1. Trang chủ
  2. » Luận Văn - Báo Cáo

Screening and characterization of cellulase in bacillus sp

60 10 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 60
Dung lượng 2,24 MB

Nội dung

VIETNAM NATIONAL UNIVERSITY OF AGRICULTURE SAMLEY MAM SCREENING AND CHARACTERIZATION OF CELLULASE IN BACILLUS sp Student: Samley MAM Student code: 24181065 Supervisor: Dr Nguyen Thi Thanh Thuy Department: Food safety and Quality management - VNUA AGRICULTURAL UNIVERSITY PRESS - 2017 DECLARATION This thesis contains no material that has been accepted for the award of any other degree or diploma in any educational institution and, to the best of my knowledge and belief, it contains no material previously published or written by other person, except where due to reference is made in the text of the thesis Hanoi, May 10th, 2017 Master candidate Samley MAM i ACKNOWLEDGEMENT First of all, I would like to sincerely thank the Vietnam National University of Agriculture (VNUA) in Vietnam, in particular the Faculty of Food Science and Technology, for providing all the conditions leading to this thesis and allowing me to follow the program Food Technology that financially supported by Académie de Recherche et d’Enseignement Supérieur – Commission de la Cooperation au Dévelopement (ARES-CCD) I express my gratitude to my supervisor Dr Nguyen Thi Thanh Thuy, for being my mentor during my thesis research on “Screening and characterization of cellulase in Bacillus sp.” Especially, I would like to acknowledge her precious advices, the very helpful discussions, and good explanation with her friendly encouragement I am very grateful to Ms Trinh Thi Thu Thuy for being my co-supervisor an offering me the great opportunity to perform my master work in her laboratory On the other hand, I really sincerely thank for her great support not only the idea but also her value time to solve the problem that incidentally faced during this research I particularly thank her for sharing her well-guided expertise in the field of characterization of cellulolytic enzyme, and for giving assistance supported I would like to offer a big thank to Dr Nguyen Hoang Anh, head of Central Laboratory, gave me a lot of advice and suggestion for my methodology Last but not least, I am deeply grateful to my beloved parents, namely, Mr SVAY KOU, Mrs SOUT HUN, and my beloved siblings This successful result could not be obtained if without their encouragement and support Hanoi, May 10th, 2017 Master candidate Samley MAM ii TABLE OF CONTENTS DECLARATION i ACKNOWLEDGEMENT ii TABLE OF CONTENTS iii LIST OF TABLES v LIST OF FIGURES vi THESIS ABSTRACT vii PART I – INTRODUCTION 1.1 Introduction 1.2 Objective 1.2.1 General objective 1.2.2 Specific objectives PART II –LITERATURE REVIEW 2.1 Cellulase 2.1.1 General information of cellulase 2.1.2 Classification of cellulase 2.1.3 Applications of cellulases in the industries 2.1.4 Microbial sources of cellulases 2.2 Factors affect for cellulase production by Bacilli and characterization of enzyme 13 2.2.1 General information of Bacillus sp and their cellulase production ability 13 2.2.2 Factors affect the cellulase production ability of Bacillus sp 16 2.2.3 Characterization of cellulase produced by Bacillus sp 18 PART III - MATERIALS AND METHODS 19 3.1 Materials 19 3.1.1 Bacteria strain 19 3.1.2 Medium 19 3.2 Research content 19 3.3 Methods 20 iii 3.3.1 Bacterial screening and characterization 20 3.3.2 Experiment design 21 3.3.3 Analytical method 22 3.3.4 Data analysis 24 PART IV RESULTS AND DISCUSSIONS 25 4.1 Screening Bacillus sp producing cellulase bacteria 25 4.2 Identification of selected Bacillus sp strains 28 4.2.1 Morphological characterization 28 4.2.2 Sequencing of 16S rDNA gene 28 4.2.3 Cellulase production of Bacillus pumilus B6.4 30 4.3 Characterization of cellulase activityof Bacillus pumilus B6.4 31 4.3.1 Effect of optimal temperature for cellulase activity 31 4.3.2 Effect of optimal pH for cellulase activity 32 4.3.3 Thermal stability on cellulase activity 33 4.3.4 pH stability 34 PART V CONCLUSIONS 36 REFERENCES 37 APPENDIX 47 iv LIST OF TABLES Table 2.1 Cellulase producing fungal strains 10 Table 2.2 Cellulase producing by bacterial strains 12 Table 2.3 Optimum temperature and pH of enzyme produced by Bacillus sp 14 Table 4.1 Clear zone of cellulase produced by 100 strains of Bacillus sp 26 Table 4.2 Ratio of clear zone category 27 Table 4.3.Thermal stability in enzyme activity (U/ml) 33 Table 4.4 pH stability in enzyme activity (U/ml) 35 v LIST OF FIGURES Figure 2.1 Efficiency in cooperation of members of cellulase enzyme system Figure 3.1 Diagram for bacterial characterization 20 Figure 3.2 Screening cellulase production by the agar-well diffusion method 20 Figure 4.1 Biggest clear zone of collection strains of A1.2, A1.8 and B 6.4 28 Figure 4.2 Cell morphology of strains A1.2, A1.8, and B6.4 28 Figure 4.3 Phylogenetic tree of Bacillus cereus A1.2 29 Figure 4.4 Phylogenetic tree Bacillus cereus A1.8 29 Figure 4.5 Phylogenetic tree Bacillus pumilus B 6.4 30 Figure 4.6 Effect of optimal temperature on enzyme production 31 Figure 4.7 Effect of optimal temperature on enzyme production 32 Figure 4.8 Thermal stability on enzyme production 34 Figure 4.9 pH stability on enzyme production 35 vi THESIS ABSTRACT Master candidate: Samley Mam Thesis title: Screening and characterization of cellulase in Bacillus sp Major: Food Technology Code:24181065 Educational Organization: Vietnam National University of Agriculture (VNUA) General objectives: Screening and characterization of cellulase in Bacillus sp and determine some characteristic of this enzyme Specific objectives - Screening Bacillus sp producing cellulase from the collection of Bacillus sp.; - Identification of selected strains by 16S rDNA gene sequencing; - Characterization of cellulase produced by selected strain (including optimal temperature, optimal pH, thermal stability and pH stability) Materials and Methods Materials A hundred strains of Bacillus sp were supplied by Faculty of Food Science and Technology, Vietnam National University of Agriculture There are two different sources of collection strains, one from the Muong Khuong chili sauce and the other from cow rumen Methods Microorganisms with cellulolytic activity were incubated in MT1 media and determined by the formation of clear zone around colony through the lugol overlay method; Cellulolytic bacteria were identified by using 16S rDNA gene sequencing; the neighbor - joining phylogenetic analysis was carried out with Tree view programme to show evolution relationship between selected strains and some others in the database; Cellulase was measured indirectly by spectrometric determination of reducing sugars by DNS method Optimal temperature was determined by incubating the enzyme at the various temperatures ranging from 40, 45, 50, 55, 60, 65, 70, 75, and 80°C; Thermal stability was first investigated by pre-incubating the enzyme at the various temperature including: 45, 55, 65, 75, and 85 °C for 30, 60, 90, 120, 150, 180, and 120 minutes; Residual enzyme activity was determined with % CMC in a 50 mM sodium acetate buffer with pH 5.0, at 37°C Optimal pH was determined with different buffer at various pH : 5.0, 5,5, 6.0, 6,5, 7.0, 7,5, and The pH stability was tested by pre-incubating the enzyme in variable pH buffer 5.5, 6.5, 7.5, and 8.5 at 37 °C for 30, 60, 90, 120, 150, 180 and 240 minutes vii Main findings and conclusion: Three among of 100 isolates collection strains were cultured on CMC agar plate for screening cellulase producing bacteria In which, isolates coded A1.2, A1.8 and B 6.4 having the highest diameter of clear zone as 24 mm were chosen for further studies Those strains were identified as Bacillus cereus A1.2, Bacillus cereus A1.8, and Bacillus pumilus B6.4 According to the Bacillus pumilus notified as a GRAS (FDA, 2015), it was chosen for further studies The result showed that the crude and purification enzyme activity of Bacillus pumilus B6.4 were found at 3.007 U/ml and 3.874 U/ml, respectively The optimal temperature and pH for cellulolytic cellulase of Bacillus pumilus B6.4 were found at 55 oC and 6.5, respectively On the other hand, the enzyme was maintained more than 58 % stability at 55 to 65 oC after 150 whereas the pH stability was maintained more than 56 % at 5.5 to 6.5 after 120 viii PART I INTRODUCTION 1.1 INTRODUCTION The last two decades, the using of enzyme in industrial process has significantly increased and remained a constant effort (Lima et al., 2005) According to the BBC Research (2011), the number usages of the total market for industrial enzyme reached to USD 4.4 billion in 2015 Some enzymes are commonly used may be mentioned as amylase, protease, lipase, xylanase, cellulase and so on (Bhat, 2000) The cellulase has its significance due to key role in biotechnology and industrial applications (Bhat, 2000) It has been widely utilized for bioremediation (Zahangir et al., 2005), food processing (Chandara et al., 2005), paper, pulp industry, supplement in animal feed industry (Chandara et al., 2005), textile industry (Ali and Saad, 2008), alcoholic beverage, malting and brewing (Sreeja et al., 2013), formulation of washing powders, extraction of fruit and vegetable juices, and starch processing (Camassola and Dillon, 2007) Bacillus sp is a Gram-positive aerobic or facultative endorspero-forming bacterium, rod-shaped bacterium (Shneath et al., 1986) which has been widely used in large-scale commercial enzyme application (Schallmey et al., 2004) Bacillus sp can produce a variety of extracellular cellulolytic enzymes that extremely express high cellulose degradation activities (Rastogi et al., 2010) The production of extracellular cellulase in microorganisms is significantly affected by a number of factors such as temperature, pH, aeration (Immanuel et al., 2006), agitation and medium constituents (Prasertsan and Doelle, 1987) Previously, the number of researchers in the Faculty of Food Science and Technology were investigated about some beneficial of Bacillus strains which can produce antibacteria, glucanase, protease, lactase and so on In this study, the Bacillus strains were screened to find out more ability of producing cellulolytic cellulase 1.2 OBJECTIVE 1.2.1 General objective The aim of this research is to screen and characterization of cellulase in Bacillus sp and determines some characteristic of this enzyme REFERENCES 10 11 12 Ali U F., and Saad E H S (2008) Production and partial purification of cellulase complex by Aspergillus niger and A nidulans grown on water hyacinth blend Journal of applied sciences research 4, 875-891 Ancharida S., Thanawan T., Jaruwan S., and Somboon T (2014) Characterization of cellulase producing Bacillus and Paenibbacillus strains from Thai soils Journal of applied pharmaceutical science 4(05), 006-011 Archana A., and Satyanarayana T (1997) Xylanaseproduction of thermophilic Bacillus licheniformis A99 in solid-state fermentation Enzyme and microbial technology 21, 12-17 Ariffin H., Hassan M A., Shah U K M., Abdullah N., Ghazali F M., and Shirai Y (2008) Production of bacterial endoglucanase from pretreated oil palm empty fruit bunchby Bacillus pumilus EB3 Journalof bioscience and bioengineering 106(3), 231–236 Bailey B C., and Lumsden R D (1998) Direct effects of Trichoderma and Gliocladium on plant growth and resistance to pathogens In: Harman G F., Kubicek C P., editors 2, Trichoderma and Gliocladium- Enzymes, biological control and commercial applications, London: UK, Taylor and Francis, 327-342 Balasubramainian N., Toubarro D., Teixeira M., and Simoes N (2012) Applied Biochemistry and Biotechnology 168, 191-2204 Barros R R., Oliveira R A., Gottschalk L M., and Bon E P (2010) Production of cellulolytic enzymes by fungi Acrophilophora nainiana and cetatocystis paradoxa using different carbon sources Applied of biochemistry and biotechnology 161(1-8), 448-454 BBC Research (2011) Report BIO030 F enzymes in industrial applications Global markets Wellesley, MA, USA Beguin P., and Aubert J P (1994) The biological degradation of cellulose FEMS microbiology reviews 13, 25-58 Beukes N., and Pletschke B I (2006) Effect of sulfur-containing compounds on Bacillus cellulosome-associated CMCase and avicelase activities FEMS microbiology letters 264(2), 226–231 Bhat M K (2000) Cellulases and related enzymes in biotechnology Biotechnology advances 18(5), 355–383 Camassola M., and Dillon A J P (2007) Production of cellulases and hemicellulases by Penicilliumechinulatum grown on pretreated sugarcane bagasse and wheat bran in solid-state fermentation Journal of applied microbiology 103, 2196–2204 37 13 14 15 16 17 18 19 20 21 22 23 Carcia E., Johnston D., Whitaker J R., and Shoemaker S P (1993) Assessment of endo-1,4-beta-D-glucanase activity by a rapid colorimetric assay using disodium 2,2'-bicinchoninate Journal of food biochemistry 17, 135–45 Chandara S K R., Snishamol C., and Prabhu N G (2005) Cellulaseproduction by native bacteria using water hyacinth as substrate under solid state fermentation Malaysian journal of microbiology 1, 25-29 Chandra M., Kalra A., Sharma P K., Kumar H., and Sangwan R S (2010) Optimization of cellulases production by Trichodermacitrinoviride on marc of Artemisia annua and its application for bioconversion process Biomass and bioenergy 34, 805–811 Chinnarjan R., Thangiah N., Govinda S R., and Varatharajan (2010) Optimization of alkaline cellulose production by the marine derived fungus chaetomium sp Using agricultural and industrial wastes as substrates Botania marina 53, 275-282 Chipeta Z A., Du Preez J C., and Christopher L (2008) Effect of cultivation pH and agitation rate on growth and xylanase production by Aspergillus oryzae in spent sulphite liquor Journal of industrial microbiology and biotechnology.35(6), 587–594 Choudhary N., Dunn N W., and Gray P P (1980) Use of a combined cellulononas and Trichoderma cellulase preparation for cellulose sccharificaton Biotechnology letters 3, 1515-1526 Choudhary N., Grayy P P., and Dunn N W (1981) Reusing sugaraccumulation from alkali pretreated sugarcane bagasse using cellulomonas European journal of applied microbiology and biotechnology 11, 50-59 Coughlan M P., and Mayer F (2010) The cellulase decomposing bacteria and their enzyme systems In the prokaryotes, 2nd edition edited by Balowes A, Trurer H, Dworkin M, Harder W, Scheifer K H, Published in Springer Verlag 460-516 Deepmoni D., Saprativ P D., Naresh S., Debasish D., Mohammad J., Dinesh G., and Arun G (2013) Enhanced cellulase production from Bacillus subtilis by optimizing physical parameters for bioethanol production ISRN biotechnology 965310 Deshpande M V., Eriksson K E., and Pettersson L G (1984) An assay for selective determination of exo-1,4,-beta-glucanases in a mixture of cellulolytic enzymes Analytical biochemistry 138, 481–7 Deswal D., Khasa Y P., and Kuhad R C (2011) Optimization of cellulose production by a brown rot fungus Fomitopsis sp RCK 2010 under solid state fermentation Bioresource technology 102(10), 6065-72 38 24 Dutta T., Sahoo R., Sengupta R., Ray S S., Bhattacharjee A., and Ghosh S (2008) Novel cellulases from an extremophilic filamentous fungi Penicilliumcitrinum: production and characterization Journal of industrial microbiology and biotechnology 35, 275–282 25 Edgar R C (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput Nucleic acids research 32(5), 1792-1797 26 Ekkerigin M M (2007) Priliminary studies of cellulase production by Acinetobacter anitratus and Branhamellua sp African journal of biotechnology 6(1), 028-033 27 Eijsink V., Gåseidnes S., Borchert T., and Burg V D (2005) Directed evolution of enzyme stability Biomolecular engineering 22(1-3), 21-30 28 Galante Y M., De C A., and Monteverdi R (1998b) Application of Trichoderma enzymes in food and feed industries In: Harman G F., Kubicek C P., editors Trichoderma and Gliocladium-enzymes, biological control and commercial applications London: Taylor and Francis, 327-42 29 Gao J., Weng H., Zhu D., Yuan M., Guan F., and Xi Y (2008) Production and characterization fungal Aspergillus of cellulolytic terreus M11 enzymes under from the solid-state thermoacidophilic cultivation of corn stover Bioresource Technology 99, 7623–7629 30 Ghose T K (1987) Measurement of cellulase activities Pure and applied chemistry 58, 257-268 31 Gong C S., Ladisch M R., and Tsao G (1977) Cellobiase from Trichoderma viride: purification, properties, kinetics and mechanism Biotechnology and Bioengineering 19, 959–81 32 Harman G E., and Kubicek C P (1998) Trichoderma and Gliocladium: Enzymes, biological control and commercial applications London: Taylor and Francis Ltd 393 33 Henrissat B (1994) Cellulases and their interaction with cellulose Cellulose 1, 169–96 34 Holtzapple M T., Cognata M., Shu Y., and Hendrickson C (1990) Inhibition of Trichoderma reesei cellulase by sugars and solvents Biotechnology and bioengineering 36, 275–87 35 Huang X P., and Monk C (2004) Purification and characterization of a cellulase from a newly isolated thermophilic aerobic Bacterium Caldibacillus cellulovoransgen, nov sp World Journal of microbiology and biotechnology 20(1), 85-92 39 36 37 38 39 40 41 42 43 44 45 46 47 Iflah W., Muhammad G., and Shahnaz C (2014) Cellulase production from newly isolated bacterial strains from local habitat International journal of recent scientific research 5(8), 1454-1459 Ikram-UI-Haq., Uzma H., Kiran S M., Mohin J., Sikander A., and Qadeer M A (2005) Cotton saccharifying activity of cellulases by Trichoderma harzianum UM-11 in shake flask International journal botany 1(1), 19-22 Immanuel G., Dhanusha R., Prema P., and Palavesam A (2006) Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment International journal of environmental science and technology 3(1), 25–34 Immanuel G., Bhagavath C M., Raj I P., Esakkiraj P., and Palavesam A (2007) Production and partial purification of cellulase by Aspergillusniger and A Fumigatus fermented in coir waste and sawdust The internet journal of microbiology 3(1) doi:10.5580/49 Jo K I., Lee Y J., and Kim B K (2008) Pilot-scale from rice hull by Bacillus amyloliquefaciens DL-3 Biotechnology and bioprocess engineering.13 Karlsson J., Momcilovic D., Vittgren B., Schulein M., Tjerneld F., and Brinkmalm G (2001) Enzymatic degradation of carboxymethyl cellulose hydrolyzed by the endoglucanases Cel5A, Cel7B, and Cel45A from Humicola insolens and Cel7B, Cel12A and Cel45A from Trichoderma reesei Biopolymers 63, 32-40 Karmakar M., and Ray R (2011) Current trends in research and application of microbial cellulases Research journal of microbiology (1), 41-53 Kim C H (1995) “Characterization and substrate specificity of an endo-beta1,4-D-glucanase I (Avicelase I) from an extracellular multi-enzyme complex of Bacillus circulans,” Applied and Environmental Microbiology 61(3), 959-965 Khianngam S., Yupa P., Taweesak T., and Somboon T (2014) Screening and identification of cellulase producing bacteria isolated from oil palm meal Journal of applied pharmaceutical science 4(04), 090-096, Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2014.40416 Klemm D., Philipp B., Heinze T., Heinze U., and Wagenknecht W (1998a) Comprehensive cellulose chemistry: I fundamentals and analytical methods Weiheim, Germany: Wiley-VCH Knowles J., Lethtovaara P., and Reeri T T (1987) Cellulase families and their genes.Trends biotechnology 5, 255–61 Kubicek C P (1993) From cellulose to cellulase inducers: facts and fiction In P Suominen, and T Reinikainen, Proceedings of the 2nd symposium 40 48 49 50 51 52 53 54 55 56 57 TrichodrmaReesei cellulases and other hydrolases (TRICEL 93) Finalnd: Foundation for biotechnical and industrial fermentation 8, 181-188 Kuhad R C., Gupta R., and Singh A (2011) Microbial cellulases and their industrial applications Enzyme research Lee B H., Kim B K., Lee Y J., Chung C H., and Lee J W (2010) Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp subtilis A-53 Enzyme and microbial technology 46(1), 38–42 Lee Y J., Kim B K., Lee B H., Jo K I., Lee N K., Chung C H., Lee Y.C., and Lee J W (2008) Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull Bioresource technology 99, 378–386 Lejeune R., and Baron G V (1995) Effect of agitation on growth and enzyme production of Trichoderma reesei in batch fermentation Applied microbiology and biotechnology 43(2), 249–258 Liang Y., Yesuf J., Schmitt S., Bender K., and Bozzola J (2009) Study of cellulases from a newly isolated thermophilic and cellulolytic Brevibacilus sp strain JXL Journal of industrial microbiology and biotechnology 36, 961-970 Liang Y., Feng Z., Yesuf J., and Blackburn J W (2010) Optimization of growth medium and enzyme assay conditions for crude cellulases produced by a novel thermophilic and cellulolytic bacterium, Anoxybacillus sp 527 Applied biochemistry and biotechnology 160(6), 1841–1852 Li J Y., Hsin H L., and Zheng R X (2010) Purification and characterization of a cellulase from Bacillus subtilis YJ1 Journal of marine science and technology 18(3), 466-471 Lima A O., Quecine M C., Fungaro M H., Andreote F D., Maccheroni W J., Araujo W L., SilvaF M C., Pizzirani K A A., and Azevedo J L (2005) Molecular characterization of a beta-1,4-endoglucanase from an endophytic Bacillus pumilus strain Applied microbiology and biotechnology 68, 57-65 Lima W Y., Fanxu M., Shengyue J., Haiyun X., and Binyun C (2015) Characterization of an acidic cellulase produced by Bacillus subtilis BY-4 isolated from gastrointestinal tract of Tibetan pig Journal of the taiwan institute of chemical engineers 56 DOI: 10.1016/j.jtice.2015.04.025 Lisdiyanti P., Suyanto E., Gusmawati N F., and Rahayu W (2012) Isolation and characterization of cellulose produced by cellulolytic bacteria from peat soil of Ogan Komering Ilir, South Sumatera International journal of environment and bioenergy 3, 145-153 41 58 59 Lynd L R., Weimer P J., Van Z W H., and Pretorius I S (2002) Microbial cellulose utilization: fundamentals and biotechnology Microbiology and molecular biology reviews 66, 506–77 Mackenzie C R., Bilous D., and Patel G B (1985) Studies on cellulose hydrolysis by Acetovibrio celluloytious Applied and environmental microbiology 50, 243-248 60 Mai C., Kăues., and Militz H (2004) Biotechnology in the wood industry Applied microbiology and biotechnology 63, 477–494 61 Maki M., Leung K L., and Qin W (2009) The prospects of cellulase producing bacteria for the bioconversion of lignocellulosic biomass International journal of biological sciences 5, 500-516 62 Maranda M., Kam T L., and Wensheng Q (2009) The prospects of cellulase producing bacteria for the bioconversion of lignocellulosic biomass International journal of biological sciences 5, 500-516 63 Mawadza C., Hatti K R., Zvauya R., and Mattiasson B (2000) “Purification and characterization of cellulases produced by two Bacillus strains,” Journal of biotechnology 83(3), 177-187 64 McCarthy J K., Uzelac A., Davis D F., and Eveleigh D E (2004) Improved catalytic efficiency and active site modification of 1,4-beta-D-glucan glucohydrolase A from Thermotoga neapolitana by directed evolution The journal of biological chemistry 279, 11495–502 65 Miller G L (1959) Use of dinitrosalicylic acid reagent form determination of reducing sugar Analytic chemistry 31, 426-428 66 Mojsov K (2012) Microbial cellulases and their applications in textile processing International journal of marketing and technology Retrieved from http://www.ijmra.us 67 Mussatto S I., and Teixeira J A (2010) Lignocellulose as raw material in fermentation processes Institute for biotechnology and bioengineering, Centre of biological engineering, University of Minho, Campus de Gualtar, 4710–057 Braga, Portugal http://www.formatex.info/microbiology2/897-907.pdf 68 Muthuyelayudham R., and Viruthagiri T (2003) Production of cellulase protein using mutants of Trichoderma reesei International congress of indian pharmacy graduates 76 69 Muthuyelayudham R., and Viruthagiri T (2005) Biodegradation of sugarcane bagasse using Trichoderma reesei cellulasa protein Chemcon 2005 The indian chemical engineering congress 310-311 42 70 Natesan B., and Nelson S (2014) Bacillus pumilus S124A carboxymethyl cellulase; a thermos stable enzyme with a wide substrate spectrum utility International journal of biological macromolecules 67,132-139 71 National Renewable Energy Laboratory (2006) From biomass to biofuels Retrieved from http://www.nrel.gov/biomass 72 Ortiz M E., and Hue N V (2008) Temporal changes of selected chemical properties in three manure amended soils of Hawaii Bioresource technology 99(18), 8649–8654 73 Ozaki K., Shikata S., Kawai S., Ito S., and Okamoto K (1990) Molecular cloning and nucleoside sequene of a gene for alkakine cellulase from Bacillus sp KSM635 Journal of general microbiology 136, 1327-1334 74 Padilha I Q M., Carvalho L C T., Dias P V S., Grisi T C S L., Honorato D S F L., Santos S F M., and Araujo D A M (2015) Production and characterization of thermophilic carboxylmethylcellulase synthesized by Bacillus sp growing on sugarcane bagasse in submerged fermentation Brazilian journal of chemical engineering 32, 35-42 75 Prabesh K., Jahed A., Mehadi H S., Kamrul I., and Abul K A (2016) Isolation, screening and characterization of cellulase producing bacterial isolates from municipal solid wastes and rice straw wastes Journal of bioprocessing and biotechniques 6, 280 doi:10.4172/2155-9821.1000280 76 Prasertsan P., and Doelle H W (1987) Nutrient optimization for cellulase biosynthesis by a newly isolated Cellulomonas sp World journal of applied microbiology and biotechnology 3(1), 33–43 77 Polacheck I., Melamed M., Bercovier H., and Salkin I F (1987) BetaGlucosidase in Candida albicans and its application in yeast identification Journal of clinical microbiology 25, 907–10 78 Purkarthofer H., Sinner M., and Steiner W (1993) Effect of shear rate and culture pH on the production of xylanase by Thermomyces lanuginosus Biotechnology letters 15(4), 405–410 79 Rajoka M I (2004) Influence of various fermentation variables on exoglucanase production in Cellulomonas flavigena Electronic journal of biotechnology 7(3), 256–263 80 Rajoka M I., and Malik K A (1984) Cellulase and himicellulase production by celllulomonas flavigena NIAB 441 Biotechnology letters 6, 597-601 81 Rastogi G., Muppidi G L., and Gurram R N (2009) Isolation and characterization of cellulose-degrading bacteria from the deep subsurface of the 43 homestake gold mine, lead, South Dakota, USA Journal of industrial microbiology and biotechnology 236(4), 585–598 82 Rastogi G., Bhalla A., and Adhikarietal A (2010) Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains Bioresource technology 101(22), 8798–8806 83 Rawat R., and Tewari L (2012) Purification and characterization of an acidothermophilic cellulase enyme produced by Bacillus subtilis strain LFS3 Extremophiles 16(4), 637-644 84 Ray A K., Bairagi A., Sarkar G K., and Sen S K (2007) Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut Acta ichthyologica et piscatoria 37(1), 47–53 85 Rekha R., and Lakshmi T (2012) Purification and characterization of an acidothermophilic cellulase enzyme produced by Bacillus subtilis strain LFS3 Extremophiles 16, 637–644 DOI 10.1007/s00792-012-0463-y 86 Sang-mok L., and Koo Y M (2001) Pilot-scale production of cellulase using Trichoderma reesei Rut C-30 in fed batch mode Journal of microbiology and biotechnology 11(2), 229-233 87 Sangrila S., and Tushar K M (2013) Cellulase production by bacteria: A review British microbiology research journal 3(3), 235-258 88 Saravavanan P., Muthuvelayudham R., Viruthagiri T (2013) Enhanced production of cellulose from pine apple waste by response surface methodogology Journal of engineering 89 Schallmey M., Singh A., and Ward O P (2004) Developments in the use of Bacillus species for industrial production Canadian journal of microbiology 50(1), 1–17 90 Setlow B., Cabrera H A., Cabrera M R M., and Setlow P (2004) Identification of aryl-phospho-beta-D-glucosidases in Bacillus subtilis Archives of microbiology 181:60–7 91 Sharada R., Venateswarlu G., Venkateshwar S., An M., and Rao (2013) Production of cellulase-a review International journal of pharmaceutical, chemical and biological sciences 3(4), 1070-1090 92 Shneath P H A., Mair N.S., Sharpe M E., and Holt J G (1986) Bergy’s manual of systematic bacteriology Baltimore, Williams and Wilkins 93 Sharrock K R (1988) Cellulas assay methods: a review Journal of biochemical and biophysical methods 17, 81-105 44 94 95 96 97 98 99 100 101 102 103 104 105 Singh S., Du P J C., Pillay B., and Prior B A (2000) The production of hemicellulases by Thermomyces lanuginosus strain SSBP: Influence of agitation and dissolved oxygen tension Applied microbiology and biotechnology 54(5), 698–704 Singh A., Kuhad R C., and Ward O P (2007) Industrial applications of microbial cellulases In: lignocellulose Biotechnology: Future prospects, Kuhad R C., and Singh A (Eds) I.K International Publishing House Pvt Ltd., New Delhi, ISBN: 81-88237-58-2, 345-358 Sohail M., Siddiqi R., Ahmad A., and Khan S A (2009) Cellulase production from Aspergillusniger MS82: effect of temperature and pH New biotechnology 25(6), 437–441 Somen A., and Anitha C (2012) Alkaline cellulose produced by a newly isolated thermophilic Aneurinibacillus thermoaerophilus WBS2 from hot spring indea African journal of microbiology research 6(26), 5453-5458 Sonia S., Aparna D B., Lal G., and Saksham G (2013) Optimization of cellulose production from bacteria isolated from soil ISRN biotechnology Sreeja S J., Jeba M P.W., Sharmila J F R., Steffi T., Immanuel G., and Palavesam A (2013) Optimization of cellulase production by Bacillus altitudinis APS MSU and Bacillus licheniformis APS2 MSU, gut isolates of fish Etroplussuratensis International journal of advancements in research and technology 2, 401-406 Srivastava N., Rawat R., Oberoi H S., and Ramteke P.W (2015a) A review on fuel ethanol production from lignocellulosic biomass International journal of green energy 12, 949–960 Strobel H J., and Russell J B (1987) Regulation of beta-glucosidase in Bacteroides ruminicola by a different mechanism: growth rate-dependent derepression Applied and environmental microbiology 53, 2505–10 Sukumaran R K., Singhania R R., and Pandey A (2005) Microbial cellulases production, application and challenges Journal of scientific and industrial research 64(11), 832-844 Teeri T T., (1997) Crystalline cellulose degradation: new insights into the function of cellobiohydrolases Trends in biotechnology 15, 160–7 Teeri T T., Koivula A., Linder M., Wohlfahrt G., Divne C., and Jones T A (1998) Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose? Biochemical society transactions 26, 173–8 Tejada M., Gonzalez J L., Garc A M., and Parrado J (2008) Application of a green manure and green manure composted with beet vinasse on soil restoration: effects on soil properties Bioresource technology 99(11), 4949–4957 45 106 Ten L N., Im W T., Kim M K., Kang M S., and Lee S T (2004) Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates Journal of microbiological methods 56, 375–82 107 Thi Q D., and Quyen D T (2014) Enzyme supplement natural and recombination in feed Natural sciences and technology publisher 108 Uhlig H (1998) Industrial enzymes and their applications New York, USA: John Wiley and Sons 109 Waldron C R., and Eveleigh D E (1986) Saccharification of cellulosics by micro bispora Applied microbiology and biotechnology 24, 487-493 110 Williams A G., and Withers S E (1983) Bacillus spp in the rumen ecosystem Hemicellulose depolymerases and glycoside hydrolases of Bacillus spp and rumen isolates grown under anaerobic conditions Journal applied bacteriology 55, 434-441 111 Wood T M., and Bhat K M (1988) Methods for measuring cellulase activities Methods enzymology 160, 87-117 112 Wood T M., and Garica C V (1990) Enzymology of cellulose degradation Biodegradation 1, 147–61 113 Zahangir A M., Nurdina M., and Erman M M (2005) Production of cellulase enzyme from oil palm biomass as substrate by solid state bioconversion American journal of applied sciences 2, 569- 572 114 Zhang Y H P., and Lynd L R (2004b) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: non-complexed cellulase systems Biotechnology and bioengineering 88, 797–824 115 Yoon L.W., Ang T N., Ngoh G.C., and Seak M C A (2014) Fungal solid-state fermentation and various methods of enhancement in cellulase production Biomass and bioenergy 67, 319–338 46 APPENDIX Standard Curve 0,8 y = 2,2817x - 0,0035 R² = 0,9972 0,7 OD 540 0,6 0,5 0,4 0,3 0,2 0,1 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 Glucose (mg/ml) Figure Glucose standard curve for the determination of the quantity of reducing sugar produced from enzyme assays and for determination of cellulolytic activity Absorbances’s were read at 540 nm Analyzing result of 16S sequence of selected strains Strain A1.2 >1st_BASE_2543389_A1_2_16sF AATAGCATTCGGGTCTATAATGCAGTCGAGCGAATGGATTAAGAGCTTGCTCTTAT GAAGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCCATAAGACTGGG ATAACTCCGGGAAACCGGGGCTAATACCGGATAACATTTTGAACTGCATGGTTCGA AATTGAAAGGCGGCTTCGGCTGTCACTTATGGATGGACCCGCGTCGCATTAGCTAG TTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGA TCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGG GAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAG GCTTTCGGGTCGTAAAACTCTGTTGTTAGGGAAGAACAAGTGCTAGTTGAATAAGC TGGCACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCG CGGTAATACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGCGCGCA GGTGGTTTCTTAAGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGG AAACTGGGAGACTTGAGTGCAGAAGAGGAAAGTGGAATTCCATGTGTAGCGGTGA AATGCGTAGAGATATGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGTCTGTAAC TGACACTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTC CACGCCGTAAACGATGAGTGCTAAGTGTTAGAGGGGTTTCCGCCCCTTTAGTGCTG AAGGTTAACGCATTTAAGCACTCCCCCCTGGGGGAGTACGGCCCGCCAGGGCTTGA AACTCCAAAGGAAATTGAACGCGCGGCCCGCCACAAACCTGTCGGAGCCATGTTGG 47 TTTTAATTTCAAAACCAACCCCCCAAGAAACATTACCCATGGGCGTGGGAAGTGCC TCTTAAAAAACCCCAATCATATAAGTGGCTTTCTCCCTTCTCCGTAACCGGAATGTG ACCGAGTTTCAGTGCAAGTGTATAGTGGTGTCTCTCTCCGTGTCCCGAGAAGTGAGT GTGTGATGTAGGTCTCCCATTCCTCCTAGTCCAAAAACCCGCTAGTTGCTCTAAGTT TCGTCCGTCTCGTGTAATCCTTGTGGAGCAATCTCGGTAAGATCTGAAATTGACCAC TGGTGACTCCTACCTCGCCGGGAGAGAGACGGTGGTGCGTCGGGCCAGGTGCCGCC AACACGCACTCGCACGACCGCGCTTTCGGCTTCGCCACGCTGCGCCTGTAACAGAA CCCGCGCGCGTGGCACAC >1st_BASE_2543393_A1_2_16sR CAATTTGTCACTTAGCGGCTGGCTCCAAAAGGTTACCCCACCGACTTCGGGTGTTAC AAACTCTCGTGGTGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCG GCATGCTGATCCGCGATTACTAGCGATTCCAGCTTCATGTAGGCGAGTTGCAGCCT ACAATCCGAACTGAGAACGGTTTTATGAGATTAGCTCCACCTCGCGGTCTTGCAGC TCTTTGTACCGTCCATTGTAGCACGTGTGTAGCCCAGGTCATAAGGGGCATGATGAT TTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGCAGTCACCTTAGAGTGCCCA ACTTAATGATGGCAACTAAGATCAAGGGTTGCGCTCGTTGCGGGACTTAACCCAAC ATCTCACGACACGAGCTGACGACAACCATGCACCACCTGTCACTCTGCTCCCGAAG GAGAAGCCCTATCTCTAGGGTTTTCAGAGGATGTCAAGACCTGGTAAGGTTCTTCG CGTTGCTTCGAATTAAACCACATGCTCCACCGCTTGTGCGGGCCCCCGTCAATTCCT TTGAGTTTCAGCCTTGCGGCCGTACTCCCCAGGCGGAGTGCTTAATGCGTTAACTTC AGCACTAAAGGGCGGAAACCCTCTAACACTTAGCACTCATCGTTTACGGCGTGGAC TACCAGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCGCGCCTCAGTGTCAGTTAC AGACCAGAAAGTCGCCTTCGCCACTGGTGTTCCTCCATATCTCTACGCATTTCACCG CTACACATGGAATTCCACTTTCCTCTTCTGCACTCAAGTCTCCCAGTTTCCAATGAC CCTCCACGGTTGAGCCGTGGGCTTTCACATCAGACTTAAGAAACCACCTGCGCGCG CTTTACGCCCAATAATTCCGGATAACGCTTGCCACCTACGTATTACCGCGGCTGCTG GCACGTAGTTAGCCGTGGCTTTCTGGTTAGGTACCGTCAAGGTGCCAGCTTATTCAA CTAGCACTTGGTTCTTCCCTAACAACAGAATTTTAACGACCCGAAAGCCGTTCATCA CTTCAGGCGGGGGTTGGCTCCGTCCAGAACTTTCGGTCCATTGGCGAAAAGATTCC CTAACTGCTTGCCTTCCCGTAAGGAATCTGGGACCGGGGTTCGAGTCCCAGTTGTG GACCAAATCACCCTTCTCAAGGTCGGCTTACCCTTCGGTTGCCCTTGGTGGAGCCTG TTACCTCCACCAACTAACTTAAATGGCAAACGGGGGTCCCTTTCCCTAAAGGGAAA TTACTTAAACCCGGCCTTTTCAATTTTTGAAACCCTGGCGGGTTCCAAAATTGTTTA CCCGGGTATTAAATACGCCGGGGTTTCCCCGGGATATTTTCCCCCGTTATTTAATGG GGCGAGGGTAACCCACGTGGT A1-2 16S align GTGATGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTAGGGAAGAACAAGTGCTAGT TGAATAAGCTGGCACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGC CAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAA GCGCGCGCAGGTGGTTTCTTAAGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAG GGTCATTGGAAACTGGGAGACTTGAGTGCAGAAGAGGAAAGTGGAATTCCATGTG TAGCGGTGAAATGCGTAGAGATATGGAGGAACACCAGTGGCGAAGGCGACTTTCT GGTCTGTAACTGACACTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATAC CCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGAGGGGTTTCCGCCCC TTTAGTGCTGAAGGTTAACGCATTTAAGCACTCCCCCCTGGGGGAGTACGGCCC - Result: Strain A1.2 is classified Bacillus cereus with identity 97% 48 Strain A1-8 >1st_BASE_2543390_A1_8_16sF ATTGGCTGGCGGCAGCTATAATGCAGTCGAGCGAATGGATTAAGAGCTTGCTCTTA TGAAGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCCATAAGACTGG GATAACTCCGGGAAACCGGGGCTAATACCGGATAACATTTTGAACCGCATGGTTCG AAATTGAAAGGCGGCTTCGGCTGTCACTTATGGATGGACCCGCGTCGCATTAGCTA GTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTG ATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAG GGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAA GGCTTTCGGGTCGTAAAACTCTGTTGTTAGGGAAGAACAAGTGCTAGTTGAATAAG CTGGCACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCC GCGGTAATACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGCGCGC AGGTGGTTTCTTAAGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTG GAAACTGGGAGACTTGAGTGCAGAAGAGGAAAGTGGAATTCCATGTGTAGCGGTG AAATGCGTAGAGATATGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGTCTGTAA CTGACACTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGT CCACGCCGTAAACGATGAGTGCTAAGTGTTAGAGGGTTTCCGCCCTTTAGTGCTGA AGTTAACGCATTAAGCACTCCGCCTGGGGAGTACGGCCGCAAGGCTGAAACTCAAA GGAATTGACCGGGGGCCCGCACAATCGGTGGGAGCATGTGGGTTTAATTCAAAGCC AACGCCCAAGAAACCTTACCAGGGTCTTGGACATCCTTCTGAACAACCCCTAGAAG ATAAGGGCTTCTGCCTTCCGGTAGCAGAAGTGAACAGGTAAGTGGCATGGTTAGTT CGTCGACCTCCTCTGCCGTGGAAAGGGTGAGGATTTAAGTGCCCGATCAACCTACA CGACAAGCCCTTGGATCCTTGAGTTGCCCAGCCTTGAAACTTTGGGCAAATTGTGA AGGTCGAATTGGCCTGTCAGTCCCAGCCGCAGAATAAAGGGAGGGGGGAATGGTC CGCTGATATCAATTCGCTGTGCCCATTTAGCCAACCTCTTGGTGATATCCCTCAGTG GTGCACTCACATTGGGCAGAGGGTCTAACAATGAGCGTGAGTCAAATATCTCCCGA ATTTACTGAGGCACTTACGATACCGGTTCAGCGCACACCTTCCTTTCTCTAAAATGT TTAAAGTGTGCTTAACTAACTATTAAATTAACCTTCTTCCTGAACCTGTGTAGACGT CCGGTTGGAGATCCAGATGGTGAACGTAAATCATAAC >1st_BASE_2543394_A1_8_16sR CACTCTGTCACCTTAGGCGGCTGGCTCCAAAAGGTTACCCCACCGACTTCGGGTGTT ACAAACTCTCGTGGTGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCG CGGCATGCTGATCCGCGATTACTAGCGATTCCAGCTTCATGTAGGCGAGTTGCAGC CTACAATCCGAACTGAGAACGGTTTTATGAGATTAGCTCCACCTCGCGGTCTTGCA GCTCTTTGTACCGTCCATTGTAGCACGTGTGTAGCCCAGGTCATAAGGGGCATGAT GATTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGCAGTCACCTTAGAGTGC CCAACTTAATGATGGCAACTAAGATCAAGGGTTGCGCTCGTTGCGGGACTTAACCC AACATCTCACGACACGAGCTGACGACAACCATGCACCACCTGTCACTCTGCTCCCG AAGGAGAAGCCCTATCTCTAGGGTTGTCAGAGGATGTCAAGACCTGGTAAGGTTCT TCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTGTGCGGGCCCCCGTCAATT CCTTTGAGTTTCAGCCTTGCGGCCGTACTCCCCAGGCGGAGTGCTTAATGCGTTAAC TTCAGCACTAAAGGGCGGAAACCCTCTAACACTTAGCACTCATCGTTTACGGCGTG GACTACCAGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCGCGCCTCAGTGTCAGT TACAGACCAGAAAGTCGCCTTCGCCACTGGTGTTCCTCCATATCTCTACGCATTTCA CCGCTACACATGGAATTCCACTTTCCTCTTCTGCACTCAAGTCTCCCAGTTTCCAAT GACCCTCCACGGTTGAGCCGTGGGCTTTCACATCAGACTTAAGAAACCACCTGCGC GCGCTTTACGCCCAATAATTCCGGATAACGCTTGCCACCTACGTATTACCGCGGCTG CTGGCACGTAGTTAGCCGTGGCTTTCTGGTTAGGTACCGTCAAGGTGCCAGCTTATT CAACTAGCACTTGTTCTTCCCTAACAACAGAATTTTACGACCCGAAAGCCTTCATCA 49 CTCAGCCGGCGTTGCTTCGTCAGACTTTCGTCCATTGCCGAAAGATTCCCTACTGCT GGCTTCCCGTAGGAGTCTGGGGCCGTGTCTCAGTCCCAGTGTGGGCCAATCACCCTT TCAAGGTCGGGTAACGCATCGGTTGCCCTTGGGGAAGGCCGTTACCTCACCCAACT AAACTAAATGCGAACGCGGGGTTCATTCCTTAAATTGAAAATCCAAAAACCCGCCT TTTCAATTTCCAAAACCTGGCGGGTTCCAAAAATGTTAACCCGGGATATAAACCCC CGGGTTTCTCCGGGAATTTTTCCCCGTCTTTTTAGGGGGGAGGGTTACCCACCGGGG TTTAACACACCTTGTCCTCCCGA >A1-8 align CGGGTGAGTAACACGTGGGTAACCTGCCCATAAGACTGGGATAACTCCGGGAAAC CGGGGCTAATACCGGATAACATTTTGAACCGCATGGTTCGAAATTGAAAGGCGGCT TCGGCTGTCACTTATGGATGGACCCGCGTCGCATTAGCTAGTTGGTGAGGTAACGG CTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATG GACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGCTTTCGGGTCGTAA AACTCTGTTGTTAGGGAAGAACAAGTGCTAGTTGAATAAGCTGGCACCTTGACGGT ACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGT GGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGCGCGCAGGTGGTTTCTTAAGT CTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGGAGACTTG AGTGCAGAAGAGGAAAGTGGAATTCCATGTGTAGCGGTGAAATGCGTAGAGATAT GGAGGAACACCAGTGGCGAAGGCGACTTTCTGGTCTGTAACTGACACTGAGGCGCG AAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGAT GAGTGCTAAGTGTTAGAGGGTTTCCGCCCTTTAGTGCTGAAGTTAACGCATTAAGC ACTCCGCCTGGGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGACCGGGGG CCCGCACAATCGGTGGGAGCATGTGGGTTTAATTCAAAGCCAACGCCCAAGAAACC TTACCAGGGTCTTGGACATCCT Result: Strain A1.8 is classified Bacillus cereus with identity 99% Strain B6.4 >1st_BASE_2543391_B6_4_16sF TGCATGCGGCAGCTATACATGCAGTCGAGCGGACAGAAGGGAGCTTGCTCCCGGAT GTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCTGTAAGACTGGGATA ACTCCGGGAAACCGGAGCTAATACCGGATAGTTCCTTGAACCGCATGGTTCAAGGA TGAAAGACGGTTTCGGCTGTCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTG GTGAGGTAACGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAGGGTGATCG GCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAA TCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTTT TCGGATCGTAAAGCTCTGTTGTTAGGGAAGAACAAGTGCAAGAGTAACTGCTTGCA CCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTA ATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGG TTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACT GGGAAACTTGAGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGC GTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACG CTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGC CGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTCCGCCCCTTAGTGCTGCAGCTAA CGCATTAAGCACTCCGCCTGGGGGAGTACGGTCGCCAGGACTGAAACTCAAAGGA ATTAACGAGGGGCCCGCACAAGCGGTGGGAGCATGTGGTTTTAATTTCGAAGCAAC 50 GCGCAAAAACCTTACCAGGGCCTGGACATCCCTCTGAAAAACCCTAGAAGATTAGG GCTTGTCCCTTTCCTGGGACAAGAATTGAACAGGTTGTTGTCATGGTTGTGTCTTTC TTTCTCCTTGTTCTTTGAGATGGTTGGTGTTAAAGTCCCCGCCAACCCTAGCGCCAA CTCCTTTGGATTCCTATGTACGTCCAAGGAATGTCA >1st_BASE_2543395_B6_4_16sR AAATCTGACCACCTTCGGCGGCTGGCTCATAAAGGTTACCTCACCGACTTCGGGTG TTGCAAACTCTCGTGGTGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCAC CGCGGCATGCTGATCCGCGATTACTAGCGATTCCAGCTTCACGCAGTCGAGTTGCA GACTGCGATCCGAACTGAGAACAGATTTGTGGGATTGGCTAAACCTTGCGGTCTCG CAGCCCTTTGTTCTGTCCATTGTAGCACGTGTGTAGCCCAGGTCATAAGGGGCATGA TGATTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGCAGTCACCTTAGAGTG CCCAACTGAATGCTGGCAACTAAGATCAAGGGTTGCGCTCGTTGCGGGACTTAACC CAACATCTCACGACACGAGCTGACGACAACCATGCACCACCTGTCACTCTGTCCCC GAAGGGAAAGCCCTATCTCTAGGGTTGTCAGAGGATGTCAAGACCTGGTAAGGTTC TTCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTGTGCGGGCCCCCGTCAAT TCCTTTGAGTTTCAGTCTTGCGACCGTACTCCCCAGGCGGAGTGCTTAATGCGTTAG CTGCAGCACTAAGGGGCGGAAACCCCCTAACACTTAGCACTCATCGTTTACGGCGT GGACTACCAGGGTATCTAATCCTGTTCGCTCCCCACGCTTTCGCTCCTCAGCGTCAG TTACAGACCAGAGAGTCGCCTTCGCCACTGGTGTTCCTCCACATCTCTACGCATTTC ACCGCTACACGTGGAATTCCACTCTCCTCTTCTGCACTCAAGTTTCCCAGTTTCCAA TGACCCTCCCCGGTTGAGCCGGGGGCTTTCACATCAGACTTAAGAAACCGCCTGCG AGCCCTTTACGCCCAATAATTCCGGACAACGCTTGCCACCTACGTATTACCGCGGCT GCCTGGCACGTATTTAGCCCGGGCCTTTCTGGTTAGGGTACCGTCAAGGTTGCAAG CAAGTTACTCTTGGCACTTGGTTCTTTCCCTAACCAACAGAAGCTTTTACGAATCCG AAAAACCTTTCATCCACTCAAGGCGGCGGTTGGCTCCGGTCAGAACTTTTCGTCCCA ATGGCGGAAAGAATTCCCTAACTGGCTGCCCTTCCCGTAAGGAATCTTGGGGCCGG GGTCCCAGGTCCCCAGTGGGGGGCCGAATCACCCTACTCCAGGGTCGGGCTTACCC AATCGGTCCCCCCTTGGTGTAAGCCCGTTAACCTCCACCCAACTAAGGCTAAATGG GCCCCCCGGGGGTCCCATTCTGGAAAATGCTACACCCGAAAAAACGGGTTTTTTAA TTCCCTTGGGACCCCTGGGGGGTGTTTAAAGGGGCATATTTTCTCTGGTAATTAATT GTTCTCGGTTTTACTCTCGGGGTGATTCTACCATTGTATTTTTCACTGCGAAGG >B6.4 Align CAAGTGCAAGAGTAACTGCTTGCACCTTGACGGTACCTAACCAGAAAGCCACGGCT AACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTAT TGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTC AACCGGGGAGGGTCATTGGAAACTGGGAAACTTGAGTGCAGAAGAGGAGAGTGGA ATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAG GCGACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAG GATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGT TTCCGCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGGAGTACGG TCGCCAGGACTGAAACTCAAAGGAATTAACGAGGGGCCCGCACAAGCGGTGGGAG CATGTGGTTTTAATTTCGAAGCAACGCGCAAAAACCTTACCAGGG Result: B6.4 is clasified Bacillus pumilus with identity 97% 51 ... General objectives: Screening and characterization of cellulase in Bacillus sp and determine some characteristic of this enzyme Specific objectives - Screening Bacillus sp producing cellulase from... screen and characterization of cellulase in Bacillus sp and determines some characteristic of this enzyme 1.2.2 Specific objectives - Screening Bacillus sp producing cellulase from the collection of. .. CONTENT - Screening Bacillus sp produced cellulase from the collection of isolated of Bacillus sp. ; - Identification of selected Bacillus sp producing cellulase; - Characterization of cellulase

Ngày đăng: 10/03/2021, 16:04

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN