1. Trang chủ
  2. » Luận Văn - Báo Cáo

(Luận án tiến sĩ) phát triển phương pháp tính toán phi tuyến đa tỉ lệ ngẫu nhiên cho vật liệu tổng hợp sợi ngắn ứng dụng cho nghiên cứu ảnh hưởng của cấu trúc vi mô biến đổi đến quá trình phát triển phá hỏng vật liệu

122 19 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 122
Dung lượng 5,1 MB

Nội dung

(Luận án tiến sĩ) Phát triển phương pháp tính toán phi tuyến đa tỉ lệ ngẫu nhiên cho vật liệu tổng hợp sợi ngắn ứng dụng cho nghiên cứu ảnh hưởng của cấu trúc vi mô biến đổi đến quá trình phát triển phá hỏng vật liệu (Luận án tiến sĩ) Phát triển phương pháp tính toán phi tuyến đa tỉ lệ ngẫu nhiên cho vật liệu tổng hợp sợi ngắn ứng dụng cho nghiên cứu ảnh hưởng của cấu trúc vi mô biến đổi đến quá trình phát triển phá hỏng vật liệu (Luận án tiến sĩ) Phát triển phương pháp tính toán phi tuyến đa tỉ lệ ngẫu nhiên cho vật liệu tổng hợp sợi ngắn ứng dụng cho nghiên cứu ảnh hưởng của cấu trúc vi mô biến đổi đến quá trình phát triển phá hỏng vật liệu (Luận án tiến sĩ) Phát triển phương pháp tính toán phi tuyến đa tỉ lệ ngẫu nhiên cho vật liệu tổng hợp sợi ngắn ứng dụng cho nghiên cứu ảnh hưởng của cấu trúc vi mô biến đổi đến quá trình phát triển phá hỏng vật liệu (Luận án tiến sĩ) Phát triển phương pháp tính toán phi tuyến đa tỉ lệ ngẫu nhiên cho vật liệu tổng hợp sợi ngắn ứng dụng cho nghiên cứu ảnh hưởng của cấu trúc vi mô biến đổi đến quá trình phát triển phá hỏng vật liệu (Luận án tiến sĩ) Phát triển phương pháp tính toán phi tuyến đa tỉ lệ ngẫu nhiên cho vật liệu tổng hợp sợi ngắn ứng dụng cho nghiên cứu ảnh hưởng của cấu trúc vi mô biến đổi đến quá trình phát triển phá hỏng vật liệu (Luận án tiến sĩ) Phát triển phương pháp tính toán phi tuyến đa tỉ lệ ngẫu nhiên cho vật liệu tổng hợp sợi ngắn ứng dụng cho nghiên cứu ảnh hưởng của cấu trúc vi mô biến đổi đến quá trình phát triển phá hỏng vật liệu (Luận án tiến sĩ) Phát triển phương pháp tính toán phi tuyến đa tỉ lệ ngẫu nhiên cho vật liệu tổng hợp sợi ngắn ứng dụng cho nghiên cứu ảnh hưởng của cấu trúc vi mô biến đổi đến quá trình phát triển phá hỏng vật liệu (Luận án tiến sĩ) Phát triển phương pháp tính toán phi tuyến đa tỉ lệ ngẫu nhiên cho vật liệu tổng hợp sợi ngắn ứng dụng cho nghiên cứu ảnh hưởng của cấu trúc vi mô biến đổi đến quá trình phát triển phá hỏng vật liệu (Luận án tiến sĩ) Phát triển phương pháp tính toán phi tuyến đa tỉ lệ ngẫu nhiên cho vật liệu tổng hợp sợi ngắn ứng dụng cho nghiên cứu ảnh hưởng của cấu trúc vi mô biến đổi đến quá trình phát triển phá hỏng vật liệu (Luận án tiến sĩ) Phát triển phương pháp tính toán phi tuyến đa tỉ lệ ngẫu nhiên cho vật liệu tổng hợp sợi ngắn ứng dụng cho nghiên cứu ảnh hưởng của cấu trúc vi mô biến đổi đến quá trình phát triển phá hỏng vật liệu (Luận án tiến sĩ) Phát triển phương pháp tính toán phi tuyến đa tỉ lệ ngẫu nhiên cho vật liệu tổng hợp sợi ngắn ứng dụng cho nghiên cứu ảnh hưởng của cấu trúc vi mô biến đổi đến quá trình phát triển phá hỏng vật liệu (Luận án tiến sĩ) Phát triển phương pháp tính toán phi tuyến đa tỉ lệ ngẫu nhiên cho vật liệu tổng hợp sợi ngắn ứng dụng cho nghiên cứu ảnh hưởng của cấu trúc vi mô biến đổi đến quá trình phát triển phá hỏng vật liệu (Luận án tiến sĩ) Phát triển phương pháp tính toán phi tuyến đa tỉ lệ ngẫu nhiên cho vật liệu tổng hợp sợi ngắn ứng dụng cho nghiên cứu ảnh hưởng của cấu trúc vi mô biến đổi đến quá trình phát triển phá hỏng vật liệu vvvvvvvvvv

Luận Án Tiến Sỹ Kỹ Thuật Phát triển phương pháp tính tốn phi tuyến đa tỉ lệ ngẫu nhiên cho vật liệu tổng hợp sợi ngắn ứng dụng cho nghiên cứu ảnh hưởng cấu trúc vi mô biến đổi đến trình phát triển phá hỏng vật liệu 8/2020 Khoa Sau Đại Học Về Khoa Học Và Kỹ Thuật Đại Học Keio Hoàng Tiến Đạt LUẬN ÁN Đã nộp tới Đại học Keio thỏa mãn hết tiêu chí tiến sỹ Nay, luận án nộp tới Đại học Thái Nguyên I Abstract The mechanical properties of fiber reinforced composite materials are scattered especially in the development of a new and cost-effective manufacturing process The main reason lies in the microstructural variability expressed by physical parameters of constituent materials and geometrical parameters to express the morphology at microscale The short fiber reinforced composite materials can be fabricated easily by injection molding method, but they have random microstructures To solve the problem considering variability, there have been many studies on the stochastic finite element method The first-order perturbation based stochastic homogenization (FPSH) method has been developed based on the multiscale theory and verified for porous materials and multi-phase composite materials considering the variability in physical parameters However, its applications were limited to linear elastic problems Therefore, this study aims at the development of a stochastic nonlinear multiscale computational method In its application to short fiber reinforced composites, the final goal of this study is to clarify the important random factors in the microstructure that give significant influence on the damage propagation Firstly, the above FPSH method was extended for the stochastic calculation of microscopic strain This theory enabled us to analyze the damage initiation and propagation in a stochastic way Since huge scenarios exist in the nonlinear behaviors, however, a subsampling scheme was proposed in the analysis by FPSH method together with the sampling scheme for geometrical random parameters Furthermore, to reduce the computational time for practical and large-scale analyses of stochastic damage propagation problems, a numerical algorithm to accelerate the convergence of element-by-element scaled conjugate gradient (EBE-SCG) iterative solver for FPSH method was developed The efficiency was demonstrated for spherical particulate-embedded composite material considering the damage in the coating layer and the variability in physical parameter Finally, the developed computational method was applied to short fiber reinforced composite materials The fiber length distribution, fiber orientation denoted by two angles and II fiber arrangement were considered as the geometrical parameters in addition to a physical random parameter 11 models were analyzed having different fiber orientation and fiber arrangement with variability In the sub-sampling, scenarios with 50% and 0.3% probabilities were analyzed, which resulted in totally 22 cases The differences among 22 possible damage patterns were discussed deeply It was figured out that very largely scattered degradation of homogenized macroscopic properties was mostly affected by the fiber arrangement rather than the fiber orientation This finding was different from the result in linear elastic region The physical random parameters were more influential on the macroscopic properties Also in these analyses, the accelerated EBE-SCG method was again shown to be efficient III Acknowledgements First and foremost, I would like to give my deep gratitude to my advisor Prof Naoki Takano, who is one of my great and respected teachers in my life He always gives me very clear guidance and suggestions from the first contact before entering to Keio University until now When I was stuck in some difficult tasks, he encouraged, taught and provided very good ideas to motivate me He is very close and smiling with students in the discussion Besides asking about my research, he sometimes asks about my family and my student life and understands the difficulties of international students in Japan Without him, I could not complete my research and learn much new knowledge I am deeply grateful to him for being my advisor I am sincerely grateful to Prof Fukagata, Prof Omiya, and Assist Prof Muramatsu for being the reviewers of my dissertation From their valuable questions and comments, I could improve the dissertation well and understand more about the limitations as well as the potential applications of my proposed method in the future works I would like to extend my thankfulness to Assoc Prof Akio Otani (Kyoto Institute of Technology) for supporting the measured fiber length data, and Prof Heoung-Jae Chun (Yonsei University) for giving me necessary knowledge about composite materials I also would like to thank all my labmates for three years at Keio University Especially, Mr Kohei Hagiwara came to take me in Haneda airport and helped me prepared for my student life on the first days in Japan; And, Mr Daichi Kurita, Mr Yutaro Abe, Mr Lucas Degeneve, and Mr Ryo Seino joined to discuss my research topic and assisted me to use some Japanese software in our Lab Besides, Mr Yuki Nakamura, Mr Tatsuto Nose, and Ms Mizuki Maruno also helped me to easily get involved in the student life, and Japanese culture I also would to thank Dr Akio Miyoshi and Mr Shinya Nakamura from Insight, Inc., company for helping us to develop the Meshman Particle Packing software Next, I greatly thank the Ministry of Education, Culture, Sports, Science and Technology of Japan for supporting the full scholarship (Monbukagakusho – MEXT) to me in years at Keio University In addition, I would like to thank Keio University for providing the Keio Leading-Edge Laboratory of Science and Technology (KLL) funding I also want to express my gratitude to my home university, Thai Nguyen University of Technology for giving me an opportunity to study in Japan, keeping my lecturer position when I come back, and also paying a part of my salary Finally, I would like to give millions of love to my parents, my wife, my daughter, and my son They always encourage and look forward every single day of my life Especially, I could not express my words to describe the sacrifice of my wife to take care of the children when I was not at home (2 internships in USA, years in Taiwan and years in Japan) To show my gratitude towards everybody, I tried to hard study every day to complete the tasks as well as possible This dissertation is the achievement that I would like to give to everyone IV Chapter of Contents Abstract II Acknowledgements IV Chapter of Contents V List of Figures VIII List of Tables XI Abbreviation XII Nomenclatures XIII Chapter Introduction 1.1 Motivation 1.2 Short fiber reinforced composite materials 1.2.1 Injection molding and conventional micromechanical model 1.2.2 Fiber length, fiber orientation and fiber arrangement 1.3 Aims and scopes of research 11 1.4 Structure of dissertation 12 Chapter Literature review and methodologies 14 2.1 Micromechanics, multiscale approach and homogenization with composite materials 14 2.2 Damage model and damage criteria 20 2.3 Variability, uncertainty or randomness 26 2.3.1 Variability of physical properties 26 2.3.2 Variability of geometrical parameters 27 2.3.3 Variability of loading and boundary conditions 28 2.3.4 Variability of manufacturing process parameters 28 V 2.4 Stochastic finite element methods 29 2.5 First-order perturbation based stochastic homogenization method for composite materials 31 2.6 Stochastic modeling of fiber reinforced composites 34 Chapter Stochastic calculation of microscopic strain 36 3.1 Microscopic displacement 36 3.2 Derivation of microscopic strain in stochastic way 38 3.3 Numerical example of microscopic strain considering only variability of physical parameters 41 Chapter Stochastic nonlinear multiscale computational scheme with accelerated EBE-SCG iterative solver 50 4.1 Sampling and sub-sampling for stochastic nonlinear multiscale computational scheme 50 4.2 Acceleration of EBE-SCG iterative solver 56 4.3 Numerical example 60 4.3.1 Verification of the accelerated EBE-SCG solver by characteristic displacement visualization 60 4.3.2 Stochastic damage propagation 65 4.3.3 Degradation of homogenized properties 68 4.3.4 Acceleration of solution for nonlinear simulation 68 Chapter Application to short fiber reinforced composites to study the influence of microstructural variability on damage propagation 71 5.1 Microstructural modeling and sampling 71 5.2 Numerical results 77 5.2.1 Probable damage patterns 77 VI 5.2.2 Microscopic strain during damage propagation 79 5.2.3 Homogenized properties in linear and nonlinear analysis 80 5.3 Acceleration of EBE-SCG during damage propagation 81 5.4 Discussion of influence level of variability in physical and geometrical parameters 83 Chapter Concluding remarks 87 List of publications 91 References 92 VII List of Figures Fig 1 Distribution of mechanical properties of constituent materials Fig Influence of order on the variance of outcome result Fig Injection molding process Fig Model of an injection molded structure 10 Fig Main points and their relations in structure of dissertation 13 Fig Multiscale framework 15 Fig 2 Unit cell array 17 Fig Classification of composite materials 19 Fig Rate of use for different failure criteria for composite materials in published papers by others 23 Fig General framework of stochastic finite element approach 30 Fig Two-scale problem of heterogeneous media 33 Fig Flowchart of damage analysis formulation 36 Fig Definition of SVE for short fiber-reinforced composite material 42 Fig 3 Microscopic strain  33 in interphase and short fibers when random physical parameters for all constituent materials are considered 45 Fig RVE models of glass fiber reinforced plastics composite based on the lognormal distribution 47 Fig Definition of two cross-sections 48 Fig Microscopic effective strain distributions on the cross-section 1-2 under macroscopic strain E31  0.02 102 49 Fig Microscopic effective strain distributions on the cross-section 2-3 under macroscopic strain E31=  0.02 102 49 VIII should be further investigated The stochastic stress should be investigated for strength prediction considering variability in composite microstructures When the developed method is used to simulate the material test under uniform tension/compression and bending test with Neumann boundary condition, the stress is free from material type In this case, strain is the main quantity of interest However, if the Dirichlet boundary condition is considered macroscopically, the stress becomes the main quantity of interest rather than strain from macroscopic viewpoint In the framework of multiscale problem setup, further discussion on stochastic formulation is required In addition, the stress/strain concentration at the macroscale and the microscopic stress/strain under high gradient of macroscopic stress/strain should be considered in the future calculations Also, the experiment should be carried out to deeply investigate the research aims in this dissertation 90 List of publications Articles on periodicals 1) Tien-Dat Hoang and Naoki Takano, First-order perturbation-based stochastic homogenization method applied to microscopic damage prediction for composite materials, Acta Mechanica, ISSN 0001-5970, 230(3):1061-1076, 2019 2) Tien-Dat Hoang, Yutaro Abe, Shinya Nakamura, Akio Miyoshi, and Naoki Takano, Stochastic nonlinear multiscale computational scheme for SFRCs to study the influence of microstructural variability on damage propagation, SN Applied Sciences, ISSN 2523-3963, 2(2), 16 pages, 2020 https://doi.org/10.1007/s42452-020-1961-7 Presentations at international conferences 1) Tien-Dat Hoang and Naoki Takano, Stochastic homogenization analysis of multi-phase composite materials based on the first-order perturbation method, The 4th International Conference on Computational Design in Engineering, April 2018, South Korea 2) Tien-Dat Hoang and Naoki Takano, Stochastic Nonlinear Analysis of Composites by FirstOrder Perturbation Based Homogenization Method, The 12th Canada-Japan Workshop on Composites, July 2018, Japan 3) Tien-Dat Hoang, Daichi Kurita, and Naoki Takano, Stochastic multiscale analysis of macroscopic properties, microscopic strain, and damage propagation for fibrous composites by first-order perturbation based method, The 11th Asian-Australasian Conference on Composite Materials, August 2018, Australia 91 References Harris, C E., Starnes, J H & Shuart, M J An assessment of the state-of-the-art in the design and manufacturing of large composite structures for aerospace vehicles 210844 (NASA, 2001) Feraboli, P., Deleo, F., Wade, B., Rassaian, M., Higgins, M., Byar, A., Reggiani, M., Bonfatti, A., DeOto, L & Masini, A Predictive modeling of an energy-absorbing sandwich structural concept using the building block approach Compos Part A 41, 774-786 (2010) Cox, B., Yang, Q In quest of virtual tests for structural composites Science, 314, 1102–1108 (2006) Carneiro Molina, A J & Curiel-Sosa, J L A multiscale finite element technique for nonlinear multi-phase materials Finite Elem Anal Des 94, 64–80 (2015) Yang, D S., Zhang, H W., Zhang, S & Lu, M K A multiscale strategy for thermoelastic plastic stress analysis of heterogeneous multiphase materials Acta Mech 226, 1549–1569 (2015) Wen, P., Takano, N & Kurita, D Probabilistic multiscale analysis of three-phase composite material considering uncertainties in both physical and geometrical parameters at microscale Acta Mech 227, 2735–2747 (2016) Wu, L., Noels, L., Adam, L & Doghri, I A multiscale mean-field homogenization method for fiber-reinforced composites with gradient-enhanced damage models Comput Methods Appl Mech Eng 233–236, 164–179 (2012) Zhang, D & Waas, A M A micromechanics based multiscale model for nonlinear composites Acta Mech 225, 1391–1417 (2014) Ziegler, T., Neubrand, A & Piat, R Multiscale homogenization models for the elastic behaviour of metal/ceramic composites with lamellar domains Compos Sci Technol 70, 664–670 (2010) 92 10 Takano, N., Uetsuji, Y., Kashiwagi, Y & Zako, M Hierarchical modelling of textile composite materials and structures by the homogenization method Model Simul Mater Sci Eng 7, 207–231 (1999) 11 Dixit, A & Harlal, S Modeling techniques for predicting the mechanical properties of woven fabric textile composites: a review Mech Compos Mater 49, 1–20 (2013) 12 Lin, P J & Ju, J W Effective elastic moduli of three-phase composites with randomly located and interacting spherical particles of distinct properties Acta Mech 208, 11–26 (2009) 13 Yang, B J., Kim, B R & Lee, H K Micromechanics-based viscoelastic damage model for particle-reinforced polymeric composites Acta Mech 223, 1307–1321 (2012) 14 Ramírez-Torres, A., Penta, R., Rodríguez-Ramos, R., Merodio, J., Sabina, F.J., BravoCastillero, J., Guinovart-Díaz, R., Preziosi, L & Grillo, A Three scales asymptotic homogenization and its application to layered hierarchical hard tissues Int J Solids Struct 130, 190–198 (2018) 15 Arabnejad, S & Pasini, D Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods Int J Mech Sci 77, 249–262 (2013) 16 Fantoni, F., Bacigalupo, A & Paggi, M Multi-field asymptotic homogenization of thermo-piezoelectric materials with periodic microstructure Int J Solids Struct 120, 31–56 (2017) 17 Fish, J & Yu, Q Multiscale damage modelling for composite materials: theory and computational framework Int J Numer Methods Eng 52, 161–191 (2001) 18 Xu, X F A multiscale stochastic finite element method on elliptic problems involving uncertainties Comput Methods Appl Mech Eng 196, 2723–2736 (2007) 19 Savvas, D & Stefanou, G Assessment of the effect of microstructural uncertainty on the macroscopic properties of random composite materials J Compos Mater 51, 93 2707–2725 (2017) 20 Zhou, X Y., Gosling, P D., Pearce, C J., Ullah, Z & Kaczmarczyk, L Perturbationbased stochastic multi-scale computational homogenization method for woven textile composites Int J Solids Struct 80, 368–380 (2016) 21 Wen, P., Takano, N & Akimoto, S General formulation of the first-order perturbation based stochastic homogenization method using many random physical parameters for multi-phase composite materials Acta Mech 229, 2133–2147 (2018) 22 Sakata, S., Ashida, F & Enya, K A Microscopic failure probability analysis of a unidirectional fiber reinforced composite material via a multiscale stochastic stress analysis for a microscopic random variation of an elastic property Comput Mater Sci 62, 35–46 (2012) 23 Ma, J., Sahraee, S., Wriggers, P & De Lorenzis, L Stochastic multiscale homogenization analysis of heterogeneous materials under finite deformations with full uncertainty in the microstructure Comput Mech 55, 819–835 (2015) 24 Ju, J W & Wu, Y Stochastic micromechanical damage modeling of progressive fiber breakage for longitudinal fiber-reinforced composites Int J Damage Mech 25, 203–227 (2016) 25 Sriramula, S., & Chryssanthopoulos, M K Quantification of uncertainty modelling in stochastic analysis of FRP composites Compos Part A 40, 1673–1684 (2009) 26 Zhou, X Y., Gosling, P D., Ullah, Z., Kaczmarczyk, L., & Pearce, C J Stochastic multiscale finite element based reliability analysis for laminated composite structures Appl Math Model 45, 457-473 (2017) 27 Lucas, D & Takano, N Influence of higher orders of Neumann expansion on accuracy of stochastic linear elastic finite element method with random physical parameters JSME Journal pages (2020) (under review) 28 Mortazavian, S & Fatemi, A Effects of fiber orientation and anisotropy on tensile 94 strength and elastic modulus of short fiber reinforced polymer composites Compos Part B 72, 116-129 (2014) 29 Phelps, J H., Abd El-Rahman, A I., Kunc, V & Tucker, C L A model for fiber length attrition in injection-molded long-fiber composites Compos Part A 51, 11–21 (2013) 30 Ioannis, I., Alma, H., Inna, G., Costas, S & Almaadeed, M A Micro-mechanical parameters in short fibre composite Appl Compos Mater 21, 197–211 (2014) 31 Fu, S Y., Yue, C Y., Hu, X & Mai, Y W Characterization of fiber length distribution of short-fiber reinforced thermoplastics J Mater Sci Lett 20, 31–33 (2001) 32 Fu, S Y., Hu, X., & Yue, C Y (1999) Effects of fiber length and orientation distributions on the mechanical properties of short-fiber-reinforced polymers J Soci Mater Sci 48, 74-83 (1999) 33 Ogierman, W & Kokot, G A study on fiber orientation influence on the mechanical response of a short fiber composite structure Acta Mech 183, 173–183 (2016) 34 Chen, C S., Chen, T J., Chen, S C & Chien, R D Optimization of the injection molding process for short-fiber-reinforced composites Mech Compos Mater 47, 359– 368 (2011) 35 Tandon, Gp P., & Gj J Weng The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites Poly Compos 5, 327-333 (1984) 36 Eshelby, J D The determination of the elastic field of an ellipsoidal inclusion, and related problems Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 241, 376-396 (1957) 37 Hermans, J J Elastic properties of fiber reinforced materials when fibers are aligned K Ned Akad Van Weteschappen-Proceedings Ser B-Physical Sci 70 (1967) 38 Hill, R Theory of mechanical properties of fibre-strengthened materials: I Elastic behaviour J Mech Phys Solids 12, 199-212 (1964) 39 Mori, T., & Tanaka, K Average stress in matrix and average elastic energy of materials 95 with misfitting inclusions Acta Metallurgica, 21, 571-574 (1973) 40 Bay, R S., and Charles, L T Fiber orientation in simple injection moldings part II: experimental results Poly Compos 13, 332-341 (1992) 41 Lutz, W., Herrmann, J., Kockelmann, M., Hosseini, H S., Jäckel, A., Schmauder, S., Predak, S., & Busse, G Damage development in short-fiber reinforced injection molded composites Comput Mater Sci 45, 698–708 (2009) 42 Lee, K S., Lee, S W., Chung, K., Kang, T J., & Youn, J R Measurement and numerical simulation of three dimensional fiber orientation states in injection molded short fiber reinforced plastics J Appl Poly Sci 88, 500-509 (2003) 43 Advani, S G & Tucker, C L The use of tensors to describe and predict fiber orientation in short fiber composites, J Rheology 31, 751-784 (1987) 44 Shang, Y B & Shi, H J Micromechanical analysis of stochastic fiber/matrix interface strength effect on transverse tensile property of fiber reinforced composites J Reinf Plast Compos 34, 131–144 (2015) 45 Tucker, I C & Liang, E Stiffness predictions for unidirectional short-fibre composites: review and evaluation Compos Sci Technol 59, 655–671 (1999) 46 Bhaskara, S., Devireddy, R & Biswas, S Effect of fiber geometry and representative volume element on elastic and thermal properties of unidirectional fiber-reinforced composites J Compos 12 pages (2014) 47 Lu, Z., Zhou, Y., Yang, Z & Liu, Q Multi-scale finite element analysis of 2.5D woven fabric composites under on-axis and off-axis tension Comput Mater Sci 79, 485–494 (2013) 48 Swolfs, Y., Gorbatikh, L., Romanov, V., Orlova, S., Lomov, S V., & Verpoest, I Stress concentrations in an impregnated fibre bundle with random fibre packing Compos Sci and Tech., 74, 113–120 (2013) 49 Trias, D Random models versus periodic models for fibre reinforced composites 96 Comput Mater Sci 38, 316–324 (2006) 50 Mishnaevsky, Jr L & Brøndsted, P Micromechanisms of damage in unidirectional fiber reinforced composites: 3D computational analysis Compos Sci Technol 69, 1036– 1044 (2009) 51 Qing, H & Mishnaevsky, Jr L Unidirectional high fiber content composites: automatic 3D FE model generation and damage simulation Comput Mater Sci 47, 548–555 (2009) 52 Hollister, S J & Riemer, B A Digital-image-based finite element analysis for bone microstructure using conjugate gradient and Gaussian filter techniques SPIE Proc Math Methods Med Imaging, 2035, 95–106 (1993) 53 Takano, N., Zako, M., Kubo, F & Kimura, K Microstructure-based stress analysis and evaluation for porous ceramics by homogenization method with digital image-based modeling Int J Solids Struct 40, 1225–1242 (2003) 54 Ghosh, S Ghosh, Somnath Adaptive concurrent multi-level model for multiscale analysis of composite materials including damage Multi Model Simul Compos Mater Struct Springer, Boston, MA, 83-163 (2008) 55 Christensen, R M Mechanics of composite materials, John Willey & Sons Inc., New York (1979) 56 Hashin, Zvi, & B Walter Rosen The elastic moduli of fiber-reinforced materials J Appl Mech 223-232 (1964) 57 Chamis, C C Mechanics of composite materials: past, present, and future J Compos Technol Res 11, 3–14 (1989) 58 Ivanov, D S., Baudry, F., Van Den Broucke, B., Lomov, S.V., Xie, H & Verpoest, I Failure analysis of triaxial braided composite Compos Sci Technol 69, 1372–1380 (2009) 59 Hazanov, S., & Amieur, M On overall properties of elastic heterogeneous bodies smaller 97 than the representative volume Int Eng Sci 33, 1289–1301 (1995) 60 Li, S General unit cells for micromechanical analyses of unidirectional composites Compos Part A, 32, 815-826 (2001) 61 Eshelby, J D The determination of the elastic field of an ellipsoidal inclusion, and related problems Proc R Soc Lond A 241, 376–396 (1957) 62 Guedes, J., & Kikuchi, N Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods Comput Methods Appl Mech Eng 83, 143–198 (1990) 63 Corigliano, A., Papa, E & Pavan, A Study of the mechanical behaviour of a macroscopic glass-polyester composite by ESPI method and numerical simulations Compos Sci Technol 64, 1829–1841 (2004) 64 Li, Y Y & Cui, J Z The multi-scale computational method for the mechanics parameters of the materials with random distribution of multi-scale grains Compos Sci Technol 65, 1447–1458 (2005) 65 Terada, K & Kikuchi, N Nonlinear homogenization method for practical applications Comput Methods Micromech., 16 pages (1996) 66 Terada, K., Miura, T & Kikuchi, N Digital image-based model- ing applied to the homogenization analysis of composite materials Comput Mech 20, 331–346 (1997) 67 Takano, N., Ohnishi, Y., Zako, M & Nishiyabu, K The formulation of homogenization method applied to large deformation problem for composite materials Int J Solids Struct 37, 6517–6535 (2000) 68 Takano, N., Zako, M., Fujitsu, R & Nishiyabu, K Study on large deformation characteristics of knitted fabric reinforced thermoplastic composites at forming temperature by digital image-based strain measurement technique Compos Sci Technol 64, 2153–2163 (2004) 69 Chun, H., Ryu, K S & Byun, J H Predictions of elastic properties of multi-axial warp 98 knitted fabric composites In Key Eng Mater 263, 1499–1504 (2004) 70 Kim, H.S., Park, W.I., Kim, Y & Jin, H.J Silk fibroin films crystallized by multiwalled carbon nanotubes Int Modern Phys B 22, 1807-1812 (2008) 71 Takano, N., Zako, M., Okazaki, T & Terada, K Microstructure-based evaluation of the influence of woven architecture on permeability by asymptotic homogenization theory Compos Sci.and Tech 62, 1347–1356 (2002) 72 Fish, J., Yu, Q & Shek, K Computational damage mechanics for composite materials based on mathematical homogenization Int J Numer Methods Eng 45, 1657–1679 (1999) 73 Takano, N., Fukasawa, K., & Nishiyabu, K Structural strength prediction for porous titanium based on micro-stress concentration by micro-CT image-based multiscale simulation Int J Mech Sci., 52, 229-235 (2010) 74 Miyauchi, Y., Takano, N & Wen, P Stochastic homogenization analysis of FIB-SEM image-based hierarchical model of sprayed porous ZrO2 Mech Eng Lett 1, 15–389 (2015) 75 Kachanov, L Introduction to continuum damage mechanics 10, (Springer Science & Business Media, 2013) 76 Ernst, G., Vogler, M., Hühne, C & Rolfes, R Multiscale progressive failure analysis of textile composites Compos Sci Technol 70, 61–72 (2010) 77 Bouhala, L., Makradi, A., Belouettar, S., Kiefer-kamal, H & Fréres, P Modelling of failure in long fibres reinforced composites by X-FEM and cohesive zone model Compos Part B 55, 352–361 (2013) 78 Fish, J & Yu, Q Two-scale damage modeling of brittle composites Compos Sci and Tech 61, 2215–2222 (2001) 79 Sasayama, T., Okabe, T., Aoyagi, Y & Nishikawa, M Prediction of failure properties of injection-molded short glass fiber-reinforced polyamide 6,6 Compos Part A 52, 99 45–54 (2013) 80 Lauro, F., Bennani, B & Balieu, R Mechanics of materials damage of short-fibre reinforced materials with anisotropy induced by complex fibres orientations Mech Mater 68, 193–206 (2014) 81 Wang, H W., Zhou, H W., Ji, H W & Zhang, X C Application of extended finite element method in damage progress simulation of fiber reinforced composites Mater Des 55, 191–196 (2014) 82 Reinoso, N J J & Merodio, H D J A computational model for fiber-reinforced composites: hyperelastic constitutive formulation including residual stresses and damage Comput Mech 63, 931–948 (2019) 83 Fish, J., Shek, K., Pandheeradi, M & Shephard, M S Computational plasticity for composite structures based on mathematical homogenization: Theory and practice Comput Methods Appl Mech Eng 148, 53–73 (1997) 84 Fish, J., Yu, Q & Shek, K Computational damage mechanics for composite materials based on mathematical homogenization Int J Numer Methods in Eng 45, 1657-1679 (1999) 85 Sun, C T., Quinn, B J., Tao, J & Oplinger, D W Comparative evaluation of failure analysis methods for composite laminates, NASA (DOT/FAA/AR-95/109: Springfield: NASA, 1996) 86 Chandler, H D., Campbell, I M D & Stone, M A An assessment of failure criteria for fibre- reinforced composite laminates Int J Fatigue 17, 513–518 (1995) 87 Yamada, S E & Sun, C T Analysis of laminate strength and its distribution J Compos Mater 12, 275–284 (1978) 88 Watson, A S., & Smith, R L An examination of statistical theories for fibrous materials in the light of experimental data J Mater Sci 20, 3260-3270 (1985) 89 Vanaerschot, A., Lomov, S & Moens, D Variability in composite materials properties 100 Appl Mech Mater., Trans Tech Publications Ltd, 807, 23–33 (2015) 90 Shao Yun Fu, B L Science and engineering of short fibre reinforced polymer composites Woodhead Publishing (2009) 91 Haussy, B., Jung, C & Franc, J Homogenisation of the undulations of a single yarn Applications to the modelling of the traction Int J Mech Sci 46, 961–979 (2004) 92 Matsuda, T., Ohno, N., Tanaka, H & Shimizu, Effects of fiber distribution on elastic– viscoplastic behavior of long fiber-reinforced laminates Int.J Mech Sci 45, 1583–1598 (2003) 93 Kubo, G & Matsuda, T Effects of laminate misalignment on macroscopic strength and microscopic damage development of plain-woven laminates Mech Eng Letters 2, 1–8 (2016) 94 Kubo, G., Matsuda, T & Sato, Y A novel basic cell modeling method for elasticviscoplastic homogenization analysis of plain-woven laminates with nesting Int J Mech Sci 146, 497–506 (2018) 95 Hagiwara, K., Ishijima, S., Takano, N., Otani, A & Nakai, A Parameterization, statistical measurement and numerical modeling of fluctuated meso/micro-structure of plain woven fabric GFRP laminate for quantification of geometrical variability Mech Engi J 4, 17-00053 (2017) 96 Takano, N., Takizawa, H., Wen, P., Odaka, K., Matsunaga, S., & Abe, S Stochastic prediction of apparent compressive stiffness of selective laser sintered lattice structure with geometrical imperfection and uncertainty in material property Int J Mech Sci 134, 347–356 (2017) 97 Matsuda, T., Ito, T., Akimoto, S., Kobori, H., Goto, K., & Takano, N Macro/micro simultaneous validation for multiscale analysis of semi-periodically perforated plate using fullfield strain measurement Int J Mech Sci 110, 34–40 (2016) 98 Committee, A V 10 Guide for verification and validation in computational solid 101 mechanics Am Soc Mech Eng New York, Tech Rep No V&V 10–2006 (2006) 99 Wen, P., Kamijo, K., Kurita, D & Takano, N Probabilistic homogenization and sensitivity analysis for robust design of coated particulate composite material considering non-parametric geometrical uncertainty at microscale 日本計算工学会論 文集, 20160005-20160005 (2016) 100 Wen, P., Yokota, K & Takano, N Probabilistic prediction of homogenized property and update of prediction for spherical porous material considering microstructural uncertainties J Multiscale Model 06, 1550011 (2015) 101 Chung, I & Weitsman, Y On the buckling/kinking compressive failure of fibrous composites Int J Solids Struct 32, 2329–2344 (1995) 102 Akimoto, S & Takano, N Numerical prediction of scattered initial fracture load of perforated thin plate under tension by Monte Carlo FEM simulation with stepwise limited sampling Mech Eng Letters 2, 1–8 (2016) 103 Arregui-Mena, J D., Margetts, L., & Mummery, P M Practical application of the stochastic finite element method Arch Comput Methods in Eng 23, 171-190 (2016) 104 Takano, N., Asai, M & Okamoto, K Monte Carlo simulation of dynamic problem using model order reduction technique highlighting on tail probability, J Comput Sci and Tech 6, 169–181 (2012) 105 Mesogitis, T S., Skordos, A A & Long, A C Uncertainty in the manufacturing of fibrous thermosetting composites: A review Compos Part A 57, 67–75 (2014) 106 Ghanem, R G & Spanos, P D Stochastic finite elements: a spectral approach (Courier Corporation, 2003) 107 Chen, N Z & Guedes Soares, C Spectral stochastic finite element analysis for laminated composite plates Comput Methods Appl Mech Eng 197, 4830–4839 (2008) 108 Sepahvand, K Spectral stochastic finite element vibration analysis of fiber-reinforced composites with random fiber orientation Compos Struct 145, 119–128 (2016) 102 109 Sasikumar, P., Venketeswaran, A., Suresh, R & Gupta, S A data driven polynomial chaos based approach for stochastic analysis of CFRP laminated composite plates Compos Struct 125, 212–227 (2015) 110 Kamin, M Generalized perturbation-based stochastic finite element method in elastostatics Comput Struct 85, 586–594 (2007) 111 Basaruddin, K S., Takano, N., Akiyama, H & Nakano, T Uncertainty modeling in the prediction of effective mechanical properties using stochastic homogenization method with application to porous trabecular bone Mater Trans 54, 1250–1256 (2013) 112 Talha, M & Singh, B N Stochastic perturbation-based finite element for buckling statistics of FGM plates with uncertain material properties in thermal environments Compos Struct 108, 823–833 (2014) 113 Ji-wei, D & Miao-lin, F Asymptotic expansion homogenization for simulating progressive damage of 3D braided composites Compos Struct 92, 873–882 (2010) 114 Kaczmarczyk, L., Pearce, C J., Gosling, P D., Ullah, Z & Zhou, X.-Y Stochastic multiscale finite element based reliability analysis for laminated composite structures Appl Math Model 45, 457–473 (2017) 115 Tawara, D., Takano, N., Kinoshita, H., Matsunaga, S & Abe, S Stochastic multi-scale finite element analysis of the drilling force of trabecular bone during oral implant surgery Int J Appl Mech 8, 1650075 (2016) 116 Sepahvand, K., Marburg, S & Hardtke, H.-J Uncertainty quantification in stochastic systems using polynomial chaos expansion Int J Appl Mech 02, 305–353 (2010) 117 Kamiński, M Generalized perturbation-based stochastic finite element method in elastostatics Comput Struct 85, 586–594 (2007) 118 Takano, N., & Zako, M Integrated design of graded microstructures of heterogeneous materials Arch Appl Mech 70, 585–596 (2000) 119 Hun, D., Yvonnet, J., Bornert, M & Carolina, N Stochastic multiscale modeling of crack 103 propagation in random heterogeneous media Int J Numer Methods in Engi 119, 1325–1344 (2019) 120 Bogdanor, M J., Oskay, C & Clay, S B Multiscale modeling of failure in composites under model parameter uncertainty Comput Mech 56, 389–404 (2015) 121 Zhu, C., Zhu, P & Liu, Z Uncertainty analysis of mechanical properties of plain woven carbon fiber reinforced composite via stochastic constitutive modeling Compos Struct 207, 684–700 (2019) 122 Matouš, K., Geers, M.G., Kouznetsova, V.G., Gillman, A A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials J Comput Phys 330, 192–220 (2017) 123 Lions, J.-L Some methods in the mathematical analysis of systems and their control Beijing, Sci Press (1981) 124 Bogdanor, M J., Oskay, C & Clay, S B Multiscale modeling of failure in composites under model parameter uncertainty Comput Mech 56, 389–404 (2015) 125 Selmi, A., Doghri, I & Adam, L Micromechanical simulations of biaxial yield, hardening and plastic flow in short glass fiber reinforced polyamide Int J Mech Sci 53, 696–706 (2011) doi: 10.1016/j.ijmecsci.2011.06.002 126 Http://www.meshman.jp/meshman/ParticlePacking.html (entered 2020/3/01) 104 ... only to local behavior, but will not be clearly observed in macroscopic behavior Some slight differences in microscopic behaviors will result in almost the same macroscopic behavior because the... LUẬN ÁN Đã nộp tới Đại học Keio thỏa mãn hết tiêu chí tiến sỹ Nay, luận án nộp tới Đại học Thái Nguyên I Abstract The mechanical properties... seen in macroscopic behavior, to predict such behavior, since the parameter or index in commonly used damage models (see Section 2.2) can be applied to macroscopic behavior of fiber bundles and

Ngày đăng: 09/03/2021, 10:55

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w