1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Phát triển một số phương pháp rút gọn thuộc tính trong bảng quyết định không đầy đủ theo tiếp cận filter wrapper (developing the filter wrapper attribute reduction methods in incomplete decision tables)

191 20 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 191
Dung lượng 2,93 MB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO BỘ QUỐC PHÒNG VIỆN KHOA HỌC VÀ CÔNG NGHỆ QUÂN SỰ NGUYỄN BÁ QUẢNG PHÁT TRIỂN MỘT SỐ PHƯƠNG PHÁP RÚT GỌN THUỘC TÍNH TRONG BẢNG QUYẾT ĐỊNH KHÔNG ĐẦY ĐỦ THEO TIẾP CẬN FILTER-WRAPPER LUẬN ÁN TIẾN SĨ TOÁN HỌC Hà Nội - 2021 BỘ GIÁO DỤC VÀ ĐÀO TẠO BỘ QUỐC PHÒNG VIỆN KHOA HỌC VÀ CÔNG NGHỆ QUÂN SỰ NGUYỄN BÁ QUẢNG PHÁT TRIỂN MỘT SỐ PHƯƠNG PHÁP RÚT GỌN THUỘC TÍNH TRONG BẢNG QUYẾT ĐỊNH KHƠNG ĐẦY ĐỦ THEO TIẾP CẬN FILTER-WRAPPER Chuyên ngành: Cơ sở toán học cho tin học Mã số: LUẬN ÁN TIẾN SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS TS NGUYỄN LONG GIANG TS NGÔ TRỌNG MẠI Hà Nội - 2021 i LỜI CAM ĐOAN Tôi xin cam đoan công trình nghiên cứu riêng tơi, số liệu, kết nghiên cứu luận án hoàn toàn trung thực chưa công bố cơng trình khác, liệu tham khảo trích dẫn đầy đủ Tác giả luận án Nguyễn Bá Quảng ii LỜI CÁM ƠN Tôi xin chân thành cám ơn Thủ trưởng Viện Khoa học Công nghệ qn sự, Phịng Đào tạo, Viện Cơng nghệ thơng tin đồng nghiệp động viên, quan tâm, tạo điều kiện thuận lợi giúp đỡ trình học tập nghiên cứu Tôi xin bày tỏ biết ơn chân thành sâu sắc đến PGS TS Nguyễn Long Giang, TS Ngô Trọng Mại tận tình bảo, hướng dẫn tơi suốt q trình nghiên cứu hồn thành luận án Tôi xin chân thành cám ơn nhà khoa học Viện Khoa học Công nghệ quân sự, nhà khoa học Viện Hàn lâm Khoa học Công nghệ Việt Nam, nhà khoa học ngồi qn đội giúp đỡ tơi hồn thành luận án Xin chân thành cám ơn gia đình bạn bè chia sẻ, động viên giúp đỡ suốt thời gian học tập nghiên cứu iii MỤC LỤC Trang LỜI CAM ĐOAN i LỜI CÁM ƠN ii DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT v DANH MỤC CÁC BẢNG vi DANH MỤC CÁC HÌNH VẼ vii MỞ ĐẦU CHƯƠNG TỔNG QUAN VỀ RÚT GỌN THUỘC TÍNH THEO TIẾP CẬN TẬP THƠ DUNG SAI 10 1.1 Hệ thơng tin mơ hình tập thô truyền thống 10 1.1.1 Hệ thông tin 10 1.1.2 Mơ hình tập thô truyền thống 11 1.2 Hệ thông tin không đầy đủ mơ hình tập thơ dung sai 12 1.2.1 Hệ thông tin không đầy đủ 12 1.2.2 Mơ hình tập thô dung sai 12 1.2.3 Bảng định không đầy đủ 14 1.2.4 Ma trận dung sai 16 1.3 Tổng quan rút gọn thuộc tính theo tiếp cận tập thơ dung sai 18 1.3.1 Tổng quan rút gọn thuộc tính 18 1.3.2 Tiếp cận filter, wrapper rút gọn thuộc tính 19 1.3.3 Rút gọn thuộc tính theo tiếp cận tập thơ dung sai 21 1.4 Các nghiên cứu liên quan đến rút gọn thuộc tính theo tiếp cận tập thơ dung sai 24 1.4.1 Rút gọn thuộc tính theo tiếp cận tập thô dung sai 24 1.4.2 Phương pháp gia tăng rút gọn thuộc tính bảng định không đầy đủ theo tiếp cận tập thô dung sai 27 1.5 Kết luận chương 36 CHƯƠNG THUẬT TỐN FILTER-WRAPPER TÌM TẬP RÚT GỌN CỦA BẢNG QUYẾT ĐỊNH KHÔNG ĐẦY ĐỦ 37 2.1 Xây dựng độ đo khoảng cách bảng định không đầy đủ .38 2.1.1 Xây dựng độ đo khoảng cách hai tập hợp 39 2.1.2 Xây dựng độ đo khoảng cách hai tập thuộc tính 40 iv 2.2 Rút gọn thuộc tính bảng định khơng đầy đủ sử dụng khoảng cách 42 2.2.1 Xây dựng thuật tốn filter tìm tập rút gọn bảng định không đầy đủ 43 2.2.2 Đề xuất thuật toán filter-wrapper tìm tập rút gọn bảng định khơng đầy đủ 46 2.2.3 Thực nghiệm đánh giá kết 49 2.3 Kết luận chương 54 CHƯƠNG CÁC THUẬT TỐN GIA TĂNG FILTER-WRAPPER TÌM TẬP RÚT GỌN CỦA BẢNG QUYẾT ĐỊNH THAY ĐỔI 55 3.1 Thuật toán gia tăng filter-wrapper tìm tập rút gọn bổ sung, loại bỏ tập đối tượng 58 3.1.1 Công thức cập nhật khoảng cách bổ sung tập đối tượng .58 3.1.2 Thuật toán gia tăng filter-wrapper tìm tập rút gọn bổ sung tập đối tượng 62 3.1.3 Công thức cập nhật khoảng cách loại bỏ tập đối tượng 67 3.1.4 Thuật toán gia tăng filter-wrapper cập nhật tập rút gọn loại bỏ tập đối tượng 70 3.1.5 Thực nghiệm đánh giá thuật toán 74 3.2 Thuật tốn gia tăng filter-wrapper tìm tập rút gọn bổ sung, loại bỏ tập thuộc tính 92 3.2.1 Công thức cập nhật khoảng cách bổ sung tập thuộc tính 92 3.2.2 Thuật tốn gia tăng filter-wrapper tìm tập rút gọn bổ sung tập thuộc tính 93 3.2.3 Công thức cập nhật khoảng cách loại bỏ tập thuộc tính 97 3.2.4 Thuật tốn gia tăng filter-wrapper cập nhật tập rút gọn loại bỏ tập thuộc tính 98 3.2.5 Thực nghiệm đánh giá thuật toán 101 3.3 Kết luận chương 106 KẾT LUẬN 108 DANH MỤC CÁC CƠNG TRÌNH KHOA HỌC ĐÃ CÔNG BỐ .110 TÀI LIỆU THAM KHẢO 111 v DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT C Số thuộc tính điều kiện bảng định IDS = (U , C ∪{d }) Bảng định không đầy đủ IIS = (U, A) Hệ thông tin không đầy đủ PX Tập xấp xỉ X P PX Tập xấp xỉ X P Miền dương P d POS Quan hệ dung sai tập thuộc tính P SIM (P) Lớp dung sai chứa u phủ U / SIM (P ) S Lực lượng lớp dung sai S Số đối tượng U Giá trị đối tượng u u (a ) Phủ U P U / SIM (P) Filter Distance based Attribute Reduction in Incomplete Decision Tables Incremental Filter-Wrapper Algorithm for Distance based Attribute Reduction in Incomplete Decision Tables when Add Attributes Incremental Filter-Wrapper Algorithm for Distance based Attribute Reduction in Incomplete Decision Tables when Add Objects Incremental Filter-Wrapper Algorithm for Distance based Attribute Reduction in Incomplete Decision Tables when Delete Attributes Incremental Filter-Wrapper Algorithm for Distance based Attribute Reduction in Incomplete Decision Tables when Delete Objects Filter-Wrapper Distance based Attribute Reduction in Incomplete Decision Tables IDS_F_DAR IDS_IFW_AA IDS_IFW_AO IDS_IFW_DA IDS_IFW_DO IDS_FW_DAR vi DANH MỤC CÁC BẢNG Trang Bảng 1.1 Bảng định không đầy đủ xe 16 Bảng 1.2 Các thuật tốn tìm tập rút gọn bảng định không đầy đủ theo tiếp cận tập thô dung sai 24 Bảng 1.3 Các thuật toán gia tăng tính tốn tập xấp xỉ tìm tập rút gọn theo tiếp cận tập thô truyền thống mơ hình mở rộng 28 Bảng 1.4 Các thuật tốn gia tăng tính tốn tập xấp xỉ tìm tập rút gọn theo tiếp cận tập thô dung sai 33 Bảng 2.1 Bảng định Ví dụ 2.1 45 Bảng 2.2 Bộ liệu thực nghiệm thuật toán IDS_FW_DAR 50 Bảng 2.3 Thời gian thực ba thuật tốn (tính giây) 51 Bảng 2.4 Số lượng thuộc tính tập rút gọn độ xác phân lớp ba thuật toán 52 Bảng 3.1 Bảng định Ví dụ 3.1 61 Bảng 3.2 Bảng định Ví dụ 3.2 69 Bảng 3.3 Bộ liệu thử nghiệm thuật toán IDS_IFW_AO 75 Bảng 3.4 Thời gian thực thuật toán IDS_IFW_AO IDS_FW_DAR (s) 77 Bảng 3.5 Số lượng thuộc tính tập rút gọn độ xác phân lớp thuật tốn IDS_IFW_AO IDS_FW_DAR 80 Bảng 3.6 Số lượng thuộc tính tập rút gọn độ xác thuật toán IDS_IFW_AO IARM-I 82 Bảng 3.7 Thời gian thực thuật toán IDS_IFW_AO IARM-I (s) 86 Bảng 3.8 Thời gian thực 03 thuật toán (s) 89 Bảng 3.9 Số lượng thuộc tính tập rút gọn độ xác phân lớp 03 thuật tốn 90 Bảng 3.10 Bộ liệu thực nghiệm thuật toán IDS_IFW_AA 102 Bảng 3.11 Số lượng thuộc tính tập rút gọn độ xác phân lớp thuật toán IDS_IFW_AA UARA 103 Bảng 3.12 Thời gian thực thuật toán IDS_IFW_AA UARA (s) .105 vii DANH MỤC CÁC HÌNH VẼ Trang Hình 1.1 Quy trình rút gọn thuộc tính 20 Hình 1.2 Cách tiếp cận filter wrapper rút gọn thuộc tính .21 Hình 1.3 Mơ hình phương pháp rút gọn thuộc tính theo tiếp cận tập thơ dung sai 22 Hình 2.1 Thời gian thực ba thuật tốn (tính giây) 51 Hình 2.2 Số lượng thuộc tính tập rút gọn ba thuật toán 53 Hình 2.3 Độ xác phân lớp ba thuật toán 54 Hình 3.1 Thời gian thực thuật tốn IDS_IFW_AO IDS_FW_DAR 79 Hình 3.2 Độ xác phân lớp IDS_IFW_AO IDS_FW_DAR 81 Hình 3.3.a Bộ số liệu Audiology 84 Hình 3.3.b Bộ số liệu Soybean-large 84 Hình 3.3.c Bộ số liệu Congressional Voting Records 84 Hình 3.3.d Bộ số liệu Arrhythmia 85 Hình 3.3.e Bộ số liệu Anneal 85 Hình 3.3.f Bộ số liệu Advertisements 85 Hình 3.3 Số lượng thuộc tính tập rút gọn độ xác thuật tốn IDS_IFW_AO IARM-I 85 Hình 3.4 Thời gian thực thuật toán IDS_IFW_AO IARM-I 88 Hình 3.5 Thời gian thực 03 thuật toán (s) 89 Hình 3.6 Độ xác phân lớp 03 thuật tốn 91 Hình 3.7 Số thuộc tính tập rút gọn 03 thuật toán 91 MỞ ĐẦU Tính cấp thiết đề tài luận án Trong bối cảnh ngày nay, tăng trưởng không ngừng dung lượng liệu số lượng thuộc tính gây khó khăn, thách thức cho việc thực thi thuật toán khai phá liệu, phát tri thức Rút gọn thuộc tính (cịn gọi rút gọn chiều, hay rút gọn đặc trưng) toán quan trọng bước tiền xử lý liệu với mục tiêu loại bỏ thuộc tính dư thừa, khơng cần thiết nhằm tăng tính hiệu thuật tốn khai phá liệu Hiện có hai cách tiếp cận tốn rút gọn thuộc tính [39-40]: filter (lọc) wrapper (đóng gói) Cách tiếp cận filter thực việc rút gọn thuộc tính độc lập với thuật khai phá liệu sử dụng sau Các thuộc tính chọn dựa độ quan trọng chúng việc phân lớp liệu Trong đó, cách tiếp cận wrapper tiến hành việc lựa chọn cách áp dụng thuật khai phá, độ xác kết lấy làm tiêu chuẩn để lựa chọn tập thuộc tính Lý thuyết tập thô (Rough set) Pawlak đề xuất [113] xem công cụ hiệu giải tốn rút gọn thuộc tính bảng định đầy đủ, cộng đồng nghiên cứu tập thô thực lâu Trong toán thực tế, bảng định thường thiếu giá trị miền giá trị thuộc tính, gọi bảng định khơng đầy đủ Ví dụ với bảng định chẩn đốn bệnh viêm gan với thuộc tính triệu chứng, bác sĩ thu thập đầy đủ triệu chứng tất bệnh nhân để định Để giải tốn rút gọn thuộc tính trực tiếp bảng định không đầy đủ mà không qua bước tiền xử lý giá trị thiếu, Kryszkiewicz [67] mở rộng quan hệ tương đương lý thuyết tập thô truyền thống thành quan hệ dung sai xây dựng mơ hình tập thô dung sai (tolerance rough set) Các phương pháp rút gọn thuộc tính bảng định khơng đầy đủ theo 109 B Những đóng góp luận án Xây dựng độ đo khoảng cách đề xuất thuật toán theo tiếp cận kết hợp filter-wrapper IDS_FW_DAR tìm tập rút gọn bảng định khơng đầy đủ sử dụng độ đo khoảng cách Xây dựng cơng thức gia tăng tính khoảng cách đề xuất 04 thuật tốn gia tăng filter-wrapper tìm tập rút gọn bảng định không đầy đủ trường hợp bảng định bổ sung, loại bỏ tập đối tượng tập thuộc tính (các thuật tốn IDS_IFW_AO, IDS_IFW_DO, IDS_IFW_AA, IDS_IFW_DA) C Hướng nghiên cứu Triển khai thuật toán đề xuất vào việc giải lớp toán thực tiễn, đặc biệt tốn có liệu với số thuộc tính lớn (high dimention data) lĩnh vực khác liệu gen tin sinh học… Tiếp tục nghiên cứu, đề xuất thuật toán gia tăng filter-wrapper hiệu nhằm giảm thiểu thời gian thực dựa mơ hình tập thơ mở rộng khác phù hợp với lớp toán thực tiễn 110 DANH MỤC CÁC CƠNG TRÌNH KHOA HỌC ĐÃ CÔNG BỐ Nguyen Ba Quang, Nguyen Long Giang, Dang Thi Oanh “A Distance based Incremental Filter-Wrapper Algorithm for Fingding Reduct in Incomplete Decision Tables”, Vietnam Journal of Science and Technology - Vietnam Academy of Science and Technology, Vol 57, No 4, 2019, pp 499-512 Nguyễn Bá Quảng, Nguyễn Long Giang, Trần Thanh Đại, Nguyễn Ngọc Cương, “Phương pháp Filter-Wrapper rút gọn thuộc tính bảng định không đầy đủ sử dụng khoảng cách”, Kỷ yếu Hội thảo quốc gia lần thứ XXII: Một số vấn đề chọn lọc Công nghệ thông tin truyền thơng, Thái Bình, 28-29/06/2019, Tr 246-252 Nguyễn Bá Quảng, Nguyễn Long Giang, Nguyễn Thị Lan Hương, Nguyễn Ngọc Cương, “Phương pháp gia tăng rút gọn thuộc tính bảng định không đầy đủ sử dụng khoảng cách”, Kỷ yếu Hội thảo quốc gia lần thứ XXII: Một số vấn đề chọn lọc Công nghệ thông tin truyền thơng, Thái Bình, 28-29/06/2019, Tr 253-259 Phạm Minh Ngọc Hà, Nguyễn Long Giang, Nguyễn Văn Thiện, Nguyễn Bá Quảng, “Về thuật tốn gia tăng tìm tập rút gọn bảng định không đầy đủ”, Chuyên san cơng trình nghiên cứu phát triển CNTT&TT, Tạp chí Cơng nghệ thông tin truyền thông - Bộ TT&TT, Tập 2019, Số 1, Tháng 9, Tr 11-18 Nguyễn Bá Quảng, Nguyễn Long Giang, “Về thuật toán gia tăng tìm tập rút gọn bảng định khơng đầy đủ trường hợp bổ sung tập thuộc tính”, Tạp chí Nghiên cứu KH&CN Quân sự, Số 63, 10-2019, Tr 171-183 111 TÀI LIỆU THAM KHẢO Tiếng Việt: [1] Vũ Văn Định, “Rút gọn thuộc tính bảng định không đầy đủ theo tiếp cận tập thô dung sai”, Luận án Tiến sĩ Toán học, Học viện Khoa học Công nghệ, Viện Hàn lâm Khoa học Công nghệ Việt Nam, 2016 [2] Nguyễn Thị Lan Hương, “Rút gọn thuộc tính bảng định động theo tiếp cận tập thơ”, Luận án Tiến sĩ Tốn học, Học viện Khoa học Công nghệ-Viện Hàn lâm Khoa học Công nghệ Việt Nam, 2016 [3] Nguyễn Văn Thiện, “Một số phương pháp lai ghép rút gọn thuộc tính theo tiếp cận tập thơ mờ”, Luận án Tiến sĩ Máy tính, Học viện Khoa học Cơng nghệ, Viện Hàn lâm Khoa học Công nghệ Việt Nam, 2018 [4] Nguyễn Văn Thiện, Nguyễn Long Giang, Nguyễn Như Sơn, “Phương pháp gia tăng rút gọn thuộc tính bảng định sử dụng khoảng cách mờ”, Hội thảo Quốc gia lần thứ XXI - Một số vấn đề chọn lọc CNTT TT, Thanh Hóa, 27-28/07/2018, Tr 296- 302 Tiếng Anh: [5] A.K Das, S Sengupta, S Bhattacharyya, “A Group Incremental Feature Selection for Classification using Rough Set Theory based Genetic Algorithm”, Applied Soft Computing 65, pp 400-411, 2018 [6] A.P Zeng, T.R Li, D Liu, J.B Zhang, H.M Chen, “A fuzzy rough set approach for incremental feature selection on hybrid information systems”, Fuzzy Sets and Systems, Volume 258, pp 39-60, January 2015 [7] A.P Zeng , T.R Li, J Hu, H.M Chen, Chuan Luo, “Dynamical updating fuzzy rough approximations for hybrid data under the variation of attribute values”, Information Sciences 000, pp 1-26, 2016 112 [8] Cao Chinh Nghia, Demetrovics Janos, Nguyen Long Giang, Vu Duc Thi, “About a fuzzy distance between two fuzzy partitions and attribute reduction problem”, Cybernetics and Information Technologies, Vol 16, No 4, pp 13-28, 2016 [9] C C Zhang, J H Dai, “An incremental attribute reduction approach based on knowledge granularity for incomplete decision systems”, Granular Computing, pp 1-15, 2019 [10] C.J Yang, H Ge, L.S Li, J Ding, “A unified incremental reduction with the variations of the object for decision tables”, Soft Computing, Vol 23, Iss 15, pp 64076427, 2019 [11] C Luo, T R Li and H M Chen, “Dynamic maintenance of approximations in setvalued ordered decision systems under the attribute generalization”, Information Sciences 257, pp 210 - 228, 2014 [12] C Luo, T.R Li, H.M Chen, H Fujita, Z Yi, “Efficient updating of probabilistic approximations with incremental objects”, KnowledgeBased Systems 109, pp 71-83, 2017 [13] C Luo, T.R Li, Y Yao, “Dynamic probabilistic rough sets with incomplete data”, Information Sciences 417, pp 39–54, 2017 [14] C Luo, T.R Li, Y.Y Huang, H Fujita, “Updating three-way decisions in incomplete multi-scale information systems”, Information Sciences 476, pp 274-289, 2019 [15] C.X Hu, S.X Liu, G.X Liu, “Matrix-based approaches for dynamic updating approximations in multigranulation rough sets”, Knowl Based Syst 122, pp 51-63, 2017 [16] C.Z Wang, Y Qi, Q He, Attribute reduction using distance-based fuzzy rough sets, 2015 International Conference on Machine Learning and Cybernetics , IEEE, 2015 [17] C.Z Wang, Y.Huang, M.W Shao, X.D.Fan, Fuzzy rough set-based attribute reduction using distance measures, Knowledge-Based Systems, Volume 164, 15 January 2019, pp 205-212 113 [18] D.D Zhang, R.P Li, X.T Tang, Y.S Zhao, “An incremental reduct algorithm based on generalized decision for incomplete decision tables”, IEEE 3rd International Conference on Intelligent System and Knowledge Engineering, pp 340-344, 2008 [19] Demetrovics Janos, Nguyen Thi Lan Huong, Vu Duc Thi, Nguyen Long Giang, “Metric Based Attribute Reduction Method in Dynamic Decision Tables”, Cybernetics and Information Technologies, Vol.16, No.2, pp 315, 2016 [20] D.G Chen, Y Yang, Z Dong, “An incremental algorithm for attribute reduction with variable precision rough sets”, Appl Soft Comput., vol 45, pp 129-149, 2016 [21] D Liu, T.R Li, D Ruan, W.L Zou, “An incremental approach for inducing knowledge from dynamic information systems”, Fundam Inform 94, pp 245-260, 2009 [22] D Liu, T.R Li, G.R Liu, P Hu, “An incremental approach for inducing interesting knowledge based on the change of attribute values”, in: Proceedings of the2009 IEEE International Conference on Granular Computing, Nanchang, China, pp.415–418, 2009 [23] D Liu, T.R Li, J.B Zhang, “A rough set-based incremental approach for learning knowledge in dynamic incomplete information systems”, International Journal of Approximate Reasoning 55, pp 1764-1786, 2014 [24] D Liu, T.R Li, J.B Zhang, “Incremental updating approximations in probabilistic rough sets under the variation of attributes”, KnowledgeBased Systems 73, pp 81-96, 2015 [25] D.X Peng, X.D Hong, “Research on Heuristic Knowledge Reduction Algorithm for Incomplete Decision Table”, IEEE International Conference on Internet Technology and Applications, 2010 [26] D Yue, Z Xu, C.D Mei, W.Y Mei, “Analysis of Attribute Reduction of Incomplete Decision Table Based on Information Entropy”, 8th International Conference on Intelligent Computation Technology and Automation (ICICTA), 2015 114 [27] F Hu, G Wang, H Huang, “Incremental attribute reduction based on elementary sets”, International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Springer-Verlag, pp.185-193, 2005 [28] F.M Ma, J.W Chen, W Han, “A Positive Region Based Incremental Attribute Reduction Algorithm for Incomplete System”, International Conference on Electronic Information Technology and Intellectualization (ICEITI 2016), pp 153-158, 2016 [29] F.M Ma, T.F Zhang, “Generalized binary discernibility matrix for attribute reduction in incomplete information systems”, The Journal of China Universities of Posts and Telecommunications, Volume 24, Issue 4, pp 57-75, 2017 [30] F.M Ma, M.W Ding , T.F Zhang, J Cao, “Compressed binary discernibility matrix based incremental attribute reduction algorithm for group dynamic data”, Neurocomputing, 2019 [31] F Wang, J.Y Liang, C.Y Dang, “Attribute reduction for dynamic data sets”, Applied Soft Computing, 13(1), pp 676-689, 2013 [32] F Wang, J.Y Liang, Y.H Qian, “Attribute reduction: A dimension incremental strategy”, Knowledge-Based Systems, Volume 39, pp 95-108, 2013 [33] G Hao, L.L Shu, Y.C jian, D Jian, “Incremental reduction algorithm with acceleration strategy based on conflict region”, Artif Intell Rev, Springer, 2017 [34] G.M Lang, D.Q Miao, T Yang, M.J Cai, “Knowledge reduction of dynamic covering decision information systems when varying covering cardinalities”, Information Sciences 346-47, pp 236-260, 2016 [35] G.M Lang, Q Li, M.J Cai, T Yang, Q.M Xiao, Incremental approaches to knowledge reduction based on characteristic matrices, Int J Mach Learn Cybern (1) pp 203-222, 2017 [36] G.M Lang, D.Q Miao , M.J Cai, Z.F Zhang, “ Incremental approaches for updating reducts in dynamic covering information systems, Knowledge Based Systems 134, pp 85 104, 2017 115 [37] G.M Lang, M.J Cai, H based attribute reduction of systems”, Knowledge-Based 161-173, 2018 Fujita, Q.M Xiao, “Related familiesdynamic covering decision information Systems, Volume 162, 15 December, pp [38] G Q Wang, “Valid Incremental Attribute Reduction Algorithm Based on Attribute Generalization for an Incomplete Information System”, Chinese Journal of Electronics, Vol.28, No.4, 2019 [39] Guyon, Isabelle; Elisseeff, André, “An Introduction to Variable and Feature Selection”, Journal of Machine Learning Research, pp 1157-1182, 2003 [40] H Liu, L Yu, “Toward integrating feature selection algorithms for classification and clustering”, IEEE Transactions on knowledge and data engineering, 17(4), pp 491-502, 2005 [41] H.M Chen, T.R Li, S.J Qiao, D Ruan, “A rough set based dynamic maintenance approach for approximations in coarsening and refining attribute values”, Int J Intell Syst 25, pp 1005-1026, 2010 [42] H.M Chen, T.R Li, R Da, “Maintenance of approximations in incomplete ordered decision systems while attribute values coarsening or refining”, Knowl.-Based Syst 31, pp 140-161, 2012 [43] H.M Chen, T.R Li, R Da, et al., “A rough-set-based incremental approach for updating approximations under dynamic maintenance environments”, IEEE Trans Knowl Data Eng 25, pp 274-284, 2013 [44] H M Chen, T R Li, D Ruan, J H Lin and C X Hu, “A rough-set based incremental approach for updating approximations under dynamic maintenance environments”, IEEE Transactions on Knowledge and Data Engineering 25 (2), 274 - 284, 2013 [45] H.S Zou, C.S Zhang, “Efficient Algorithm for Knowledge Reduction in Incomplete Information System”, Journal of Computational Information Systems 8: 6, pp 2531–2538, 2012 [46] Huyen Tran, Thinh Cao, Koichi Yamada, Do Van Nguyen, “Incremental Updating Methods with Three-way Decision Models in Incomplete 116 Information Systems”, IEEE Joint 10th International Conference on Soft Computing and Intelligent Systems, pp 27-32, 2018 [47] H.X Li, X.H Zhou, M.M Zhu, “A Heuristic Reduction Algorithm in IIS Based on Binary Matrix”, RSKT, pp 143-150, 2010 [48] H Zhao, K.Y Qin, “Mixed feature selection in incomplete decision table” Knowledge-Based Systems, Volume 57, pp 181-190, 2014 [49] J.C Xu, L Sun, “Knowledge Entropy and Feature Selection in Incomplete Decision Systems,” Applied Mathematics & Information Sciences, vol 7, no 2, pp 829-837, 2013 [50] J.H Dai, W.T Wang, H.W Tian, L Liu, “Attribute selection based on a new conditional entropy for incomplete decision systems”, KnowledgeBased Systems, Volume 39, pp 207-213, 2013 [51] J Hu, K Wang, H Yu, “Attribute Reduction on Distributed Incomplete Decision Information System”, IJCRS 2017, pp 289-305, 2017 [52] J Qian, C.Y Dang, X.D Yue, N Zhang, “Attribute reduction for sequential three-way decisions under dynamic granulation”, International Journal of Approximate Reasoning 85(2017) 196-216 [53] J Xie, X.F Shen, H.F Liu, X.Y Xu, “Research on an Incremental Attribute Reduction Based on Relative Positive Region”, Journal of Computational Information Systems 9:16, pp 6621-6628, 2013 [54] J.Y Liang, R Li, Y H Qian, “Distance: A more comprehensible perspective for measures in rough set theory”, Knowledge-Based Systems, Volume 27, pp 126-136, 2012 [55] J.Y Liang, F Wang, C.Y Dang, Y.H Qian, “A group incremental approach to feature selection applying rough set technique”, IEEE Transactions on Knowledge and Data Engineering, 26(2), pp 294-308, 2014 [56] J Yu, L Sang, H Dong, “Based on Attribute Order for Dynamic Attribute Reduction in the Incomplete Information System”, IEEE IMCEC 2018, pp 2475-2478, 2018 117 [57] J Zhou, E Xu, Y.H Li, Z Wang, Z.X Liu, X.Y Bai , “A New Attribute Reduction Algorithm Dealing With The Incomplete Information System”, 2009 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, 2009 [58] J Zhang, T Li, D Ruan, “Rough sets based matrix approaches with dynamic attribute variation in set-valued information systems”, Int J Approx Reason, Vol.53, pp 620-635, 2012 [59] L.H Guan, “An incremental updating algorithm of attribute reduction set in decision tables”, FSKD'09 Proceedings of the 6th international conference on Fuzzy systems and knowledge discovery, Vol 2, pp 421425, 2009 [60] L.N Wang , X Yang , Y Chen , L Liu , S.Y An , P Zhuo , “Dynamic composite decision-theoretic rough set under the change of attributes”, Int J Comput Intell.Syst 11 (2018) 355–370 [61] Long Giang Nguyen, “Metric Based Attribute Reduction in Decision Tables”, Federated Conference on Computer Science and Information System (FEDCSIS), Wroclaw, Poland, IEEE, pp 311-316, 2012 [62] Long Giang Nguyen, Hung Son Nguyen, “Metric Based Attribute Reduction in Incomplete Decision Tables”, Proceedings of 14th International Conference, Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC 2013, Halifax, NS, Canada, Lecture Notes in Computer Science, SpingerLink, Vol 8170, pp 99-110, 2013 [63] Long Giang Nguyen, Thien Nguyen, Nhu Son Nguyen , “Fuzzy Partition Distance based Attribute Reduction in Decision Tables”, IJCRS 2018: International Joint Conference on Rough Sets 2018, LNCS, Vol 11103, Springer Link, 2018, pp 614-627 [64] L Sun, J.C Xu, Y Tian, “Feature selection using rough entropy-based uncertainty measures in incomplete decision systems”, Knowledge-Based Systems, Volume 36, pp 206-216, 2012 [65] M.J Cai, Q.G Li, J.M Ma, “Knowledge reduction of dynamic covering decision information systems caused by variations of attribute values”, 118 International Journal of Machine Learning and Cybernetics 8(4), pp 1131-1144, 2017 [66] M.J Cai, G.M Lang, H Fujita, Z.Y Li, T Yang, Incremental approaches to updating reducts under dynamic covering granularity, KnowledgeBased Systems, 2019 [67] M Kryszkiewicz (1998), “Rough set approach to incomplete information systems”, Information Science, Vol 112, pp 39-49 [68] M.S Raza,U Qamar, “An incremental dependency calculation technique for feature selection using rough sets”, Information Sciences 343–344, pp 41–65, 2016 [69] Nguyen Long Giang, Vu Van Dinh, Relationships Among the Concepts of Reduct in Incomplete Decision Tables, Frontiers in Artificial Intelligence and Applications (FAIA), Volume 252: Advanced Methods and Technologies for Agent and Multi-Agent Systems, IOS Press, 2013, pp 417-426 [70] Nguyen Thi Lan Huong, Nguyen Long Giang, “Incremental algorithms based on metric for finding reduct in dynamic decision tables”, Journal on Research and Development on Information & Communications Technology, Vol.E-3, No.9 (13), pp 26-39, 2016 [71] R.P Li, D.D Zhang, Y.S Zhao, X.T Tang, “Incremental Core Computing for Incomplete Decision Tables, International Symposium on Computational Intelligence and Design”, IEEE ISCID, pp 270-273, 2008 [72] Sai Prasad P.S.V.S, Raghavendra Rao Chillarige, Novel Granular Framework for Attribute Reduction in Incomplete Decision Systems, Multi-disciplinary Trends in Artificial In Artificial Intelligence, 2012 [73] S Li, T Li, D Liu, “Incremental updating approximations in dominancebased rough sets approach under the variation of the attribute set”, Knowledge-Based Systems, Vol.40, pp 17-26, 2013 [74] S Li, T Li, “Incremental update of approximations in dominance-based rough sets approach under the variation of attribute values”, Inf Sci 294, pp.348-361, 2015 119 [75] S Wang , T Li , C Luo , H Fujita , Efficient updating rough approximations with multi-dimensional variation of ordered data, Inf Sci 372, pp 690-708, 2016 [76] T.R Li, D Ruan, W Geert, J Song, Y Xu, A rough sets based characteristic relation approach for dynamic attribute generalization in data mining, Knowl.-Based Syst 20, pp 485-494, 2007 [77] Vu Van Dinh, Nguyen Long Giang, Duc Thi Vu, Generalized Discernibility Function based Attribute Reduction in Incomplete Decision Systems, Serdica Journal of Computing (2013), Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, No 4, 2013, pp 375-388 [78] Vu Van Dinh, Vu Duc Thi, Ngo Quoc Tao, Nguyen Long Giang, “Partition Distance Based Attribute Reduction in Incomplete Decision Tables”, Journal on Information Communications Technology, Research and Development on Information & Communications Technology, Vol V2, No 14(34), pp 23-32, 12-2015 [79] W.B Qian, W.H Shu, “Mutual information criterion for feature selection from incomplete data”, Neurocomputing, Volume 168, pp 210-220, 2015 [80] W.D Tan, E Xu, F Shi, Y.C Ren, L.J Fan, “A Novel Method of Attribute Reduction for Incomplete Information System”, IEEE International Conference on Innovative Computing and Communication, pp 352-354, 2010 [81] W.H Shu, H Shen, “Incremental Attribute Reduction in Incomplete Decision systems”, IEEE Fifth International Symposium on Parallel Architectures, Algorithms and Programming, pp 250-254, 2012 [82] W.H Shu, H Shen, “A rough-set based incremental approach for updating attribute reduction under dynamic incomplete decision systems”, IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp 1-7, 2013 120 [83] W.H Shu, H Shen, “Updating attribute reduction in incomplete decision systems with the variation of attribute set”, International Journal of Approximate Reasoning, vol 55, no.3, pp 867-884, 2014 [84] W.H Shu, H Shen, “Incremental feature selection based on rough set in dynamic incomplete data”, Pattern Recognition 47, pp.3890-3906, 2014 W.H Shu, W.B Qian, “A fast approach to attribute reduction from perspective of attribute measures in incomplete decision systems”, Knowledge-Based Systems, V.72, pp 60-71, 2014 [85] [86] W.H Shu, W.B Qian, “An incremental approach to attribute reduction from dynamic incomplete decision systems in rough set theory”, Data & Knowledge Engineering 100, pp 116-132, 2015 [87] W.H Shua, W.B Qian, Y.H Xie, “Incremental approaches for feature selection from dynamic data with the variation of multiple objects”, Knowledge-Based Systems, Volume 163, pp 320-331, 2019 [88] W.J Liu, “An incremental approach to obtaining attribute reduction for dynamic decision systems”, Open Math 2016, 14, pp 875–888, 2016 [89] W Wei, P Song, J.Y Liang, X.Y Wu, “Accelerating incremental attribute reduction algorithm by compacting a decision table”, International Journal of Machine Learning and Cybernetics, Springer, 2018 [90] W Wei, X.Y Wu, J.Y Liang, J.B Cui, Y.J Sun, “Discernibility matrix based incremental attribute reduction for dynamic data”, KnowledgeBased Systems, Volume 140, pp 142-157, 15 January 2018 [91] X Guo, Y.Z Xiang, L Shu, “An Information Quantity-Based Uncertainty Measure to Incomplete Numerical Systems”, International Conference on Fuzzy Information & Engineering, pp 23-29, 2019 [92] X.J Xie, X L Qin, “A novel incremental attribute reduction approach for dynamic incomplete decision systems”, International Journal of Approximate Reasoning 93, pp 443-462, 2018 [93] X.P Dai, D.H Xiong, “Research on Heuristic Knowledge Reduction Algorithm for Incomplete Decision Table”, IEEE 121 2010 International Conference on Internet Technology and Applications, ap 1-3, 2010 [94] Xu E, Y.Q Yang, Y.C Ren, “A New Method of Attribute Reduction Based On Information Quantity in An Incomplete System”, JOURNAL OF SOFTWARE, VOL 7, NO 8, pp 1881-1888, 2012 [95] X Yang, T.R Li, D Liu, H.M Chen, C Luo, “A unified framework of dynamic three-way probabilistic rough sets”, Information Sciences 420, ap 126-147, 2017 [96] X Yang, T.R Li, H Fujita, D Liu, Y.Y Yao, “A unified model of sequential three-way decisions and multilevel incremental processing”, Knowledge-Based Systems 134, pp 172-188, 2017 [97] Y Cheng, “The incremental method for fast computing the rough fuzzy approximations”, Data Knowl Eng 70, pp 84-100, 2011 [98] Y.H Qian, J.Y Liang, D.Y Li, F Wang, N.N Ma, “Approximation reduction in inconsistent incomplete decision tables”, Knowledge-Based Systems, Volume 23, Issue 5, pp 427-433, 2010 [99] Y.H Qian, J.Y Liang, W Pedrycz, C.Y Dang, “An efficient accelerator for attribute reduction from incomplete data in rough set framework”, Pattern Recognition 44, pp 1658-1670, 2011 Y Jing, T Li, C Luo, S.J Horng, G Wang, Z Yu, “An incremental approach for attribute reduction based on knowledge granularity”, Knowledge-Based Systems, Vol.104, pp 24-38, 2016 [100] Y Jing, T Li, J Huang, et al., “An incremental attribute reduction approach based on knowledge granularity under the attribute generalization”, Int J Approx Reason 76, pp.80-95, 2016 [101] Y Jing, T Li, H Fujita, Z Yu, B Wang, An incremental attribute reduction approach based on knowledge granularity with a multigranulation view, Information Sciences 411, pp 23-38, 2017 [102] Y Jing, T Li, J Huang, H.M Chen, S.J Horng, “A Group Incremental Reduction Algorithm with Varying Data Values”, International Journal of Intelligent Systems 32(9), pp 900-925, 2017 [103] 122 Wang, N Cheng, “An incremental Y Jing, T Li, H Fujita, B.L dynamic data mining”, Information attribute reduction method for Sciences 465, pp 202-218, 2018 [104] Y Li, Y.F Jin, X.D Sun, “Incremental method of updating approximations in DRSA under variations of multiple objects”, Int J Mach Learn & Cyber, 2015 [105] Y.M Liu, S.Y Zhao, H Chen, C.P Li, Y.M Lu, “Fuzzy Rough Incremental Attribute Reduction Applying Dependency Measures”, APWeb-WAIM 2017: Web and Big Data, pp 484-492, 2017 [106] [107] Y Tao, H.C Zhao, “Entropy based attribute reduction approach for incomplete decision table”, 20th International Conference on Information Fusion (Fusion), pp 1-8, 2017 Y.Y Huang, T.R Li, C Luo, H Fujita, S.J Horng, “Dynamic variable precision rough set approach for probabilistic set-valued information systems”, Knowledge-Based Systems 122, pp 131-147,2017 [108] Y.Y Huang , T.R Li , C Luo , H Fujita , S.J Horng , Matrix-based dynamic updating rough fuzzy approximations for data mining, Knowl Based Syst 119, pp 273-283, 2017 [109] Y.Y Yang, D.G Chen, H Wang, “Active Sample Selection Based Incremental Algorithm for Attribute Reduction With Rough Sets”, IEEE Transactions on Fuzzy Systems, 25(4), pp 825–838, 2017 [110] Y.Y Yang, D.G Chen, H Wang, Eric C.C.Tsang, D.L Zhang, “Fuzzy rough set based incremental attribute reduction from dynamic data with sample arriving”, Fuzzy Sets and Systems, Volume 312, 1, Pages 66-86, April 2017 [111] Y.Y Yang, D.G Chen, H Wang, X.H Wang, “Incremental perspective for feature selection based on fuzzy rough sets”, IEEE TRANSACTIONS ON FUZZY SYSTEMS, TFS-2016-0916, 27 June 2017 [112] [113] Z Pawlak, Rough sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publisher, London, 1991 123 Z.Q Meng, Z.Z Shi, “A fast approach to attribute reduction in incomplete decision systems with tolerance relation-based rough sets”, Information Sciences, Vol 179, pp 2774-2793, 2009 [114] Z.Q Meng, Z.Z Shi, “Extended rough set-based attribute reduction in inconsistent incomplete decision systems”, Information Sciences, Volume 204, pp 44-69, 2012 [115] Z.Y Xu, B Yang, W.H Shu, "Efficient Algorithm for Attribute Reduction of Incomplete Information Systems Based on Assignment Matrix”, Fuzzy Information and Engineering, Volume 2, 2009 [116] Z.Y Xu, J.H Zhou, C.G Zhang, “A Quick Attribute Reduction Algorithm Based on Incomplete Decision Table”, Information Computing and Applications, 2013 [117] [118] The UCI machine learning repository http://archive.ics.uci.edu/ml/datasets.html ... tập rút gọn Do đó, phương pháp rút gọn thuộc tính theo tiếp cận tập thơ dung sai đề xuất phương pháp theo tiếp cận filter 24 1.4 Các nghiên cứu liên quan đến rút gọn thuộc tính theo tiếp cận. .. Các phương pháp rút gọn thuộc tính bảng định khơng đầy đủ theo tiếp cận mơ hình tập thơ dung sai nghiên cứu mở rộng phương pháp rút gọn thuộc tính theo tiếp cận tập thơ truyền thống Đây phương pháp. .. nghiên cứu luận án bảng định không đầy đủ, mô hình tập thơ dung sai, phương pháp rút gọn thuộc tính theo tiếp cận tập thơ dung sai phương pháp gia tăng rút gọn thuộc tính theo tiếp cận tập thô dung

Ngày đăng: 25/03/2021, 05:32

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w