THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 63 |
Dung lượng | 4,15 MB |
Nội dung
Ngày đăng: 09/03/2021, 11:39
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết | ||
---|---|---|---|---|
[16] Vinodhini, G. and Chandrasekaran, R.M., 2012. Sentiment analysis and opinion mining: a survey. International Journal, 2(6), pp.282-292 | Sách, tạp chí |
|
||
[17] Wiegand, M., Balahur, A., Roth, B., Klakow, D. and Montoyo, A., 2010, July. A survey on the role of negation in sentiment analysis. In Proceedings of the workshop on negation and speculation in natural language processing (pp. 60- 68) | Sách, tạp chí |
|
||
[1] Akhtar, M.S., Kumar, A., Ghosal, D., Ekbal, A. and Bhattacharyya, P., 2017, September. A multilayer perceptronbased ensemble technique for fine-grained financial sentiment analysis. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (pp. 540-546) | Khác | |||
[2] Al-Amin, M., Islam, M.S. and Uzzal, S.D., 2017, February. Sentiment analysis of Bengali comments with Word2Vec and sentiment information of words. In 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE) (pp. 186-190). IEEE | Khác | |||
[3] Baccianella, S., Esuli, A. and Sebastiani, F., 2010, May. Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining.In Lrec (Vol. 10, No. 2010, pp. 2200-2204) | Khác | |||
[4] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K. and Kuksa, P., 2011. Natural language processing (almost) from scratch. Journal of machine learning research, 12(Aug), pp.2493-2537 | Khác | |||
[5] Hamdan, H., Bellot, P. and Bechet, F., 2015, June. Lsislif: Crf and logistic regression for opinion target extraction and sentiment polarity analysis.In Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015) (pp. 753-758) | Khác | |||
[6] Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural computation, 9(8), pp.1735-1780 | Khác | |||
[7] Hong, J. and Fang, M., 2015. Sentiment analysis with deeply learned distributed representations of variable length texts. Stanford University Report | Khác | |||
[9] Akhtar, M.S., Kumar, A., Ghosal, D., Ekbal, A. and Bhattacharyya, P., 2017, September. A multilayer perceptron based ensemble technique for fine-grained financial sentiment analysis. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (pp. 540-546) | Khác | |||
[11] Le, Q. and Mikolov, T., 2014, January. Distributed representations of sentences and documents. In International conference on machine learning (pp. 1188- 1196) | Khác | |||
[12] Manek, A.S., Shenoy, P.D., Mohan, M.C. and Venugopal, K.R., 2017. Aspect term extraction for sentiment analysis in large movie reviews using Gini Index feature selection method and SVM classifier. World wide web, 20(2), pp.135- 154 | Khác | |||
[13] Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y. and Potts, C., 2011, June. Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies-volume 1 (pp. 142-150). Association for Computational Linguistics | Khác | |||
[14] Ramos, J., 2003, December. Using tf-idf to determine word relevance in document queries. In Proceedings of the first instructional conference on machine learning (Vol. 242, pp. 133-142) | Khác | |||
[15] Ravi, K., Ravi, V. and Gautam, C., 2015, May. Online and semi-online sentiment classification. In International Conference on Computing, Communication &Automation (pp. 938-943). IEEE | Khác | |||
[20] Zhang, L., Wang, S. and Liu, B., 2018. Deep learning for sentiment analysis: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), p.e1253 | Khác | |||
[21] Sayers, S.P., Harackiewicz, D.V., Harman, E.A., Frykman, P.N. and Rosenstein, M.T., 1999. Cross-validation of three jump power equations. Medicine and science in sports and exercise, 31(4), pp.572-577 | Khác |
TỪ KHÓA LIÊN QUAN
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN