1. Trang chủ
  2. » Tất cả

119. Đề thi thử THPT QG 2019 - Toán - Chuyên Thái Bình - Lần 3 - có lời giải-đã gộp

120 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 120
Dung lượng 5,01 MB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO THÁI BÌNH TRƯỜNG THPT CHUYÊN MÃ ĐỀ 485 Câu (VD): Cho  ĐỀ THI THỬ THPT QUỐC GIA LẦN – MÔN TOÁN NĂM HỌC: 2018 - 2019 Thời gian làm bài: 90 phút f  x  dx  10 Tính tích phân J   f  x   dx A J = B J = 10 Câu (TH): Tìm tập xác định hàm số y  ln 1  x  B  ;1 A 1;   C J = 50 D J = C D \ 1 nguyên hàm hàm số khoảng xác định? x 1 B ln x C  D x x Câu (TH): Hàm số F  x   A ln x Câu (NB): Với f  x  hàm số tùy ý liên tục , chọn mệnh đề sai mệnh đề sau: b  b A   f  x  dx     f  x   dx a  a C b c b a a c  f  x  dx  f  x  dx   f  x  dx b b a a b a a b B  kf  x  dx  k  f  x  dx  k  D   f  x  dx    f  x  dx Câu (NB): Trong không gian với hệ tọa độ Oxyz, đường thẳng d : x 1 y  z    nhận vecto 4 vecto phương? A  2; 4;1 B  2; 4;1 C 1; 4;  D  2; 4;1 Câu (TH): Trong không gian với hệ trục tọa độ Oxyz, cho điểm M 1; 2;3 Gọi A, B, C hình chiếu vng góc điểm M trục Ox, Oy, Oz Viết phương trình mặt phẳng  ABC  x y z x y z x y z x y z   1 B    C    D     1 3 3 Câu (TH): Cho hình nón có bán kính đáy a, đường cao Tính diện tích xung quanh hình nón cho A A 5 a B 5 a C 2a D 5a Câu (TH): Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A 1;3; 4  B  1; 2;  Viết phương trình mặt phẳng trung trực   đoạn thẳng AB A   : x  y  12 z   B   : x  y  12 z  17  C   : x  y  12 z  17  D   : x  y  12 z   Câu (TH): Cho dãy số  un  , n  dãy số A 25 * cấp số cộng có u4  u7  Tính tổng 10 số hạng B 50 C D 60 Câu 10 (TH): Cho hàm số y  f  x  có đồ thị hàm số đường cong hình vẽ bên Mệnh đề đúng? A Giá trị cực đại hàm số B Giá trị cực tiểu hàm số -4 C Giá trị cực đại hàm số -1 D Giá trị cực tiểu hàm số Câu 11 (NB): Cho hình chữ nhật ABCD, hình trịn xoay quay đường gấp khúc ABCD quanh cạnh AB không gian hình đây? A Mặt trụ B Hình nón C Mặt nón D Hình trụ Câu 12 (NB): Tính lim A L = n 1 n3  B L = C L = D L = x 1 Câu 13 (NB): Tính đạo hàm hàm số y  A y '  3x 1 ln B y '  1  x  3x Câu 14 (TH): Hàm số sau đồng biến A y  x  cos x  B y  2x 1 x 1 C y '  3x 1 ln D y '  3x 1.ln 1 x ? C y  x  x D y  x Câu 15 (TH): Hàm số F  x   2sin x  3cos x nguyên hàm hàm số: A f  x   2cos x  3sin x B f  x   2cos x  3sin x C f  x   2cos x  3sin x D f  x   2cos x  3sin x Câu 16 (TH): Cho hàm số y  a x   a  1 có đồ thị hàm số  C  Mệnh đề sau sai ? A Đồ thị  C  có tiệm cận y  B Đồ thị  C  ln nằm phía trục hồnh C Đồ thị  C  qua M  0;1 D Hàm số đồng biến Câu 17 (VD): Một hộp đựng viên bi đỏ đánh số từ đến viên bi xanh đánh số từ đến Hỏi có cách chọn hai viên bi từ hộp cho chúng khác màu khác số A 36 B 42 C D 30 Câu 18 (VD): Cho khai triển 1  x  với n số nguyên dương Tìm hệ số số hạng x3 khai n triển biết C21n1  C22n1  C23n1   C2nn1  2020  A 480 B 720 C 240 D 120 Câu 19 (VD): Cho tập hợp S  1; 2;3; ;17 gồm 17 số nguyên dương Chọn ngẫu nhiên tập có phần tử tập hợp S Tính xác suất để tập hợp chọn có tổng phần tử chia hết cho 27 23 B C D 34 17 68 34 Câu 20 (VD): Tính đến 31/12/2018, diện tích trồng rừng nước ta 3.886.337ha Giả sử năm diện tích rừng trồng nước ta tăng 6,1% Hỏi sau ba năm diện tích rừng trồng nước ta ha? (kết làm tròn đến hàng đơn vị) A 4.134.404 B 4.834.603 C 4.641.802 D 4.600.000 A Câu 21 (VD): Tìm tất giá trị tham số m để hàm số y  x3  x2  mx  2m  nghịch biến đoạn  1;1 A m   B m   Câu 22 (TH): Hỏi đồ thị hàm số y  A B C m  D m  x 1 có tiệm cận đứng tiệm cận ngang? x  3x  C D Câu 23 (VD): Cho hàm số f  x  có đạo hàm f '  x    x   x  5 x  1 Hàm số f  x  đồng biến khoảng đây? A  2;   B  2;0  D  6; 1 C  0;1 Câu 24 (TH): Cho hàm số y  f  x  có bảng biến thiên sau: x  2 y'   +  y  Hỏi đồ thị hàm số cho có tất đường tiệm cận? A B C Câu 25 (VD): Cho a, b, c số thực dương khác Hình vẽ bên D đồ thị ba hàm số y  log a x, y  logb x, y  logc x Khẳng định sau đúng? A a  b  c B a  c  b C b  a  c D b  a  c Câu 26 (VD): Có tất giá trị tham số log  x  mx  m    log  x   nghiệm với x  m để bất phương trình A B C D 1 Câu 27 (VD): Gọi x1 , x2 hai điểm cực trị hàm số y  x3  mx  x  10 Tìm giá trị lớn biểu thức S   x12  1 x22  1 A B C D Câu 28 (VD): Có giá trị nguyên m   10;10  để hàm số y  m2 x   4m  1 x  đồng biến khoảng 1;   A B 16 C D thỏa mãn f  x   f '  x   x, x  Câu 29 (VD): Cho f  x  hàm số liên tục f    Tính f 1 e B C e D e e Câu 30 (VD): Hỏi hình tạo đỉnh trung điểm cạnh tứ diện có mặt phẳng đối xứng? A B C D A Câu 31 (VD): Cho hàm số f  x   x3  3x  mx  Gọi S tổng tất giá trị tham số m để đồ thị hàm số y  f  x  cắt đường thẳng y  ba điểm phân biệt A  0;1 , B, C cho tiếp tuyến đồ thị hàm số y  f  x  B, C vng góc với Giá trị S bằng: 9 11 B .C D 5 Câu 32 (VD): Cho hình hộp ABCD A ' B ' C ' D ' tích 120 cm Gọi M, N trung điểm AB AD Thể tích khối tứ diện MNA ' C ' bằng: A 20cm3 B 15cm3 C 24cm3 D 30cm3 Câu 33 (VD): Cho hình lập phương ABCD A ' B ' C ' D ' cạnh a Tính khoảng cách hai đường thẳng BC ' CD ' A A a B 2a C a 3 D a Câu 34 (VD): Trong không gian cho tam giác ABC có ABC  900 , AB  a Dựng AA ', CC ' phía vng góc với mp  ABC  Tính khoảng cách từ trung điểm A ' C ' đến mp  BCC ' A a B a Câu 35 (VD): Tập nghiệm bất phương trình 3x C 9 a D 2a   x2   5x1  khoảng  a; b  Tính b  a A B C D Câu 36 (VD): Trong không gian với hệ tọa độ Oxyz, gọi d ' hình chiếu vng góc đường thẳng x 1 y  z  d:   mặt phẳng tọa độ Oxy Vectơ vectơ phương d A u   2;3;0  Câu  37  10  x2 (VD): Tìm giá    2.3x m 10  x2 A 14 trị 1 nguyên D u   2; 3;0  C u   2;3;0  B u   2;3;1 tham số m   10;10  để phương trình có hai nghiệm phân biệt B 15 C 13 D 16 Câu 38 (VD): Trong không gian với hệ tọa độ Oxyz, cho điểm A 1;1;1 mặt phẳng  P  : x  y  Gọi  đường thẳng qua A, song song với  P  cách điểm B  1;0;  khoảng ngắn Hỏi  nhận vectơ vectơ phương A u   6;3; 5  B u   6; 3;5  Câu 39 (VD): Cho f  x  hàm số liên tục D u   6; 3; 5  C u   6;3;5  thỏa mãn f  x   f   x   xe x x  Tính tích phân I   f  x  dx A I  e4  B I  2e  C I  e4  D I  e  1  x  1x a dc   x  e dx  e , a, b, c, d số nguyên dương phân  1  x b 12 Câu 40 (VDC): Biết 12 số a c , tối giản Tính bc  ad b d A 12 B C 24 Câu 41 (VDC): Có giá trị nguyên tham số m để phương trình f  D 64  f  x   m  x  m có nghiệm x  1; 2 biết f  x   x5  3x3  4m A 16 B 15 C 17 D 18 Câu 42 (VDC): Cho x, y số thực thỏa mãn  x  3   y  1  Tìm giá trị nhỏ biểu thức P  y  xy  x  y  x  y 1 A B C 114 11 D Câu 43 (VDC): Biết phương trình a x  bx3  cx  dx  e   a, b, d , e  , a  0, b   có nghiệm thực phân biệt Hỏi phương trình sau có nghiệm thực?  4ax  3bx  2cx  d    6ax  3bx  c  ax  bx3  cx  dx  e  A B C D Câu 44 (VD): Cho hình chóp S.ABCD có đáy ABCD hình vuông cạnh a, SAD tam giác nằm mặt phẳng vng góc với đáy Gọi M N trung điểm BC CD Bán kính mặt cầu ngoại tiếp hình chóp S.CMN là: A a 93 12 B a 29 C 5a 12 D a 37 Câu 45 (VD): Cho hình trụ có đáy hai đường trịn  O; R   O '; R  , chiều cao đường kính đáy Trên đường trịn đáy tâm O lấy điểm A, đường tròn đáy tâm O ' lấy điểm B Thể tích khối tứ diện OO ' AB có giá trị lớn bằng: R3 A 3R 3 B R3 C R3 D Câu 46 (VDC): Trong không gian với hệ tọa độ Oxyz, cho hai điểm A 1;1;1 , B  2; 2;1 mặt phẳng  P  : x  y  z  Mặt cầu  S  thay đổi qua A, B tiếp xúc với  P  H Biết H chạy đường tròn cố định Tìm bán kính đường trịn A B C C x = 24 D Câu 47 (NB): Tìm nghiệm phương trình log 25  x  1  A x = B x = D x =  x2  x  x   Câu 48 (TH): Tìm giá trị thực tham số m để hàm số f  x    x  liên tục x  m x   A m = B m = C m = D m = Câu 49 (VDC): Gọi S tập hợp giá trị tham số m để giá trị lớn hàm số y x  mx  đoạn  1;1 Tính tổng tất phần tử S x2 B C D 1 3 Câu 50 (VDC): Cho tập hợp S có 12 phần tử Hỏi có cách chia tập hợp S thành tập (không kể thứ tự) mà hợp chúng S A  A 312  B 312  C 312  D 312  HƯỚNG DẪN GIẢI CHI TIẾT 1.A 2.D 3.C 4.A 5.D 6.A 7.B 8.C 9.A 10.C 11.D 12.B 13.A 14.A 15.A 16.D 17.A 18.D 19.B 20.C 21.D 22.A 23.A 24.A 25.A 26.D 27.A 28.B 29.A 30.A 31.C 32 33.C 34.A 35.A 36.A 37.B 38.D 39.A 40 41 42.A 43.A 44.A 45.D 46.B 47.A 48.A 49 50 Câu 1: Phương pháp: Sử dụng phương pháp đổi biến để tính tích phân cần tính Cách giải: Đặt x   t  dt  5dx  dx  dt Đổi cận: x   t   x   t  9 1  J   f  t  dt   f  x  dx  10  54 Chọn: A Câu 2: Phương pháp: 0  a  Hàm số log a f  x  xác định    f  x   Cách giải: Hàm số y  ln 1  x  xác định  1  x     x   x  2 Chọn: D Chú ý: Rất nhiều học sinh mắc sai lầm giải bất phương trình 1  x     x   x  Câu 3: Phương pháp: Sử dụng công thức: F  x    F '  x  dx để làm toán Cách giải: Ta có: F  x   1 1  F ' x    '   x x  x Chọn: C Câu 4: Phương pháp: Sử dụng tính chất tích phân để chọn đáp án b b  kf  x  dx  k  f  x  dx   a b  a a c b f  x  dx   f  x  dx   f  x  dx a c b a a b  f  x  dx   f  x  dx Cách giải: Sử dụng tính chất tích phân ta thấy có đáp án A sai Chọn: A Câu 5: Phương pháp: Đường thẳng x  x0 y  y0 z  z0   qua M  x0 ; y0 ; z0  có VTCP u   a; b; c  a b c Cách giải: Ta thấy đường thẳng d có VTCP: u   2; 4;1 Chọn D Câu 6: Phương pháp: Phương tình mặt phẳng qua điểm A  a;0;0  , B  0; b;0  , C  0;0; c  có phương trình: x y z   1 a b c Cách giải: Gọi A, B, C hình chiếu vng góc điểm M trục Ox, Oy, Oz x y z  A 1;0;0  , B  0; 2;0  , C  0;0;3   ABC  :    1 Chọn: A Chú ý: Học sinh hay nhầm lẫn phương trình mặt phẳng qua điểm A  a;0;0  , B  0; b;0  , C  0;0; c  có phương trình: x y z   0 a b c Câu 7: Phương pháp: Cơng thức tính diện tích xung quanh hình nón có bán kính đáy R, chiều cao h đường sinh l: S xq   Rl   R h2  R Cách giải: Diện tích xung quanh hình nón cho là: S xq   Rl   R h  R   a  4a   a  5 a Chọn: B Câu 8: Phương pháp: Phương trình mặt phẳng  P  qua M  x0 ; y0 ; z0  có VTPT n   a; b; c  là: a  x  x0   b  y  y0   c  z  z0   Cách giải:   Gọi I trung điểm AB  I  0; ; 1     Mặt phẳng trung trực đoạn thẳng AB qua AB  I  0; ; 1 nhận AB   2; 1;6     2;1; 6    làm VTPT 5     : x   y     z  1   x  y  12 z  17  2  Chọn: C Câu 9: Phương pháp: Cơng thức tổng qt CSC có số hạng đầu u1 công sai d : un  u1   n  1 d Tổng n số hạng đầu CSC có số hạng đầu u1 công sai d: n  u1  un  n  2u1   n  1 d   2 Cách giải: Sn  Gọi cấp số cộng cho có số hạng đầu công sai u1 , d Khi ta có: u4  u7   u1  3d  u1  6d   2u1  9d  Tổng 10 số hạng dãy số là: n  2u1   n  1 d  10  2u1  9d  Sn     5.5  25 2 Chọn: A Câu 10: Phương pháp: Dựa vào đồ thị hàm số nhận xét điểm cực trị giá trị cực trị hàm số Cách giải: Dựa vào đồ thị hàm số ta thấy hàm số đạt cực đại x  1, yCD  Hàm số đạt cực tiểu x  1, yCT  2 Chọn: C Chú ý giải: HS hay nhầm lẫn điểm cực trị x  x0 với giá trị cực trị yCT , yCD Câu 11: Phương pháp: Sử dụng lý thuyết khối mặt tròn xoay để chọn đáp án Cách giải: Khi quay hình chữ nhật ABCD quanh cạnh AB ta hình trụ có đường sinh CD, trục AB bán kính đáy BC Chọn: D Câu 12: Phương pháp: Sử dụng phương pháp tính giới hạn dãy số để tính giới hạn cho    n lim       n Cách giải: lim 1  n 1 Ta có: lim  lim n n  n 3 1 n Chọn: B Câu 13: Phương pháp:   Sử dụng cơng thức tính đạo hàm hàm mũ: a f  x  '  f '  x  ln a Cách giải: Ta có: y '   3x 1  '  3x 1 ln Chọn: A Câu 14: Phương pháp: Hàm số y  f  x  đồng biến R  f '  x   x  hữu hạn điểm Cách giải: +) Đáp án A: y '   2sin x Ta có: 1  sin x   1   sin x     sin x   y '   x   Chọn A +) Đáp án B: D  \ 1  loại đáp án B +) Đáp án C: y '  x   y '   x   hàm số có y ' đổi dấu x  +) Đáp án D: D   0;    loại đáp án D Chọn: A Câu 15: Phương pháp: Sử dụng công thức: F  x    f  x  dx  f  x   F '  x  để làm toán Cách giải: Ta có: f  x   F '  x    2sin x  3cos x  '  2cos x  3sin x Chọn: A Câu 16: 10 ... 8.C 9.A 10.C 11.D 12.B 13. A 14.A 15.A 16.D 17.A 18.D 19.B 20.C 21.D 22.A 23. A 24.A 25.A 26.D 27.A 28.B 29.A 30 .A 31 .C 32 33 .C 34 .A 35 .A 36 .A 37 .B 38 .D 39 .A 40 41 42.A 43. A 44.A 45.D 46.B 47.A... TH1: x     Khi ta có:  x  ? ?3 3x 9  30  x 9    x   x 1   Bất phương trình vơ nghiệm  x 1  x    TH2: x    ? ?3  x  Khi ta có: 3x 9  30   3x 9   x   x 1... 9 11 B .C D 5 Câu 32 (VD): Cho hình hộp ABCD A ' B ' C ' D ' tích 120 cm Gọi M, N trung điểm AB AD Thể tích khối tứ diện MNA ' C ' bằng: A 20cm3 B 15cm3 C 24cm3 D 30 cm3 Câu 33 (VD): Cho hình

Ngày đăng: 12/03/2021, 17:35

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w