Nghiên cứu đối lưu tự nhiên trong miền hai chiều bằng phương pháp số Nghiên cứu đối lưu tự nhiên trong miền hai chiều bằng phương pháp số Nghiên cứu đối lưu tự nhiên trong miền hai chiều bằng phương pháp số luận văn tốt nghiệp,luận văn thạc sĩ, luận văn cao học, luận văn đại học, luận án tiến sĩ, đồ án tốt nghiệp luận văn tốt nghiệp,luận văn thạc sĩ, luận văn cao học, luận văn đại học, luận án tiến sĩ, đồ án tốt nghiệp
ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN - Trần Thị Thu Duyên NGHIÊN CỨU ĐỐI LƢU TỰ NHIÊN TRONG MIỀN HAI CHIỀU BĂNG PHƢƠNG PHÁP SỐ LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội – Năm 2017 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN - Trần Thị Thu Duyên NGHIÊN CỨU ĐỐI LƢU TỰ NHIÊN TRONG MIỀN HAI CHIỀU BẰNG PHƢƠNG PHÁP SỐ Chuyên ngành: Cơ chất lỏng Mã số: 60440108 LUẬN VĂN THẠC SĨ KHOA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS TS.Trần Văn Trản Hà Nội – Năm 2017 LỜI CẢM ƠN Trong trình học tập trường nói chung q trình thực khóa luận nói riêng, tơi nhận giảng dạy bảo thầy cô giáo thuộc mơn Cơ học, khoa Tốn tin trường Đại học Khoa học tự nhiên – ĐHQGHN Đầu tiên xin gửi lời cảm ơn sâu sắc đến PGS TS Trần Văn Trản, người thầy tận tình hướng dẫn vạch cho hướng đi, đưa nhận xét sửa chữa , bổ sung cho nhiều kiến thức quý báu việc nghiên cứu khoa học giúp tơi hồn thành tốt khóa luận Đồng thời xin cảm ơn Ban lãnh đạo trường, thầy giáo khoa Tốn tin học, thầy cô giáo môn Cơ học tất thầy cô giáo giảng dạy suốt thời gian học tập nghiên cứu trường Đại học khoa học tự nhiên tạo điều kiện để tơi tham gia nghiên cứu thực luận văn Cuối xin gửi lời cám ơn chân thành tới gia đình, bạn bè, anh chị, người ln sát cánh bên tôi, giúp đỡ, quan tâm, động viên suốt q trình học tập hồn thành khóa luận Mặc dù cố gắng để hoàn thành tốt đề tài nhiên thời gian có hạn kiến thức cịn hạn chế Tơi mong nhận thơng cảm, đóng góp ý kiến bảo thầy bạn để hiểu sâu sắc vấn đề mà nghiên cứu Tôi xin chân thành cảm ơn Hà nội, ngày 16 tháng 12 năm 2016 Học viên Trần Thị Thu Duyên MỤC LỤC Đặt vấn đề Chƣơng Bài toán đối lƣu tự nhiên miền hai chiều đóng kín 1.1 Đặt tốn 1.2 Hệ phương trình Bussinesq 1.3 Mơ hình tốn mơ số Chƣơng Phƣơng pháp giải số 14 2.1 Mơ tả thuật tốn phân rã thời gian kết hợp quét luân hướng .14 2.2 Sơ đồ sai phân Samarski 15 2.3 Phương pháp đa lưới giải phương trình hàm dịng .15 Chƣơng Kết mô số 17 3.1 Bài tốn nhiệt độ biên khơng đổi 17 3.2 Bài tốn biên khơng truyền nhiệt ( bảo ơn) 18 Kết luận 20 Tài liệu tham khảo 21 Phụ lục 23 ĐẶT VẤN ĐỀ Đối lưu tượng liên quan tới truyền nhiệt chất lỏng Đó cách thức trao đổi nhiệt phổ biến tự nhiên kỹ thuật Đối lưu tự nhiên hình thành thay đổi mật độ chênh lệch nhiệt độ lịng chất lỏng Sự khác biệt nhiệt độ trung bình dịng chất lỏng khơng lớn để chất lỏng coi không nén Trong đối lưu tự nhiên, trình truyền nhiệt chuyển động chất lỏng ảnh hưởng qua lại lẫn nhau, chuyển động chất lỏng có nguyên nhân lực Archimede gây chênh lệch nhiệt độ lòng chất lỏng Khác với đối lưu tự do, đối lưu cưỡng bị ảnh hưởng lực tác động bên khác, chẳng hạn chuyển động chất lỏng lò phản ứng xảy tác động đối lưu nhiệt lực hút bơm Truyền nhiệt đối lưu đa dạng, phụ thuộc hoàn cảnh cụ thể khó tính tốn truyền nhiệt thơng thường Khả dự đốn ảnh hưởng dịng chảy đối lưu lên phân bố nhiệt độ có ích phân tích ứng dụng liên quan tới đốt nóng hay làm lạnh chất lỏng, ví dụ hệ phát thải, hệ thống thơng Hơn nữa, dịng đối lưu không gây lan truyền nồng độ chất hóa học có mơi trường mà cịn góp phần thúc đẩy phản ứng hóa học chúng Trong nghiên cứu số đặc trưng dòng chảy đối lưu tự hai chiều miền kín phương pháp số Dịng chảy đối lưu tự hiểu dòng chảy sinh có khác biệt phân bố nhiệt độ lòng phận chất lỏng, khác biệt nhiệt độ trung bình chất lỏng khơng lớn để coi chất lỏng không nén Các nghiên cứu chuyển động đối lưu tiến hành từ lâu thu hút quan tâm chuyên gia nhiều tượng lạ phát phương pháp thực nghiệm Các nghiên cứu mơ hình dịng chảy đối lưu tự thuộc Oberbeck [1] Bouissinespq [2] Hồn thiện mở rộng mơ hình từ phương diện phân tích chi tiết giả thiêt vật lý đề cập cơng trình Sorokin [3], Spiegel Veronis[4], Mihaljan[5], Malkus[6], Gray Giorgini [7] Tổng quan dịng chảy đối lưu thấy sách Turner [8] Do toán đối lưu tự nhiên miền kín liên quan đến vấn đề kĩ thuật như: thơng thống khơng gian sống làm việc, làm mát thiết bị điện tử, truyền nhiệt thiết bị thu lượng mặt trời… nên gần toán thu hút quan tâm chuyên gia Nhiều công trình nghiên cứu thực phương pháp số năm qua [9÷16] Trong luận văn toán đối lưu tự chất lỏng thực miền kín hai chiều với nguồn nhiệt phân bố rời rạc liên tục đáy mô số dựa phương pháp sai phân hữu hạn Các điều kiện khác cho nhiệt độ mô để kiểm tra đặc trưng khác biệt dịng chảy trường hợp Mơ số thực cho số giá trị số Grashof- đại lượng đặc trưng cho cường độ dòng nhiệt dùng để đót nóng chất lỏng từ lên CHƢƠNG BÀI TOÁN ĐỐI LƢU TỰ NHIÊN TRONG MIỀN HAI CHIỀU ĐĨNG KÍN 1.1 Mơ tả tốn Chất lỏng thực chứa miền hai chiều kích thước L×L Dưới tác động nguồn nhiơi vận tốc khơng thời điểm (khơng có chuyển động chất lỏng) Ngồi trạng thái ta cịn trạng thái gọi trạng thái cân học, thiết lập sau Nếu ta coi V=0 điểm kí hiệu nhiệt độ áp suất trạng thái p0 , T0 hệ phương trình (15), (18) thu được: 1 0 p0 g T0 k =0 T0 Từ hai phương trình ta dễ dàng nhận T0 k =0 Bỏ qua trường hợp T0 ứng với trạng thái đồng nhiệt độ khắp nơi mà ta nhắc đến trên, ta cịn có lời giải với gradient nhiệt độ chiều thẳng đứng với vec tơ k, nghĩa ta có lời giải dạng (kết hợp với phương trình truyền nhiệt): T0 T0 z Az B (21) Với A, B số Đó trạng thái cân học Nếu ta có A ta có phân bố nhiệt độ giảm dần theo chiều cao A ứng với nhiệt độ chất lỏng tăng dần theo chiều cao Trường hợp (A