (160) Yeong, Y H.; Wang, C.; Wynne, K J.; Gupta, M C Oil-Infused Superhydrophobic Silicone Material for Low Ice Adhesion with Long-Term Infusion Stability ACS Appl Mater Interfaces 2016, (46), 32050–32059 (161) Zhu, L.; Xue, J.; Wang, Y.; Chen, Q.; Ding, J.; Wang, Q Ice-Phobic Coatings Based on Silicon-Oil-Infused Polydimethylsiloxane ACS Appl Mater Interfaces 2013, (10), 4053–4062 (162) Yin, X.; Zhang, Y.; Wang, D.; Liu, Z.; Liu, Y.; Pei, X.; Yu, B.; Zhou, F Integration of Self-Lubrication and Near-Infrared Photothermogenesis for Excellent Anti-Icing/Deicing Performance Adv Funct Mater 2015, 25 (27), 4237–4245 (163) Juuti, P.; Haapanen, J.; Stenroos, C.; Niemelä-Anttonen, H.; Harra, J.; Koivuluoto, H.; Teisala, H.; Lahti, J.; Tuominen, M.; Kuusipalo, J.; et al Achieving a Slippery, Liquid-Infused Porous Surface with Anti-Icing Properties by Direct Deposition of Flame Synthesized Aerosol Nanoparticles on a Thermally Fragile Substrate Appl Phys Lett 2017, 110 (16), 161603 (164) Stamatopoulos, C.; Hemrle, J.; Wang, D.; Poulikakos, D Exceptional Anti-Icing Performance of Self-Impregnating Slippery Surfaces ACS Appl Mater 152 Interfaces 2017, (11), 10233–10242 (165) Wang, N.; Xiong, D.; Pan, S.; Wang, K.; Shi, Y.; Deng, Y Robust Superhydrophobic Coating and the Anti-Icing Properties of Its LubricantsInfused-Composite Surface under Condensing Condition New J Chem 2017, 41 (4), 1846–1853 (166) Wang, N.; Xiong, D.; Lu, Y.; Pan, S.; Wang, K.; Deng, Y.; Shi, Y Design and Fabrication of the Lyophobic Slippery Surface and Its Application in Anti-Icing J Phys Chem C 2016, 120 (20), 11054–11059 (167) Wang, T.; Zheng, Y.; Raji, A.-R O.; Li, Y.; Sikkema, W K A.; Tour, J M Passive Anti-Icing and Active Deicing Films ACS Appl Mater Interfaces 2016, (22), 14169–14173 (168) Ji, S.; Song, K.; Nguyen, T B.; Kim, N.; Lim, H Optimal Moth Eye Nanostructure Array on Transparent Glass Towards Broadband Antireflection ACS Appl Mater Interfaces 2013, (21), 10731–10737 (169) Zang, D.; Li, F.; Geng, X.; Lin, K.; Clegg, P S Tuning the Wettability of an Aluminum Surface via a Chemically Deposited Fractal Dendrite Structure Eur Phys J E 2013, 36 (6) (170) Vogel, N.; Belisle, R A.; Hatton, B.; Wong, T.-S.; Aizenberg, J Transparency and Damage Tolerance of Patternable Omniphobic Lubricated Surfaces Based on Inverse Colloidal Monolayers 2013, 4, 2176 (171) Wang, N.; Xiong, D.; Deng, Y.; Shi, Y.; Wang, K Mechanically Robust Superhydrophobic Steel Surface with Anti-Icing, UV-Durability, and Corrosion Resistance Properties ACS Appl Mater Interfaces 2015, (11), 6260–6272 (172) Wood, G R.; Walton, A G Homogeneous Nucleation Kinetics of Ice from Water J Appl Phys 1970, 41 (7), 3027–3036 (173) Lee, C.; Abbasi, M S.; Park, S.; Lim, H.; Lee, J Effect of the Surface Wettability Changes on Nanostructured Polymer Film for Heat Exchanger Applications Appl Phys Lett 2018, 113 (1), 11601 153 154 .. .Biomimetic functional surfaces with tailored wettability for water harvesting and anti- icing applications 2019 Nguyen Thanh Binh Biomimetic functional surfaces with tailored wettability for water. .. would have been impossible without them ii ABSTRACT iii Biomimetic functional surfaces with tailored wettability for water harvesting and anti- icing applications * Biomimetic or Biomimicry refers... property), anti- icing (slippery and water repellency), anti- bio fouling (water repellency), water condensation (hybrid wetting) Among them, water harvesting and anti- icing performance have recently attracted