1. Trang chủ
  2. » Trung học cơ sở - phổ thông

De tuyen sinh 10 mon Toan TP HCM Binh Duong Can ThoDong Thap Dong Nai va dap an

21 14 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 21
Dung lượng 824,24 KB

Nội dung

c) Trên nửa mặt phẳng bờ OM có chứa điểm A, vẽ nửa đường tròn đường kính MF; nửa đường tròn này cắt tiếp tuyến tại E của (O) ở K. Gọi S là giao điểm của hai đường thẳng CO và KF. Chứng m[r]

(1)

SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT

TP.HCM Năm học: 2012 – 2013

ĐỀ CHÍNH THỨC MƠN: TỐN

Thời gian làm bài: 120 phút

Bài 1: (2 điểm)

Giải phương trình hệ phương trình sau: a) 2x2 x 0

b)

2

3

 

 

 

x y x y

c) x4x212 0 d) x2 2x 0 Bài 2: (1,5 điểm)

a) Vẽ đồ thị (P) hàm số

2  y x

và đường thẳng (D):

1 2  

y x

hệ trục toạ độ b) Tìm toạ độ giao điểm (P) (D) câu phép tính

Bài 3: (1,5 điểm)

Thu gọn biểu thức sau:

1

1

  

 

x A

x

x x x x với x > 0; x1 (2 3) 26 15 (2 3) 26 15

     

B

Bài 4: (1,5 điểm)

Cho phương trình x2 2mx m  0 (x ẩn số)

a) Chứng minh phương trình ln ln có nghiệm phân biệt với m

b) Gọi x1, x2 nghiệm phương trình

Tìm m để biểu thức M = 12 22 24

6   

x x x x đạt giá trị nhỏ nhất Bài 5: (3,5 điểm)

Cho đường trịn (O) có tâm O điểm M nằm ngồi đường trịn (O) Đường thẳng MO cắt (O) E F (ME<MF) Vẽ cát tuyến MAB tiếp tuyến MC (O) (C tiếp điểm, A nằm hai điểm M B, A C nằm khác phía đường thẳng MO)

a) Chứng minh MA.MB = ME.MF

b) Gọi H hình chiếu vng góc điểm C lên đường thẳng MO Chứng minh tứ giác AHOB nội tiếp

c) Trên nửa mặt phẳng bờ OM có chứa điểm A, vẽ nửa đường trịn đường kính MF; nửa đường tròn cắt tiếp tuyến E (O) K Gọi S giao điểm hai đường thẳng CO KF Chứng minh đường thẳng MS vuông góc với đường thẳng KC

(2)

BÀI GIẢI

Bài 1: (2 điểm)

Giải phương trình hệ phương trình sau: a) 2x2 x 0 (a)

Vì phương trình (a) có a - b + c = nên (a)

3

2  x hay x

b)

2 (1) (2)

 

 

 

x y

x y

2 (1)

5 (3) ((2) (1) )

 

 

  

x y x y

13 13 ((1) 2(3)) (3) ((2) (1) )

  

 

  

y x y

1   

 

y x

c) x4x212 0 (C)

Đặt u = x2  0, phương trình thành : u2 + u – 12 = (*)

(*) có  = 49 nên (*) 

1  

 

u

hay

1

 

 

u

(loại) Do đó, (C)  x2 =  x = 

Cách khác : (C)  (x2 – 3)(x2 + 4) =  x2 =  x = 

d) x2 2x 0 (d)

’ = + = (d)  x = 3 Bài 2:

(3)

Lưu ý: (P) qua O(0;0), 2;1 , 4; 4   (D) qua 4;4 , 2;1  

b) PT hoành độ giao điểm (P) (D)

1

2

4x  2x  x2 + 2x – =  x4 hay x2 y(-4) = 4, y(2) =

Vậy toạ độ giao điểm (P) (D) 4;4 , 2;1  

Bài 3:Thu gọn biểu thức sau:

1

1       x A x

x x x x

2   

 

 

x x x x x

x x x

2

( 1) 

 

 

x x

x x x

2 1          x x x

2 ( 1) ( 1)    x x x x

x với x > 0; x1 (2 3) 26 15 (2 3) 26 15

     

B

1

(2 3) 52 30 (2 3) 52 30

2

     

2

1

(2 3) (3 5) (2 3) (3 5)

2

     

1

(2 3)(3 5) (2 3)(3 5)

2

      

Câu 4:

a/ Phương trình (1) có ∆’ = m2 - 4m +8 = (m - 2)2 +4 > với m nên phương trình (1) có nghiệm phân biệt với m

b/ Do đó, theo Viet, với m, ta có: S = b

m a  

; P =   c

m a

M = 2

24

( )

 

x x x x = 2

24

4 16

 

   

m m m m

2 ( 1)

 

 

m Khi m = ta có ( 1)2 3  

m nhỏ nhất

2 ( 1)   

  M

m lớn m = 1

6 ( 1)

 

  M

m nhỏ m = 1

Vậy M đạt giá trị nhỏ - m = Câu

GV Tơn Nữ Bích Vân tổng hợp giới thiệu Page 3

M E F

(4)

a) Vì ta có hai tam giác đồng dạng MAE MBF Nên

MA MF

MEMB  MA.MB = ME.MF (Phương tích M đường tròn tâm O)

b) Do hệ thức lượng đường trịn ta có MA.MB = MC2, mặt khác hệ thức lượng tam giác vng

MCO ta có MH.MO = MC2  MA.MB = MH.MO nên tứ giác AHOB nội tiếp đường tròn.

c) Xét tứ giác MKSC nội tiếp đường trịn đường kính MS (có hai góc K C vng).Vậy ta có : MK2 = ME.MF = MC2 nên MK = MC Do MF đường trung trực KC nên MS vng góc

với KC V

d) Do hệ thức lượng đường trịn ta có MA.MB = MV.MS đường tròn tâm Q

Tương tự với đường trịn tâm P ta có MV.MS = ME.MF nên PQ vng góc với MS đường trung trực VS (đường nối hai tâm hai đường tròn) Nên PQ qua trung điểm KS (do định lí trung bình tam giác SKV) Vậy điểm T, Q, P thẳng hàng

TS Nguyễn Phú Vinh

(Trường THPT Vĩnh Viễn – TP.HCM)

HƯỚNG DẪN GIẢI

Bài : a) 2x2 x 0  có dạng : a - b + c = – (-1) – = nên có nghiệm x1-1 ;

c x

a   ( giải công thức nghiệm hay công thức nghiệm thu gọn)

b)

2x 3y 4x 6y 14 13x 26 x 3x 2y 9x 6y 12 3x 2y y

         

  

   

      

   

Vậy hệ phương trình có nghiệm (x=2; y= -1)

c) x4 + x2 – 12 = đặt t = x2, t 0 Phương trình có dạng : t2 + t – 12 = 0

= b2 – 4ac = – 4(-12) = 49, t =

1  

= (nhận) , t2 =

1  

= -4 < (loại) Với t = x2 =  x =  3 Vậy phương trình có nghiệm là: x =  3. d) x2 - 2 2x – = có    ' 9,  ' 3nên: x1 3, x 2 3.

Vậy nghiệm phương trình là:

1

x  3, x  Bài 2:

a) B ng giá tr :ả ị

x -4 -2

2

1 y x

4

(5)

x x

y

2

 

b) Phương trình hồnh độ giao điểm (D) (P) là:

2

1

x x

4   x2 2x 0

    , có: ' 9,  ' 3nên: x12; x24

Với x12thì

2

1

y (2)

 

x24thì

2

1

y ( 4) 4

  

Vậy tọa độ giao điểm (D) (P) (2;1) (-4;4)

Bài :

1 x

A

x ( x 1) ( x 1)( x 1) x ( x 1)

  

   

x x x ( x 1) x ( x 1)( x 1)

   

 

x 2x x x ( x 1)( x 1)

    

 

2(x 1) x (x 1) x

 

2B 2(2 3) 26 15 3  2(2 3) 26 15 3 =(2 3) 52 30 (2   3) 52 30 3

   

2

(2 3) 3 (2 3) 3

      (2 3)(3 5) (2   3)(3 5) 6 10 6 10 3       =

Vậy B =

Bài 4: a)

2

' m2 m 2 m 0

2

 

        

  với m. Vậy phương trình ln có hai nghiệm với m

c) Theo hệ thức Viet ta có: x1x22m; x x1 2m 2

2 2

1 2 2 2

24 24

M

x x 6x x (x x ) 2x x 6x x

 

 

    

2

1 2

24 24

(x x ) 8x x (2m) 8(m 2)

        2 24 4m 8m 16 (m 1)

 

  

   

Dấu “=” xảy m =

Vậy giá trị nhỏ M = -2 m =

(6)

a) Xét MEA MBF có : 

EMA chung, MEA MBF 

( AEFB nội tiếp)  MEA MBF(gg) 

ME MA MB MF  MA MB = ME MF

b) MCA MBC(gg) 

MC MA MB MC  MC2 = MA MB

MCO vuông C, CH đường cao : MC2 = MH MO

Do : MA MB = MH MO

Suy : MHA MBO(cgc)  MHA MBO 

 AHOB nội tiếp ( tứ giác có góc góc đối ngồi)

c) MKF = 900 (góc nội tiếp chắn nửa đường trịn)

MKF vng K, KE đường cao : MK2 = ME MF

MCE MFC(gg) 

MC ME

MF MC  MC2 = ME MF

Vậy : MK2 = MC2  MK = MC

Ta có : SCM SKM 90   0 tứ giácSCMK nội tiếp đường trịn đường kính SM. Mà : MK = MC nên MK MC   MSKC ( đường kính qua điểm cung)

d) SM cắt CK J.JSK vng J có JT đường trung tuyến  TS = TJ Ta có : MJ MS = ME MF ( = MC2)  MEJ MSF(cgc)  MEJ MSF 

Suy ra: tứ giác EJSF nội tiếp Tương tự : SJAB nội tiếp

Nên SJ dây chung hai đường tròn (P) (Q)  PQ đường trung trực SJ Vậy P, Q, T thẳng hàng

(7)

SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP THPT

BÌNH DƯƠNG Năm học 2012 – 2013

ĐỀ THI CHÍNH THỨC Mơn thi: Tốn

Thời gian làm bài: 120 phút (Không kể thời gian phát đề)

Bài (1 điểm): Cho biểu thức: A =

2

50

5 xx

1/ Rút gọn biểu thức A

2/ Tính giá trị x A =

Bài (1,5 điểm):

1/ Vẽ đồ thị (P) hàm số y = 2 x

2/ Xác định m để đường thẳng (d): y = x – m cắt (P) điểm A có hồnh độ Tìm tung độ điểm A

Bài (2 điểm):

1/ Giải hệ phương trình:

2

3

x y x y

  

  

2/ Giải phương trình: x4 + x2 – = 0 Bài (2 điểm):

Cho phương trình x2 – 2mx – 2m – = (m tham số)

(8)

2/ Tìm m để x1 x2 đạt giá trị nhỏ (x

1; x2 hai nghiệm phương trình) Bài (3,5 điểm):

Cho đường tròn (O) điểm M ngồi đường trịn Qua M kẻ tiếp tuyến MA, MB cát tuyến MPQ (MP < MQ) Gọi I trung điểm dây PQ, E giao điểm thứ đường thẳng BI đường tròn (O) Chứng minh:

1/ Tứ giác BOIM nội tiếp Xác định tâm đường tròn ngoại tiếp tứ giác 2/ BOM = BEA

3/ AE // PQ

4/ Ba điểm O; I; K thẳng hàng, với K trung điểm EA ÁP ÁN Đ

Nội dung Điểm

Bài (1 điểm):

1/ ĐKXĐ: x  0 A =

2

50

5 xx

=

2

25.2 4.2

5 xx

=

3

2 2

2

xx

=

1

2 x

Vậy với x  thi A =

1

2 x

2/ Khi A = 

1

2 x = 1

 2x =  2x =

 x = (Thỏa điều kiện xác định) Vậy A = giá trị x =

Bài (1,5 điểm):

1/ Vẽ đồ thị (P) hàm số y = 2 x

-B ng giá trả ị

(9)

y = 2 x

8 2

-Đồ thị (P) đường parabol đỉnh O(0; 0) nằm phía trục hồnh, nhận trục tung làm trục đối xứng qua điểm có tọa độ cho bảng

2/ Cách

Vì (d) cắt (P) điểm A có hồnh độ nên x = thỏa mãn công thức hàm số (P) => Tung độ điểm A là: yA =

2

2 =  A(1;

1

2) (d) nên

2 = – m

 m = – 2 =

1 Vậy với m =

1

2 (d): y = x – m cắt P điểm A có hồnh độ Khi tung độ yA =

1 Cách 2

Ta có phương trình hồnh độ giao điểm (d) (P) là:

2 x

= x – m  x2 – 2x + 2m = (*)

Để (d) cắt (P) điểm A có hồnh độ phương trình (*) có nghiệm  12 – 2.1 + 2m =

 m = Vậy với m =

1

2 (d): y = x – m cắt P điểm A có hồnh độ Khi tung độ yA =

2

(10)

Bài (2 điểm):

1/ Giải hệ phương trình

2 3 x y x y         3 x x y         3.( 1)

x y         x y      Vậy hệ phương trình có nghiệm (-1; -6) 2/ Giải phương trình

x4 + x2 – = (1)

Đặt x2 = t (t  0)

Phương trình (1) trở thành: t2 + t – = (2)

Ta có  = 12 – 4.1.(-6) = 25

Phương trình (2) có hai nghiệm t1 =

1 25 2.1  

= (nhận) t2 =

1 25 2.1  

= -3 (loại) Với t = t1 = => x2 =  x = 

Vậy phương trình cho có hai nghiệm x1 = 2; x2 = -

Bài (2 điểm): Cho phương trình x2 – 2mx – 2m – = (m tham số)

1/ Ta có ’ = (-m)2 – (-2m – 5)

= m2 + 2m + 5

= (m + 1)2 +

Vì (m + 1)2  với m

 (m + 1)2 + > với m Hay ’ > với m

Vậy phương trình cho ln có hai nghiệm phân biệt với m 2/ Vì phương trình cho ln có hai nghiệm phân biệt với m

1 2

2

x x m x x m

  

 

 (theo định lý Vi-et) Đặt A = x1 x2

 A2 = ( x1 x2 )2 = x12 – 2x1x2 + x22 = (x1 + x2)2 – 4x1x2

 A2 = (2m)2 – 4(-2m – 5) = (2m)2 + 8m + 20

= (2m)2 + 2m + + 16

= (2m + 2)2 + 16  16

 Giá trị nhỏ A2 = 16

 Giá trị nhỏ A 2m + =  m = -1 Vậy với m = -1 x1 x2 đạt giá trị nhỏ 4

(11)

1/ Ta có MB tiếp tuyến (O) (gt)  OB  MB

 OBM = 900

 B thuộc đường trịn đường kính OM (1) Ta có IQ = IP (gt)

 OI  QP (Tính chất liên hệ đường kính dây cung)  OIM = 900

 I thuộc đường trịn đường kính OM (2)

Từ (1) (2) => BOIM nội tiếp đường trịn đường kính OM 2/ Ta có BOM = AOM (Tính chất hai tiếp tuyến cắt nhau)

 BOM = 2BOA mà BOA = SđAB

 BOM =

2SđAB Ta lại có BEA =

1

2SđAB (Định lý góc nội tiếp)  BOM = BEA

3/ Ta có: Tứ giác BOIM nội tiếp (Chứng minh trên)  BOM = BIM (Cùng chắn BM)

mà BOM = BEA (Chứng minh trên)  BIM = BEA

Mặt khắc BIM BEA hai góc vị trí đồng vị  AE // PQ

4/ Ta có OI  QP AE // PQ (chứng minh trên);  OI  AE (3)

mà KE = KA (gt)

 OK  AE (tính chất liên hệ đường kính dây cung) (4)

(12)

AE

 OI OK phải trùng  Ba điểm O, I, K thẳng hàng

SỞ GIÁO DỤC VÀ ĐÀO TẠO THÀNH PHỐ CẦN THƠ

ĐỀ CHÍNH THỨC

KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2012-2013

Khóa ngày:21/6/2012 MƠN: TỐN

Thời gian làm bài: 120 phút (không kể thời gian phát đề)

Câu 1: (2,0 điểm)

Giải hệ phương trình , phương trình sau đây:

1

43

3 19

x y

x y

 

 

 

2 x5 2x 18

3 x2 12x36 0

4 x 2011 4x 8044 3

Câu 2: (1,5 điểm)

Cho biểu thức:

2

1 1

2 :

1

a K

a a

a a

  

 

     

 

    (với a0,a1)

1 Rút gọn biểu thức K

(13)

Câu 3: (1,5 điểm)

Cho phương trình (ẩn số x): x2 4x m 2 3 * 

1 Chứng minh phương trình (*) ln có hai nghiệm phân biệt với m

2 Tìm giá trị m để phương trình (*) có hai nghiệm x x1, thỏa x2 5x1

Câu 4: (1,5 điểm)

Một ô tô dự định từ A đến B cách 120 km thời gian quy định Sau

1 tơ bị chặn xe cứu hỏa 10 phút Do để đến B hạn xe phải tăng vận tốc

thêm km/h Tính vận tốc lúc đầu ô tô

Câu 5: (3,5 điểm)

Cho đường tròn  O , từ điểm A ngồi đường trịn vẽ hai tiếp tuyếnABAC (B C, là các

tiếp điểm) OA cắt BCtại E

1 Chứng minh tứ giác ABOC nội tiếp

2 Chứng minh BC vng góc với OA BA BEAE BO .

3 GọiI là trung điểm BE, đường thẳng quaI và vng góc OI cắt tia AB AC, theo thứ

tự DF Chứng minh IDO BCO DOF cân O.

4 Chứng minh F trung điểm củaAC.

GỢI Ý BAI GIẢI

Câu 1: (2,0 điểm)

Giải hệ phương trình , phương trình sau đây:

1

43

3 19

x y

x y

 

 

 

2 x5 2x 18

3 x2 12x36 0

4 x 2011 4x 8044 3

Giải;

1

43 2 86 105 21

3 19 19 43 22

x y x y x x

x y x y x y y

     

   

  

   

      

   

2 x5 2x 18

* x +   x  -5 x5  x Phương trình trở thành:

(14)

* x +   x  -5 x5 x Phương trình trở thành:

- x – = 2x – 18 

13 x

( t/m)

Vậy tập nghiệm phương trình

13 23;

3 S  

 

3 x2 12x36 0

 2

' 36     

Phương trình có nghiệm số kép

' b x x a     

4 2011 8044 2011 2011

2011 2011 3 2011 2011

2011 2012

x x x x

x x x x

x x

        

          

    

Vậy tập nghiệm phương trình S2012

Câu 2: (1,5 điểm)

Cho biểu thức:

2

1 1

2 : a K a a a a             

    (với a0,a1)

1 Rút gọn biểu thức K

2 Tìm a để K  2012.

Giải:

1 Rút gọn biểu thức

1 1

2 : a K a a a a             

    (với a0,a1)

          2

1 1

2 :

1 1

1

1

2

1

a a

a a a

K

a a

a a a a a

a a a

a a a a                                                          

2 Tìm a để K  2012.

Ta có:

2 503

2012 2012 503 503

2

K   a   a    a

Vậy a = 503 K  2012

(15)

Cho phương trình (ẩn số x): x2 4x m 2 3 * 

1 Chứng minh phương trình (*) ln có hai nghiệm phân biệt với m

2 Tìm giá trị m để phương trình (*) có hai nghiệm x x1, thỏa x2 5x1

1    

2 2 2 2

' m m m

          

> với m

Vậy phương trình (*) ln có hai nghiệm phân biệt với m

3 Phương trình (*) ln có hai nghiệm phân biệt với m Theo định lý Vi-et ta có:

1 2 b x x a c

x x m

a   

  

Ta có hệ phương trình

2 2

1 1 1

5 5

4 1

x x x x x x x

x x x x x x

                        

Thay x1 = - x2 = vào phương trình x1 x2 = - m2 + 3, ta có:

- m2 + = -1  - m2 = -  m2  8 m 82 Vậy m = 2 x2 5x1

Câu 4: (1,5 điểm)

Một ô tô dự định từ A đến B cách 120 km thời gian quy định Sau

1 tơ bị chặn xe cứu hỏa 10 phút Do để đến B hạn xe phải tăng vận tốc

thêm km/h Tính vận tốc lúc đầu ô tô

Giải :

Gọi vận tốc lúc đầu ô tô x (km/h) (x > 0)

Vận tốc lúc sau ô tô x + (km/h)

Thời gian ô tô dự định từ A đến B  

120 h x

Quãng đường ô tô 1h : 1x (km)

Quãng đường ô tô với vận tốc x + (km/h) : 120 – x (km)

Thời gian ô tô hết quãng đường 120 – x (km)  

120 x h x  

Theo đề ta có phương trình :

1 120 120 6 x x x      ( 10 phh

)

       

2 2

2

1 120 120

1 6 6 120 120.6

6

6 36 720 720 4320

42 4320 x

x x x x x x x

x x

x x x x x x x

x x                         

Giải phương trình có hai nghiệm x1 = 48 (t/m); x2 = - 90 (loại)

Vậy vận tốc lúc đầu ô tô 48 (km/h)

(16)

Cho đường trịn  O , từ điểm A ngồi đường tròn vẽ hai tiếp tuyếnABAC (B C, là các

tiếp điểm) OA cắt BCtại E

1 Chứng minh tứ giác ABOC nội tiếp

2 Chứng minh BC vng góc với OA BA BEAE BO .

3 GọiI là trung điểm BE, đường thẳng quaI và vng góc OI cắt tia AB AC, theo thứ

tự DF Chứng minh IDO BCO DOF cân O.

4 Chứng minh F trung điểm củaAC

E O

C

A D

B

I

F

1 Chứng minh tứ giác ABOC nội tiếp

Ta có

 

0 90 90 ABO ACO

 (tính chất tiếp tuyến)

  900 900 1800 ABO ACO

      tứ giácABOC nội tiếp.

Chứng minh BC vng góc với OA BA BEAE BO .

Ta có OB = OC = R; AB = AC (tính chất hai tiếp tuyến cắt nhau)

Suy OA đường trung trực BC, nên BC  OA

Xét tam giác vuông ABE tam giác vuông BEO có:

 

BAE OBE (cùng phụ với góc ABE)

Nên ABE  BOE

AB AE

AB BE AE BO BO BE

   

(đpcm)

3 Gọi I trung điểm BE, đường thẳng qua I vng góc OI cắt tia AB AC, theo

thứ tự DF Chứng minh IDO BCO  DOF cân O.

* IDO BCO 

Tứ giác ODBE có DBO DIO  900 Hai đỉnh B I nhìn chung cạnh DO hai góc bằng

(17)

 IDO IBO (cùng chắn cung OI đường tròn ngoại tiếp tứ giác ODBE ) (1)

Tam giác BOC có OB = OC = R Tam giác BOC cân O  IBO BCO  (2)

Từ (1) (2)  IDO BCO  (đpcm) (3)

* DOF cân O

Tứ giác OCFI có OIF OCF 900900 1800  Tứ giác OCFI nội tiếp

OCB OFI (cùng chắn cung OI đường tròn ngoại tiếp tứ giác OCFI ) (4)

Từ (3) (4)  IDO OFI   DOFcân O(đpcm)

4 Chứng minh F trung điểm củaAC

DOF

 cân O(cmt) có OI đường cao đồng thời đường trung tuyến  ID = IF

Tứ giác DEFB có IE = IB (gt); ID = IF (cmt)  Tứ giác DEFB hình bình hành ( hai đường chéo

cắt trung điểm đường)  EF // DB hay EF // AB

Tam giác ABC có IE = IB (gt); EF // AB  FC = FA ( định lý đường trung bình tam giác)

(18)(19)

GỢI Ý GIẢI:

Câu 1c C =

Câu 2a ( 2;1) ; Câu 2b b = - Câu 3a a =

Câu 3b A ( -1 ; ) ; B (2 ; )

Câu 4a1  12 0 ; nên pt ln có nghiệm phân biệt với x

Câu a2 => x1 + x2 = - ; x1x2 =

Câu 4b

Gọi x ( km/h) vận tốc xe II => vt xe I x + 10 ( km/h ) ; x>

Thời gian xe I hết quãng đường : 100

x (h) Thời gian xe II hết quãng đường:

100 10 x (h) PT

100 x -

100 10 x =

1

2 => x = 40 KL

Câu : a

1 MH = 20 ( cm ) ; ME = 12 ( cm) NPFE h thang cân

b ) b1

b2

Tam giác ABC vng A có AH đường cao => AB2 = BH.BC (1)

Tam giác BHE đg dạng với tam giác BDC => BH BE

(20)

SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2012

ĐỒNG NAI Khóa ngày : 29 , 30 / / 2012

Môn thi : TOÁN HỌC

Thời gian làm : 120 phút ( Đề có trang , câu )

Câu : ( 1,5 điểm )

1 / Giải phương trình : 7x2 – 8x – = .

2 / Giải hệ phương trình :

3x + 2y =1 4x +5y = 6

  

Câu : ( 2,0 điểm )

1 / Rút gọn biểu thức :

12 +3 3 2

M ; N

3 2 1

 

 

2 / Cho x1 ; x2 hai nghiệm phương trình : x2 – x – =

Tính :

1 + 1

x x

Câu : ( 1,5 điểm ) Trong mặt phẳng với hệ trục tọa độ Oxy cho hàm số : y = 3x2 có đồ thị ( P ) ; y = 2x – có đồ thị ( d ) ; y = kx + n có đồ thị ( d

1 ) với k n số thực

1 / Vẽ đồ thị ( P )

2 / Tìm k n biết ( d1 ) qua điểm T( ; ) ( d1 ) // ( d )

Câu : ( 1,5 điểm ) Một đất hình chữ nhật có chu vi 198 m , diện tích 2430 m2 Tính chiều dài

và chiều rộng đất hình chữ nhật cho

Câu : ( 3,5 điểm )

Cho hình vng ABCD Lấy điểm E thuộc cạnh BC , với E không trùng B E không trùng C Vẽ EF vng góc với AE , với F thuộc CD Đường thẳng AF cắt đường thẳng BC G Vẽ đường thẳng a qua điểm A vng góc với AE , đường thẳng a cắt đường thẳng DE điểm H

1 / Chứng minh

AE CD

AF DE

(21)

3 / Gọi b tiếp tuyến đường tròn ngoại tiếp tam giác AHE E , biết b cắt đường trung trực đoạn thẳng EG điểm K Chứng minh KG tiếp tuyến đường tròn ngoại tiếp tam giác AHE

HƯỚNG DẪN GIẢI: Câu : ( 1,5 điểm )

1 / Giải phương trình : 7x2 – 8x – = ( x 1,2 =

4 79 

)

2 / Giải hệ phương trình :

3x + 2y =1 4x +5y = 6

 

 ( x ; y ) = (–1 ; )

Câu : ( 2,0 điểm )

1 / Rút gọn biểu thức :

12 +3 3

M 2 3

3 3

   

 2 12

3 2

N 2 1

2 1 2 1

 

  

 

2 / Cho x1 ; x2 hai nghiệm phương trình : x2 – x – =

S =  b 1a ; P =

c 1

a

Nên :

1

1 2

1 1

x x

1 + 1

x x x x

  

Câu : ( 1,5 điểm ) / Vẽ đồ thị ( P )

2 / ( d1 ) // ( d ) nên k = ; n –3 qua điểm T( ; ) nên x = ; y = Ta có phương trình : =

1.2 + n  n =

Câu : ( 1,5 điểm )

Gọi x ( m ) chiều dài đất hình chữ nhật ( 49,5 < x < 99 ) Chiều rộng đất hình chữ nhật : 99 – x ( m )

Theo đề ta có phương trình : x ( x – 99 ) = 2430 Giải : x1 = 54 ( nhận ) ; x2 = 45 ( loại )

Vậy chiều dài đất hình chữ nhật 54 ( m )

Chiều rộng đất hình chữ nhật : 99 – 54 = 45 ( m )

Câu : ( 3,5 điểm )

1 / Chứng minh tứ giác AEFD nội tiếp  

1

A D

 

GV Tơn Nữ Bích Vân tổng hợp giới thiệu Page 21

1 2

1 1

K I

b a

H

F E

D C

(22)

 AEF DCE ( g – g )

AE AF=

DC DE

AE DC=

AF DE

2 / Ta có A phụ với A 1 Ta có E 1 phụ với D Mà A 1D

 

2

A E

 

Suy tứ giác AEFD nội tiếp đường trịn đường kính HE

Gọi I trung điểm HE I tâm đường tròn ngoại tiếp tứ giác AEFD đường tròn ngoại tiếp

ΔAHE

 I nằm đường trung trực EG  IE = IG

Vì K nằm đường trung trực EG  KE = KG Suy IEK =IGK ( c-c-c )

 

IGK IEK 90

 

KG IG

(23)

Ngày đăng: 04/03/2021, 17:50

TỪ KHÓA LIÊN QUAN

w