Qua bài viết này, tôi xin trình bày với các bạn một số tính chất và phương pháp giải bài toán “tìm chữ số tận cùng”, chỉ sử dụng kiến thức THCS.. b Các số có chữ số tận cùng là 4, 9 khi [r]
(1)MỘT SỐ CHUYÊN ĐỀ SỐ HỌC HAY I MỘT DẠNG TOÁN VỀ ƯCLN VÀ BCNN Trong chương trình số học lớp 6, sau học các khái niệm ước chung lớn (ƯCLN) và bội chung nhỏ (BCNN), các bạn gặp dạng toán tìm hai số nguyên dương biết số yếu tố đó có các kiện ƯCLN và BCNN Phương pháp chung để giải : 1/ Dựa vào định nghĩa ƯCLN để biểu diễn hai số phải tìm, liên hệ với các yếu tố đã cho để tìm hai số 2/ Trong số trường hợp, có thể sử dụng mối quan hệ đặc biệt ƯCLN, BCNN và tích hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], đó (a, b) là ƯCLN và [a, b] là BCNN a và b Việc chứng minh hệ thức này không khó : Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = (*) Từ (*) => ab = mnd2 ; [a, b] = mnd => (a, b).[a, b] = d.(mnd) = mnd2 = ab => ab = (a, b).[a, b] (**) Chúng ta hãy xét số ví dụ minh họa Bài toán : Tìm hai số nguyên dương a, b biết [a, b] = 240 và (a, b) = 16 Lời giải : Do vai trò a, b là nhau, không tính tổng quát, giả sử a ≤ b Từ (*), (a, b) = 16 nên a = 16m ; b = 16n (m ≤ n a ≤ b) với m, n thuộc Z+ ; (m, n) = Theo định nghĩa BCNN : [a, b] = mnd = mn.16 = 240 => mn = 15 => m = , n = 15 m = 3, n = => a = 16, b = 240 a = 48, b = 80 Chú ý : Ta có thể áp dụng công thức (**) để giải bài toán này : ab = (a, b).[a, b] => mn.162 = 240.16 suyy mn = 15 Bài toán : Tìm hai số nguyên dương a, b biết ab = 216 và (a, b) = Lời giải : Lập luận bài 1, giả sử a ≤ b Do (a, b) = => a = 6m ; b = 6n với m, n thuộc Z+ ; (m, n) = ; m ≤ n Vì : ab = 6m.6n = 36mn => ab = 216 tương đương mn = tương đương m = 1, n = m = 2, n = tương đương với a = 6, b = 36 hoặcc là a = 12, b = 18 Bài toán : Tìm hai số nguyên dương a, b biết ab = 180, [a, b] = 60 Lời giải : Từ (**) => (a, b) = ab/[a, b] = 180/60 = Tìm (a, b) = 3, bài toán đưa dạng bài toán Kết : a = 3, b = 60 a = 12, b = 15 Chú ý : Ta có thể tính (a, b) cách trực tiếp từ định nghĩa ƯCLN, BCNN : Theo (*) ta có ab = mnd2 = 180 ; [a, b] = mnd = 60 => d = (a, b) = Bài toán : Tìm hai số nguyên dương a, b biết a/b = 2,6 và (a, b) = Lời giải : Theo (*), (a, b) = => a = 5m ; b = 5n với m, n thuộc Z+ ; (m, n) = Vì : a/b = m/n = 2,6 => m/n = 13/5 tương đương với m = 13 và n = hay a = 65 và b = 25 Chú ý : phân số tương ứng với 2,6 phải chọn là phân số tối giản (m, n) = Bài toán : Tìm a, b biết a/b = 4/5 và [a, b] = 140 Vũ Ngọc Vinh sưu tầm và tổng hợp Lop6.net (2) Lời giải : Đặt (a, b) = d Vì , a/b = 4/5 , mặt khác (4, 5) = nên a = 4d, b = 5d Lưu ý [a, b] = 4.5.d = 20d = 140 => d = => a = 28 ; b = 35 Bài toán : Tìm hai số nguyên dương a, b biết a + b = 128 và (a, b) = 16 Lời giải : Lập luận bài 1, giả sử a ≤ b Ta có : a = 16m ; b = 16n với m, n thuộc Z+ ; (m, n) = ; m ≤ n Vì : a + b = 128 tương đương 16(m + n) = 128 tương đương m + n = Tương đương với m = 1, n = m = 3, n = hay a = 16, b = 112 a = 48, b = 80 Bài toán : Tìm a, b biết a + b = 42 và [a, b] = 72 Lời giải : Gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = Không tính tổng quát, giả sử a ≤ b => m ≤ n Do đó : a + b = d(m + n) = 42 (1) [a, b] = mnd = 72 (2) => d là ước chung 42 và 72 => d thuộc {1 ; ; ; 6} Lần lượt thay các giá trị d vào (1) và (2) để tính m, n ta thấy có trường hợp d = => m + n = và mn = 12 => m = và n = (thỏa mãn các điều kiện m, n) Vậy d = và a = 3.6 = 18 , b = 4.6 = 24 Bài toán : Tìm a, b biết a - b = 7, [a, b] = 140 Lời giải : Gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = Do đó : a - b = d(m - n) = (1’) [a, b] = mnd = 140 (2’) => d là ước chung và 140 => d thuộc {1 ; 7} Thay các giá trị d vào (1’) và (2’) để tính m, n ta kết : d = => m - n = và mn = 20 => m = 5, n = Vậy d = và a = 5.7 = 35 ; b = 4.7 = 28 Bài tập tự giải : 1/ Tìm hai số a, b biết 7a = 11b và (a, b) = 45 2/ Tìm hai số biết tổng chúng 448, ƯCLN chúng 16 và chúng có các chữ số hàng đơn vị giống 3/ Cho hai số tự nhiên a và b Tìm tất các số tự nhiên c cho ba số, tích hai số luôn chia hết cho số còn lại II CHỨNG MINH MỘT SỐ KHÔNG PHẢI LÀ SỐ CHÍNH PHƯƠNG Trong chương trình Toán lớp 6, các em đã học các bài toán liên quan tới phép chia hết số tự nhiên cho số tự nhiên khác và đặc biệt là giới thiệu số chính phương, đó là số tự nhiên bình phương số tự nhiên (chẳng hạn : ; ; ; ;16 ; 25 ; 121 ; 144 ; …) Kết hợp các kiến thức trên, các em có thể giải bài toán : Chứng minh số không phải là số chính phương Đây là cách củng cố các kiến thức mà các em đã học Những bài toán này làm tăng thêm lòng say mê môn toán cho các em Nhìn chữ số tận cùng Vì số chính phương bình phương số tự nhiên nên có thể thấy số chính phương phải có chữ số tận cùng là các chữ số ; ; ; ; ; Từ đó các em có thể giải bài toán kiểu sau đây : Bài toán : Chứng minh số : n = 20042 + 20032 + 20022 - 20012 không phải là số chính phương Vũ Ngọc Vinh sưu tầm và tổng hợp Lop6.net (3) Lời giải : Dễ dàng thấy chữ số tận cùng các số 20042 ; 20032 ; 20022 ; 20012 là ; ; ; Do đó số n có chữ số tận cùng là nên n không phải là số chính phương Chú ý : Nhiều số đã cho có chữ số tận cùng là các số ; ; ; ; ; không phải là số chính phương Khi đó các bạn phải lưu ý thêm chút : Nếu số chính phương chia hết cho số nguyên tố p thì phải chia hết cho p2 Bài toán : Chứng minh số 1234567890 không phải là số chính phương Lời giải : Thấy số 1234567890 chia hết cho (vì chữ số tận cùng là 0) không chia hết cho 25 (vì hai chữ số tận cùng là 90) Do đó số 1234567890 không phải là số chính phương Chú ý : Có thể lý luận 1234567890 chia hết cho (vì chữ số tận cùng là 0), không chia hết cho (vì hai chữ số tận cùng là 90) nên 1234567890 không là số chính phương Bài toán : Chứng minh số có tổng các chữ số là 2004 thì số đó không phải là số chính phương Lời giải : Ta thấy tổng các chữ số số 2004 là nên 2004 chia hết cho mà không chia hết nên số có tổng các chữ số là 2004 chia hết cho mà không chia hết cho 9, đó số này không phải là số chính phương Dùng tính chất số dư Chẳng hạn các em gặp bài toán sau đây : Bài toán : Chứng minh số có tổng các chữ số là 2006 không phải là số chính phương Chắc chắn các em dễ bị “choáng” Vậy bài toán này ta phải nghĩ tới điều gì ? Vì cho giả thiết tổng các chữ số nên chắn các em phải nghĩ tới phép chia cho cho Nhưng lại không gặp điều “kì diệu” bài toán Thế thì ta nói điều gì số này ? Chắc chắn số này chia cho phải dư Từ đó ta có lời giải Lời giải : Vì số chính phương chia cho có số dư là mà thôi (coi bài tập để các em tự chứng minh !) Do tổng các chữ số số đó là 2006 nên số đó chia cho dư Chứng tỏ số đã cho không phải là số chính phương Tương tự các em có thể tự giải bài toán : Bài toán : Chứng minh tổng các số tự nhiên liên tiếp từ đến 2005 không phải là số chính phương Bài toán : Chứng minh số : n = 20044 + 20043 + 20042 + 23 không là số chính phương Bây các em theo dõi bài toán sau để nghĩ tới “tình huống” Bài toán : Chứng minh số : n = 44 + 4444 + 444444 + 44444444 + 15 không là số chính phương Nhận xét : Nếu xét n chia cho 3, các em thấy số dư phép chia là 1, là không “bắt chước” cách giải các bài toán ; ; ; Nếu xét chữ số tận cùng các em thấy chữ số tận cùng n là nên không làm “tương tự” các bài toán ; Số dư phép chia n cho là dễ thấy nhất, đó chính là Một số chính phương chia cho cho số dư nào ? Các em có thể tự chứng minh và kết : số dư đó có thể là Như là các em đã giải xong bài toán “Kẹp” số hai số chính phương “liên tiếp” Các em có thể thấy : Nếu n là số tự nhiên và số tự nhiên k thỏa mãn n2 < k < (n + 1)2 thì k không là số chính phương Từ đó các em có thể xét các bài toán sau : Vũ Ngọc Vinh sưu tầm và tổng hợp Lop6.net (4) Bài toán : Chứng minh số 4014025 không là số chính phương Nhận xét : Số này có hai chữ số tận cùng là 25, chia cho dư 1, chia cho dư Thế là tất các cách làm trước không vận dụng Các em có thể thấy lời giải theo hướng khác Lời giải : Ta có 20032 = 4012009 ; 20042 = 4016016 nên 20032 < 4014025 < 20042 Chứng tỏ 4014025 không là số chính phương Bài toán : Chứng minh A = n(n + 1)(n + 2)(n + 3) không là số chính phương với số tự nhiên n khác Nhận xét : Đối với các em đã làm quen với dạng biểu thức này thì có thể nhận A + là số chính phương (đây là bài toán quen thuộc với lớp 8) Các em lớp 6, lớp có thể chịu khó đọc lời giải Lời giải : Ta có : A + = n(n + 1)(n + 2)(n + 3) + = (n2 + 3n)(n2 + 3n + 2) + = (n2 + 3n)2 + 2(n2 + 3n) +1 = (n2 + 3n +1)2 Mặt khác : (n2 + 3n)2 < (n2 + 3n)2 + 2(n2 + 3n) = A Điều này hiển nhiên đúng vì n ≥ Chứng tỏ : (n2 + 3n)2 < A < A + = (n2 + 3n +1)2 => A không là số chính phương Các em có thể rèn luyện cách thử giải bài toán sau : Bài toán 10 : Hãy tìm số tự nhiên n cho A = n4 - 2n3 + 3n2 - 2n là số chính phương Gợi ý : Nghĩ đến (n2 - n + 1)2 Bài toán 11 : Chứng minh số 235 + 2312 + 232003 không là số chính phương Gợi ý : Nghĩ đến phép chia cho phép chia cho Bài toán 12 : Có 1000 mảnh bìa hình chữ nhật, trên mảnh bìa ghi số các số từ đến 1001 cho không có hai mảnh nào ghi số giống Chứng minh : Không thể ghép tất các mảnh bìa này liền để số chính phương Bài toán 13 : Chứng minh : Tổng các bình phương bốn số tự nhiên liên tiếp không thể là số chính phương Gợi ý : Nghĩ tới phép chia cho Bài toán 14 : Chứng minh số 333333 + 555555 + 777777 không là số chính phương Gợi ý : Nghĩ đến phép chia cho … chục (?) Bài toán 15 : Lúc đầu có hai mảnh bìa, cậu bé tinh nghịch cầm mảnh bìa lên lại xé làm bốn mảnh Cậu ta mong làm đến lúc nào đó số mảnh bìa là số chính phương Cậu ta có thực mong muốn đó không ? III CHỨNG MINH MỘT SỐ LÀ SỐ CHÍNH PHƯƠNG Các bạn đã giới thiệu các phương pháp chứng minh số không phải là số chính phương TTT2 số Bài viết này, tôi muốn giới thiệu với các bạn bài toán chứng minh số là số chính phương Phương pháp : Dựa vào định nghĩa Ta biết rằng, số chính phương là bình phương số tự nhiên Dựa vào định nghĩa này, ta có thể định hướng giải các bài toán Bài toán : Chứng minh : Với số tự nhiên n thì an = n(n + 1)(n + 2)(n + 3) + là số chính phương Lời giải : Ta có : an = n(n + 1) (n + 2) (n + 3) + = (n2 + 3n) (n2 + 3n + 2) + Vũ Ngọc Vinh sưu tầm và tổng hợp Lop6.net (5) = (n2 + 3n)2 + 2(n2 + 3n) + = (n2 + 3n + 1)2 Với n là số tự nhiên thì n2 + 3n + là số tự nhiên, theo định nghĩa, an là số chính phương Bài toán : Chứng minh số : Lời giải : Ta có : là số chính phương Vậy : là số chính phương Phương pháp : Dựa vào tính chất đặc biệt Ta có thể chứng minh tính chất đặc biệt : “Nếu a, b là hai số tự nhiên nguyên tố cùng và a.b là số chính phương thì a và b là các số chính phương” Bài toán : Chứng minh : Nếu m, n là các số tự nhiên thỏa mãn 3m2 + m = 4n2 + n thì m - n và 4m + 4n + là số chính phương Lời giải : Ta có : 3m2 + m = 4n2 + n tương đương với 4(m2 - n2) + (m - n) = m2 hay là (m - n)(4m + 4n + 1) = m2 (*) Gọi d là ước chung lớn m - n và 4m + 4n + thì (4m + 4n + 1) + 4(m - n) chia hết cho d => 8m + chí hết cho d Mặt khác, từ (*) ta có : m2 chia hết cho d2 => m chia hết cho d Từ 8m + chia hết cho d và m chia hết cho d ta có chia hết cho d => d = Vậy m - n và 4m + 4n + là các số tự nhiên nguyên tố cùng nhau, thỏa mãn (*) nên chúng là các số chính phương Cuối cùng xin gửi tới các bạn số bài toán thú vị số chính phương : 1) Chứng minh các số sau đây là số chính phương : Vũ Ngọc Vinh sưu tầm và tổng hợp Lop6.net (6) 2) Cho các số nguyên dương a, b, c đôi nguyên tố cùng nhau, thỏa mãn : 1/a + 1/b = 1/c Hãy cho biết a + b có là số chính phương hay không ? 3) Chứng minh rằng, với số tự nhiên n thì 3n + không là số chính phương 4) Tìm số tự nhiên n để n2 + 2n + 2004 là số chính phương 5) Chứng minh : Nếu : và n là hai số tự nhiên thì a là số chính phương IV TÌM CHỮ SỐ TẬN CÙNG Tìm chữ số tận cùng số tự nhiên là dạng toán hay Đa số các tài liệu dạng toán này sử dụng khái niệm đồng dư, khái niệm trừu tượng và không có chương trình Vì có không ít học sinh, đặc biệt là các bạn lớp và lớp khó có thể hiểu và tiếp thu Qua bài viết này, tôi xin trình bày với các bạn số tính chất và phương pháp giải bài toán “tìm chữ số tận cùng”, sử dụng kiến thức THCS Chúng ta xuất phát từ tính chất sau : Tính chất : a) Các số có chữ số tận cùng là 0, 1, 5, nâng lên lũy thừa bậc bất kì thì chữ số tận cùng không thay đổi b) Các số có chữ số tận cùng là 4, nâng lên lũy thừa bậc lẻ thì chữ số tận cùng không thay đổi c) Các số có chữ số tận cùng là 3, 7, nâng lên lũy thừa bậc 4n (n thuộc N) thì chữ số tận cùng là d) Các số có chữ số tận cùng là 2, 4, nâng lên lũy thừa bậc 4n (n thuộc N) thì chữ số tận cùng là Việc chứng minh tính chất trên không khó, xin dành cho bạn đọc Như vậy, muốn tìm chữ số tận cùng số tự nhiên x = am, trước hết ta xác định chữ số tận cùng a - Nếu chữ số tận cùng a là 0, 1, 5, thì x có chữ số tận cùng là 0, 1, 5, - Nếu chữ số tận cùng a là 3, 7, 9, vì am = a4n + r = a4n.ar với r = 0, 1, 2, nên từ tính chất 1c => chữ số tận cùng x chính là chữ số tận cùng ar - Nếu chữ số tận cùng a là 2, 4, 8, trường hợp trên, từ tính chất 1d => chữ số tận cùng x chính là chữ số tận cùng 6.ar Bài toán : Tìm chữ số tận cùng các số : a) 799 b) 141414 c) 4567 Lời giải : a) Trước hết, ta tìm số dư phép chia 99 cho : 99 - = (9 - 1)(98 + 97 + … + + 1) chia hết cho => 99 = 4k + (k thuộc N) => 799 = 74k + = 74k.7 Do 74k có chữ số tận cùng là (theo tính chất 1c) => 799 có chữ số tận cùng là b) Dễ thấy 1414 = 4k (k thuộc N) => theo tính chất 1d thì 141414 = 144k có chữ số tận cùng là c) Ta có 567 - chia hết cho => 567 = 4k + (k thuộc N) Vũ Ngọc Vinh sưu tầm và tổng hợp Lop6.net (7) => 4567 = 44k + = 44k.4, theo tính chất 1d, 44k có chữ số tận cùng là nên 4567 có chữ số tận cùng là Tính chất sau => từ tính chất Tính chất : Một số tự nhiên bất kì, nâng lên lũy thừa bậc 4n + (n thuộc N) thì chữ số tận cùng không thay đổi Chữ số tận cùng tổng các lũy thừa xác định cách tính tổng các chữ số tận cùng lũy thừa tổng Bài toán : Tìm chữ số tận cùng tổng S = 21 + 35 + 49 + … + 20048009 Lời giải : Nhận xét : Mọi lũy thừa S có số mũ chia cho thì dư (các lũy thừa có dạng n4(n - 2) + 1, n thuộc {2, 3, …, 2004}) Theo tính chất 2, lũy thừa S và các số tương ứng có chữ số tận cùng giống nhau, chữ số tận cùng tổng : (2 + + … + 9) + 199.(1 + + … + 9) + + + + = 200(1 + + … + 9) + = 9009 Vậy chữ số tận cùng tổng S là Từ tính chất tiếp tục => tính chất Tính chất : a) Số có chữ số tận cùng là nâng lên lũy thừa bậc 4n + có chữ số tận cùng là ; số có chữ số tận cùng là nâng lên lũy thừa bậc 4n + có chữ số tận cùng là b) Số có chữ số tận cùng là nâng lên lũy thừa bậc 4n + có chữ số tận cùng là ; số có chữ số tận cùng là nâng lên lũy thừa bậc 4n + có chữ số tận cùng là c) Các số có chữ số tận cùng là 0, 1, 4, 5, 6, 9, nâng lên lũy thừa bậc 4n + không thay đổi chữ số tận cùng Bài toán : Tìm chữ số tận cùng tổng T = 23 + 37 + 411 + … + 20048011 Lời giải : Nhận xét : Mọi lũy thừa T có số mũ chia cho thì dư (các lũy thừa có dạng n4(n - 2) + 3, n thuộc {2, 3, …, 2004}) Theo tính chất thì 23 có chữ số tận cùng là ; 37 có chữ số tận cùng là ; 411 có chữ số tận cùng là ; … Như vậy, tổng T có chữ số tận cùng chữ số tận cùng tổng : (8 + + + + + + + 9) + 199.(1 + + + + + + + + 9) + + + + = 200(1 + + + + + + + + 9) + + + = 9019 Vậy chữ số tận cùng tổng T là * Trong số bài toán khác, việc tìm chữ số tận cùng dẫn đến lời giải khá độc đáo Bài toán : Tồn hay không số tự nhiên n cho n2 + n + chia hết cho 19952000 Lời giải : 19952000 tận cùng chữ số nên chia hết cho Vì vậy, ta đặt vấn đề là liệu n2 + n + có chia hết cho không ? Ta có n2 + n = n(n + 1), là tích hai số tự nhiên liên tiếp nên chữ số tận cùng n2 + n có thể là ; ; => n2 + n + có thể tận cùng là ; ; => n2 + n + không chia hết cho Vậy không tồn số tự nhiên n cho n2 + n + chia hết cho 19952000 Sử dụng tính chất “một số chính phương có thể tận cùng các chữ số ; ; ; ; ; 9”, ta có thể giải bài toán sau : Bài toán : Chứng minh các tổng sau không thể là số chính phương : a) M = 19k + 5k + 1995k + 1996k (với k chẵn) b) N = 20042004k + 2003 Vũ Ngọc Vinh sưu tầm và tổng hợp Lop6.net (8) Sử dụng tính chất “một số nguyên tố lớn có thể tận cùng các chữ số ; ; ; 9”, ta tiếp tục giải bài toán : Bài toán : Cho p là số nguyên tố lớn Chứng minh : p8n +3.p4n - chia hết cho * Các bạn hãy giải các bài tập sau : Bài : Tìm số dư các phép chia : a) 21 + 35 + 49 + … + 20038005 cho b) 23 + 37 + 411 + … + 20038007 cho Bài : Tìm chữ số tận cùng X, Y : X = 22 + 36 + 410 + … + 20048010 Y = 28 + 312 + 416 + … + 20048016 Bài : Chứng minh chữ số tận cùng hai tổng sau giống : U = 21 + 35 + 49 + … + 20058013 V = 23 + 37 + 411 + … + 20058015 Bài : Chứng minh không tồn các số tự nhiên x, y, z thỏa mãn : 19x + 5y + 1980z = 1975430 + 2004 TÌM CÁC CHỮ SỐ Tiếp theo, chúng tôi xin tiếp tục trao đổi với bạn đọc các bài toán tìm hai chữ số tận cùng ; tìm ba chữ số tận cùng số tự nhiên * Tìm hai chữ số tận cùng Nhận xét : Nếu x Є N và x = 100k + y, đó k ; y Є N thì hai chữ số tận cùng x chính là hai chữ số tận cùng y Hiển nhiên là y ≤ x Như vậy, để đơn giản việc tìm hai chữ số tận cùng số tự nhiên x thì thay vào đó ta tìm hai chữ số tận cùng số tự nhiên y (nhỏ hơn) Rõ ràng số y càng nhỏ thì việc tìm các chữ số tận cùng y càng đơn giản Từ nhận xét trên, ta đề xuất phương pháp tìm hai chữ số tận cùng số tự nhiên x = am sau : Trường hợp : Nếu a chẵn thì x = am ∶ 2m Gọi n là số tự nhiên cho an - ∶ 25 Viết m = pn + q (p ; q Є N), đó q là số nhỏ để aq ∶ ta có : x = am = aq(apn - 1) + aq Vì an - ∶ 25 => apn - ∶ 25 Mặt khác, (4, 25) = nên aq(apn - 1) ∶ 100 Vậy hai chữ số tận cùng am chính là hai chữ số tận cùng aq Tiếp theo, ta tìm hai chữ số tận cùng aq Trường hợp : Nếu a lẻ , gọi n là số tự nhiên cho an - ∶ 100 Viết m = un + v (u ; v Є N, ≤ v < n) ta có : x = am = av(aun - 1) + av Vì an - ∶ 100 => aun - ∶ 100 Vậy hai chữ số tận cùng am chính là hai chữ số tận cùng av Tiếp theo, ta tìm hai chữ số tận cùng av Trong hai trường hợp trên, chìa khóa để giải bài toán là chúng ta phải tìm số tự nhiên n Nếu n càng nhỏ thì q và v càng nhỏ nên dễ dàng tìm hai chữ số tận cùng aq và av Bài toán : Tìm hai chữ số tận cùng các số : a) a2003 b) 799 Vũ Ngọc Vinh sưu tầm và tổng hợp Lop6.net (9) Lời giải : a) Do 22003 là số chẵn, theo trường hợp 1, ta tìm số tự nhiên n nhỏ cho 2n - ∶ 25 Ta có 210 = 1024 => 210 + = 1025 ∶ 25 => 220 - = (210 + 1)(210 - 1) ∶ 25 => 23(220 - 1) ∶ 100 Mặt khác : 22003 = 23(22000 - 1) + 23 = 23((220)100 - 1) + 23 = 100k + (k Є N) Vậy hai chữ số tận cùng 22003 là 08 b) Do 799 là số lẻ, theo trường hợp 2, ta tìm số tự nhiên n bé cho 7n - ∶ 100 Ta có 74 = 2401 => 74 - ∶ 100 Mặt khác : 99 - ∶ => 99 = 4k + (k Є N) Vậy 799 = 74k + = 7(74k - 1) + = 100q + (q Є N) tận cùng hai chữ số 07 Bài toán : Tìm số dư phép chia 3517 cho 25 Lời giải : Trước hết ta tìm hai chữ số tận cùng 3517 Do số này lẻ nên theo trường hợp 2, ta phải tìm số tự nhiên n nhỏ cho 3n - ∶ 100 Ta có 310 = 95 = 59049 => 310 + ∶ 50 => 320 - = (310 + 1) (310 - 1) ∶ 100 Mặt khác : 516 - ∶ => 5(516 - 1) ∶ 20 => 517 = 5(516 - 1) + = 20k + =>3517 = 320k + = 35(320k - 1) + 35 = 35(320k - 1) + 243, có hai chữ số tận cùng là 43 Vậy số dư phép chia 3517 cho 25 là 18 Trong trường hợp số đã cho chia hết cho thì ta có thể tìm theo cách gián tiếp Trước tiên, ta tìm số dư phép chia số đó cho 25, từ đó suy các khả hai chữ số tận cùng Cuối cùng, dựa vào giả thiết chia hết cho để chọn giá trị đúng Các thí dụ trên cho thấy rằng, a = a = thì n = 20 ; a = thì n = Một câu hỏi đặt là : Nếu a bất kì thì n nhỏ là bao nhiêu ? Ta có tính chất sau đây (bạn đọc tự chứng minh) Tính chất : Nếu a Є N và (a, 5) = thì a20 - ∶ 25 Bài toán : Tìm hai chữ số tận cùng các tổng : a) S1 = 12002 + 22002 + 32002 + + 20042002 b) S2 = 12003 + 22003 + 32003 + + 20042003 Lời giải : a) Dễ thấy, a chẵn thì a2 chia hết cho ; a lẻ thì a100 - chia hết cho ; a chia hết cho thì a2 chia hết cho 25 Mặt khác, từ tính chất ta suy với a Є N và (a, 5) = ta có a100 - ∶ 25 Vậy với a Є N ta có a2(a100 - 1) ∶ 100 Do đó S1 = 12002 + 22(22000 - 1) + + 20042(20042000 - 1) + 22 + 32 + + 20042 Vì hai chữ số tận cùng tổng S1 chính là hai chữ số tận cùng tổng 12 + 22 + 32 + + 20042 áp dụng công thức : 12 + 22 + 32 + + n2 = n(n + 1)(2n + 1)/6 =>12 + 22 + + 20042 = 2005 x 4009 x 334 = 2684707030, tận cùng là 30 Vậy hai chữ số tận cùng tổng S1 là 30 b) Hoàn toàn tương tự câu a, S2 = 12003 + 23(22000 - 1) + + 20043(20042000 - 1) + 23 + 33 + 20043 Vì thế, hai chữ số tận cùng tổng S2 chính là hai chữ số tận cùng 13 + 23 + 33 + + 20043 áp dụng công thức : => 13 + 23 + + 20043 = (2005 x 1002)2 = 4036121180100, tận cùng là 00 Vũ Ngọc Vinh sưu tầm và tổng hợp Lop6.net (10) Vậy hai chữ số tận cùng tổng S2 là 00 Trở lại bài toán (TTT2 số 15), ta thấy có thể sử dụng việc tìm chữ số tận cùng để nhận biết số không phải là số chính phương Ta có thể nhận biết điều đó thông qua việc tìm hai chữ số tận cùng Ta có tính chất sau đây (bạn đọc tự chứng minh) Tính chất : Số tự nhiên A không phải là số chính phương : + A có chữ số tận cùng là 2, 3, 7, ; + A có chữ số tận cùng là mà chữ số hàng chục là chữ số chẵn ; + A có chữ số hàng đơn vị khác mà chữ số hàng chục là lẻ ; + A có chữ số hàng đơn vị là mà chữ số hàng chục khác ; + A có hai chữ số tận cùng là lẻ Bài toán 10 : Cho n Є N và n - không chia hết cho Chứng minh 7n + không thể là số chính phương Lời giải : Do n - không chia hết cho nên n = 4k + r (r Є {0, 2, 3}) Ta có 74 - = 2400 ∶ 100 Ta viết 7n + = 74k + r + = 7r(74k - 1) + 7r + Vậy hai chữ số tận cùng 7n + chính là hai chữ số tận cùng 7r + (r = 0, 2, 3) nên có thể là 03, 51, 45 Theo tính chất thì rõ ràng 7n + không thể là số chính phương n không chia hết cho TIM CÁC CHỮ SỐ (tiếp theo) * Tìm ba chữ số tận cùng Nhận xét : Tương tự trường hợp tìm hai chữ số tận cùng, việc tìm ba chữ số tận cùng số tự nhiên x chính là việc tìm số dư phép chia x cho 1000 Nếu x = 1000k + y, đó k ; y Є N thì ba chữ số tận cùng x chính là ba chữ số tận cùng y (y ≤ x) Do 1000 = x 125 mà (8, 125) = nên ta đề xuất phương pháp tìm ba chữ số tận cùng số tự nhiên x = am sau : Trường hợp : Nếu a chẵn thì x = am chia hết cho 2m Gọi n là số tự nhiên cho an - chia hết cho 125 Viết m = pn + q (p ; q Є N), đó q là số nhỏ để aq chia hết cho ta có : x = am = aq(apn - 1) + aq Vì an - chia hết cho 125 => apn - chia hết cho 125 Mặt khác, (8, 125) = nên aq(apn - 1) chia hết cho 1000 Vậy ba chữ số tận cùng am chính là ba chữ số tận cùng aq Tiếp theo, ta tìm ba chữ số tận cùng aq Trường hợp : Nếu a lẻ , gọi n là số tự nhiên cho an - chia hết cho 1000 Viết m = un + v (u ; v Є N, ≤ v < n) ta có : x = am = av(aun - 1) + av Vì an - chia hết cho 1000 => aun - chia hết cho 1000 Vậy ba chữ số tận cùng am chính là ba chữ số tận cùng av Tiếp theo, ta tìm ba chữ số tận cùng av Tính chất sau suy từ tính chất Tính chất : Nếu a Є N và (a, 5) = thì a100 - chia hết cho 125 Chứng minh : Do a20 - chia hết cho 25 nên a20, a40, a60, a80 chia cho 25 có cùng số dư là Vũ Ngọc Vinh sưu tầm và tổng hợp 10 Lop6.net (11) => a20 + a40 + a60 + a80 + chia hết cho Vậy a100 - = (a20 - 1)( a80 + a60 + a40 + a20 + 1) chia hết cho 125 Bài toán 11 : Tìm ba chữ số tận cùng 123101 Lời giải : Theo tính chất 6, (123, 5) = => 123100 - chia hết cho 125 (1) Mặt khác : 123100 - = (12325 - 1)(12325 + 1)(12350 + 1) => 123100 - chia hết cho (2) Vì (8, 125) = 1, từ (1) và (2) suy : 123100 - chi hết cho 1000 => 123101 = 123(123100 - 1) + 123 = 1000k + 123 (k ∩ N) Vậy 123101 có ba chữ số tận cùng là 123 Bài toán 12 : Tìm ba chữ số tận cùng 3399 98 Lời giải : Theo tính chất 6, (9, 5) = => 9100 - chi hết cho 125 (1) Tương tự bài 11, ta có 9100 - chia hết cho (2) Vì (8, 125) = 1, từ (1) và (2) suy : 9100 - chia hết cho 1000 => 3399 98 = 9199 = 9100p + 99 = 999(9100p - 1) + 999 = 1000q + 999 (p, q Є N) Vậy ba chữ số tận cùng 3399 98 chính là ba chữ số tận cùng 999 Lại vì 9100 - chia hết cho 1000 => ba chữ số tận cùng 9100 là 001 mà 999 = 9100 : => ba chữ số tận cùng 999 là 889 (dễ kiểm tra chữ số tận cùng 999 là 9, sau đó dựa vào phép nhân để xác định ) 399 98 Vậy ba chữ số tận cùng là 889 Nếu số đã cho chia hết cho thì ta có thể tìm ba chữ số tận cùng cách gián các bước : Tìm dư phép chia số đó cho 125, từ đó suy các khả ba chữ số tận cùng, cuối cùng kiểm tra điều kiện chia hết cho để chọn giá trị đúng Bài toán 13 : Tìm ba chữ số tận cùng 2004200 Lời giải : (2004, 5) = (tính chất 6) => 2004100 chia cho 125 dư => 2004200 = (2004100)2 chia cho 125 dư => 2004200 có thể tận cùng là 126, 251, 376, 501, 626, 751, 876 Do 2004200 chia hết cho nên có thể tận cùng là 376 Từ phương pháp tìm hai và ba chữ số tận cùng đã trình bày, chúng ta có thể mở rộng để tìm nhiều ba chữ số tận cùng số tự nhiên Sau đây là số bài tập vận dụng : Bài : Chứng minh 1n + 2n + 3n + 4n chia hết cho và n không chia hết cho Bài : Chứng minh 920002003, 720002003 có chữ số tận cùng giống Bài : Tìm hai chữ số tận cùng : a) 3999 b) 111213 Bài : Tìm hai chữ số tận cùng : S = 23 + 223 + + 240023 Bài : Tìm ba chữ số tận cùng : S = 12004 + 22004 + + 20032004 Bài : Cho (a, 10) = Chứng minh ba chữ số tận cùng a101 ba chữ số tận cùng a Bài : Cho A là số chẵn không chia hết cho 10 Hãy tìm ba chữ số tận cùng A200 Bài : Tìm ba chữ số tận cùng số : Vũ Ngọc Vinh sưu tầm và tổng hợp 11 Lop6.net (12) 199319941995 2000 Bài : Tìm sáu chữ số tận cùng 521 VMỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN Phương pháp : Đưa dạng tích Biến đổi phương trình dạng : vế trái là tích các đa thức chứa ẩn, vế phải là tích các số nguyên Thí dụ : Tìm nghiệm nguyên phương trình : y3 - x3 = 91 (1) Lời giải : (1) tương đương với (y - x)(x2 + xy + y2) = 91 (*) Vì x2 + xy + y2 > với x, y nên từ (*) => y - x > Mặt khác, 91 = x 91 = x 13 và y - x ; x2 + xy + y2 nguyên dương nên ta có bốn khả sau : y - x = 91 và x2 + xy + y2 = ; (I) y - x = và x2 + xy + y2 = 91 ; (II) y - x = và x2 + xy + y2 = ; (III) y - x = và x2 + xy + y2 = 13 ; (IV) Đến đây, bài toán coi giải Phương pháp : Sắp thứ tự các ẩn Nếu các ẩn x, y, z, có vai trò bình đẳng, ta có thể giả sử x ≤ y ≤ z ≤ để tìm các nghiệm thỏa mãn điều kiện này Từ đó, dùng phép hoán vị để => các nghiệm phương trình đã cho Thí dụ : Tìm nghiệm nguyên dương phương trình : x + y + z = xyz (2) Lời giải : Do vai trò bình đẳng x, y, z phương trình, trước hết ta xét x ≤ y ≤ z Vì x, y, z nguyên dương nên xyz ≠ 0, x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ => xy thuộc {1 ; ; 3} Nếu xy = => x = y = 1, thay vào (2) ta có : + z = z, vô lí Nếu xy = 2, x ≤ y nên x = và y = 2, thay vào (2), => z = Nếu xy = 3, x ≤ y nên x = và y = 3, thay vào (2), => z = Vậy nghiệm nguyên dương phương trình (2) là các hoán vị (1 ; ; 3) Thí dụ : Tìm nghiệm nguyên dương phương trình : 1/x + 1/y + 1/z = (3) Lời giải : Do vai trò bình đẳng x, y, z, trước hết ta xét x ≤ y ≤ z Ta có : = 1/x + 1/y + 1/z ≤ 3.1/x => x ≤ 3/2 => x = Thay x = vào (3) ta có : 1/y + 1/z + = => = 1/y + 1/z ≤ 2/y => y ≤ => y = => 1/z = (vô lí) y = => 1/z = => z = Vậy nghiệm nguyên dương phương trình (3) là các hoán vị (1 ; ; 2) Phương pháp : Sử dụng tính chất chia hết Phương pháp này sử dụng tính chất chia hết để chứng minh phương trình vô nghiệm tìm nghiệm phương trình Thí dụ : Tìm nghiệm nguyên phương trình : Vũ Ngọc Vinh sưu tầm và tổng hợp 12 Lop6.net (13) x2 - 2y2 = (4) Lời giải : Từ phương trình (4) ta => x phải là số lẻ Thay x = 2k + (k thuộc Z) vào (4), ta : 4k2 +4k + - 2y2 = tương đương 2(k2 + k - 1) = y2 => y2 là số chẵn => y là số chẵn Đặt y = 2t (t thuộc Z), ta có : 2(k2 + k - 1) = 4t2 tương đương k(k + 1) = 2t2 + (**) Nhận xét : k(k + 1) là số chẵn, 2t2 + là số lẻ => phương trình (**) vô nghiệm Vậy phương trình (4) không có nghiệm nguyên Thí dụ : Chứng minh không tồn các số nguyên x, y, z thỏa mãn : x3 + y3 + z3 = x + y + z + 2000 (5) Lời giải : Ta có x3 - x = (x - 1).x.(x + 1) là tích số nguyên liên tiếp (với x là số nguyên) Do đó : x3 - x chia hết cho Tương tự y3 - y và z3 - z chia hết cho Từ đó ta có : x3 + y3 + z3 - x - y - z chia hết cho Vì 2000 không chia hết cho nên x3 + y3 + z3 - x - y - z ≠ 2000 với số nguyên x, y, z tức là phương trình (5) không có nghiệm nguyên Thí dụ : Tìm nghiệm nguyên phương trình : xy + x - 2y = (6) Lời giải : Ta có (6) tương đương y(x - 2) = - x + Vì x = không thỏa mãn phương trình nên (6) tương đương với: y = (-x + 3)/(x - 2) tương đương y = -1 + 1/(x - 2) Ta thấy : y là số nguyên tương đương với x - là ước hay x - = x - = -1 tương đương với x = x = Từ đó ta có nghiệm (x ; y) là (1 ; -2) và (3 ; 0) Chú ý : Có thể dùng phương pháp để giải bài toán này, nhờ đưa phương trình (6) dạng : x(y + 1) - 2(y + 1) = tương đương (x - 2)(y + 1) = Phương pháp : Sử dụng bất đẳng thức Dùng bất đẳng thức để đánh giá ẩn nào đó và từ đánh giá này => các giá trị nguyên ẩn này Thí dụ : Tìm nghiệm nguyên phương trình : x2 - xy + y2 = (7) Lời giải : (7) tương đương với (x - y/2)2 = - 3y2/4 Vì (x - y/2)2 ≥ => - 4y2/4 ≥ => -2 ≤ y ≤ Lần lượt thay y = -2 ; ; -1 ; ; vào phương trình để tính x Ta có các nghiệm nguyên phương trình là : (x ; y) thuộc {(-1 ; -2) ; (1 ; 2) ; (-2 ; -1) ; (2 ; 1) ; (-1 ; 1) ; (1 ; -1)} Chắc chắn còn nhiều phương pháp để giải phương trình nghiệm nguyên và còn nhiều thí dụ hấp dẫn khác Mong các bạn tiếp tục trao đổi vấn đề này Các bạn thử giải số phương trình nghiệm nguyên sau đây : Bài : Giải các phương trình nghiệm nguyên : a) x2 - xy = 23 ; b) 3x - 3y + = ; c) 19x2 + 28y2 =729 ; d) 3x2 + 10xy + 8y2 = 96 Vũ Ngọc Vinh sưu tầm và tổng hợp 13 Lop6.net (14) Bài : Tìm x, y nguyên dương thỏa mãn : a) 4xy - 3(x + y) = 59 ; b) 5(xy + yz + zx) = 4xyz ; c) xy/z + yz/x + zx/y = ; d) 1/x + 1/y + 1/z = 1/1995 Phương pháp : Đưa dạng tổng Biến đổi phương trình dạng : vế trái là tổng các bình phương, vế phải là tổng các số chính phương Thí dụ : Tìm nghiệm nguyên phương trình x2 + y2 - x - y = (8) Lời giải : (8) <=> 4x2 + 4y2 - 4x - 4y = 32 <=> (4x2 - 4x + 1) + (4y2 - 4y + 1) = 34 <=> |2x - 1|2 + |2y - 1|2 = 32 + 52 Bằng phương pháp thử chọn ta thấy 34 có dạng phân tích thành tổng hai số chính phương 32 và 52 Do đó phương trình thỏa mãn hai khả : Giải các hệ trên => phương trình (8) có bốn nghiệm nguyên là (x ; y) Є {2 ; 3) ; (3 ; 2) ; (-1 ; -2) ; (-2 ; -1)} Phương pháp : lùi vô hạn Thí dụ : Tìm nghiệm nguyên phương trình x2 - 5y2 = (9) Lời giải : Giả sử (x0 ; y0) là nghiệm (9) thì : x02 - 5y02 = => x0 chia hết cho 5, đặt x0 = 5x1 ; (x1 Є Z), ta có : 25x12 - 5y02 = <=> 5x12 - y02 = => y0 chia hết cho 5, đặt y0 = 5y1 ; (y1 Є Z) Từ đó ta có : 5x12 - 25y12 = <=> x12 - 5y12 = Vậy (x0 ; y0) là nghiệm nguyên (9) thì (x0/5 ; y0/5) là nghiệm nguyên (9) Tiếp tục lập luận tương tự, ta có với k nguyên dương bất kì, là nghiệm nguyên (9) hay x0 và y0 chia hết cho 5k với k là số nguyên dương tùy ý Điều này xảy x0 = y0 = Vậy phương trình (9) có nghiệm là x = y = Phương pháp : xét chữ số tận cùng Thí dụ 10 : Tìm nghiệm nguyên dương phương trình 1! + 2! + + x! = y2 (10) Lời giải : Cho x ; ; ; 4, ta có nghiệm nguyên dương (x ; y) phương trình (10) là (1 ; 1) và (3 ; 3) Nếu x > thì dễ thấy k! với k > có chữ số tận cùng ị 1! + 2! + ! + 4! + 5! + + x! = 33 + 5! + + x! có chữ số tận cùng Mặt khác vế phải là số chính phương nên không thể có chữ số tận cùng là Vậy phương trình (10) có hai nghiệm nguyên dương (x ; y) Є {(1 ; 1) ; (3 ; 3)} Thí dụ 11 : Tìm x, y nguyên dương thỏa mãn phương trình : x2 + x - = 32y + (11) Lời giải : Cho x các giá trị từ đến 9, dễ dàng xác định chữ số tận cùng x2 + x - nhận các giá trị ; ; Mặt khác, ta thấy 32y + là lũy thừa bậc lẻ nên chữ số tận cùng nó có thể là 7, khác với ; ; Vũ Ngọc Vinh sưu tầm và tổng hợp 14 Lop6.net (15) Vậy (11) không thể xảy Nói cách khác, phương trình (11) không có nghiệm nguyên dương Bài toán này có thể giải phương pháp sử dụng tính chất chia hết Phương pháp : Sử dụng tính chất nghiệm phương trình bậc hai Biến đổi phương trình dạng phương trình bậc hai ẩn, coi các ẩn khác là tham số, sử dụng các tính chất nghiệm phương trình bậc để xác định giá trị các tham số Thí dụ 12 : Giải phương trình nghiệm nguyên : 3x2 + y2 + 4xy + 4x + 2y + = (12) Lời giải : (12) y2 + (4x + 2)y + 3x2 + 4x + = Ta thấy phương trình có nghiệm thì y nguyên => - 4x - nguyên, mà x nguyên nên nguyên => ∆'y = x2 - = n2 với n Є Z, dùng phương pháp (đưa dạng tích) => (x + n)(x - n) = 4, ta xác định x = và x = -2 Vậy phương trình (12) có hai nghiệm nguyên (x ; y) Є {(2 ;-5); (-2 ; 3)} Thí dụ 13 : Tìm nghiệm nguyên phương trình x2 - (y + 5)x + 5y + = (13) Lời giải : Giả sử phương trình ẩn x có nghiệm nguyên x1, x2 thì theo định lí Vi-ét ta có : => (x1 - 5)(x2 - 5) = = 1.2 = (-1)(-2) => x1 + x2 = 13 x1 + x2 = => y = y = 2, thay vào (13), phương trình này có nghiệm : (x ; y) Є {(7 ; 8) ; (6 ; 8) ; (4 ; 2) ; (3 ; 2)} Chú ý : Một số phương pháp mà các bạn gọi là phương pháp giải phương trình nghiệm nguyên chúng tôi thấy không phải là đặc trưng cho phương trình nghiệm nguyên nên không giới thiệu Chẳng hạn có bạn nêu phương pháp chứng minh nghiệm với thí dụ giải phương trình nghiệm nguyên 2x + 5x = 7x Có bạn viết phương trình dạng phương trình bậc ẩn x đặt điều kiện ∆x ≥ để có miền giá trị y, phương pháp này thực đã trình bày thí dụ 7, không viết biệt thức ∆’x Các bạn có thể làm thêm số bài tập : Bài : Tìm x, y nguyên thỏa mãn các phương trình : a) 5x2 - 4xy + y2 = 169 b) 3x = 4y + Bài : Tìm nghiệm nguyên các phương trình : a) 5x + 12x = 13x b) y4 = x6 + 3x3 + Bài : Chứng minh phương trình 25t = 2t5 + 1997 không có nghiệm nguyên Bài : Tìm nghiệm nguyên phương trình x3 - 3y3 - 9z3 = Bài : Tìm nghiệm nguyên phương trình 2x2 + 2y2 - 2xy + x + y - 10 = Vũ Ngọc Vinh sưu tầm và tổng hợp 15 Lop6.net (16)