CHAPTER TWO 2.6 TABLE 2.3 Solubility of Inorganic Substances in Water (Number of grams of the anhydrous substance soluble in 1000 g of water. The common name of the substance is given in parentheses.) Temperature, Њ F( Њ C) Composition 32 (0) 122 (50) 212 (100) Aluminum sulfate Al 2 (SO 4 ) 3 313 521 891 Aluminum potassium sulfate (potassium alum) Al 2 K 2 (SO 4 ) 4 ⅐ 24H 2 O30 170 1540 Ammonium bicarbonate NH 4 HCO 3 119 Ammonium chloride (sal ammoniac) NH 4 Cl 297 504 760 Ammonium nitrate NH 4 NO 3 1183 3440 8710 Ammonium sulfate (NH 4 ) 2 SO 4 706 847 1033 Barium chloride BaCl 2 ⅐ 2H 2 O 317 436 587 Barium nitrate Ba(NO 3 ) 2 50 172 345 Calcium carbonate (calcite) CaCO 3 0.018* 0.88 Calcium chloride CaCl 2 594 1576 Calcium hydroxide (hydrated lime) Ca(OH) 2 1.77 0.67 Calcium nitrate Ca(NO 3 ) 2 ⅐ 4H 2 O 931 3561 3626 Calcium sulfate (gypsum) CaSO 4 ⅐ 2H 2 O 1.76 2.06 1.69 Copper sulfate (blue vitriol) CuSO 4 ⅐ 5H 2 O 140 334 753 Ferrous chloride FeCl 2 ⅐ 4H 2 O 644§ 820 1060 Ferrous hydroxide Fe(OH) 2 0.0067‡ Ferrous sulfate (green vitriol or copperas) FeSO 4 ⅐ 7H 2 O 156 482 Ferric chloride FeCl 3 730 3160 5369 Lead chloride PbCl 2 6.73 16.7 33.3 Lead nitrate Pb(NO 3 ) 2 403 1255 Lead sulfate PbSO 4 0.042† Magnesium carbonate MgCO 3 0.13‡ Magnesium chloride MgCl 2 ⅐ 6H 2 O 524 723 Magnesium hydroxide (milk of magnesia) Mg(OH) 2 0.009‡ Magnesium nitrate Mg(NO 3 ) 2 ⅐ 6H 2 O 665 903 Magnesium sulfate (Epsom salts) MgSO 4 ⅐ 7H 2 O 269 500 710 Potassium carbonate (pot- ash) K 2 CO 3 893 1216 1562 Potassium chloride KCl 284 435 566 Potassium hydroxide (caus- tic potash) KOH 971 1414 1773 Potassium nitrate (saltpeter or niter) KNO 3 131 851 2477 Potassium sulfate K 2 SO 4 74 165 241 Sodium bicarbonate (baking soda) NaHCO 3 69 145 Sodium carbonate (sal soda or soda ash) NaCO 3 ⅐ 10H 2 O 204 475 452 Sodium chloride (common salt) NaCl 357 366 392 GENERAL PROPERTIES OF MATERIALS 2.7 TABLE 2.3 Solubility of Inorganic Substances in Water (Continued ) (Number of grams of the anhydrous substance soluble in 1000 g of water. The common name of the substance is given in parentheses.) Temperature, Њ F( Њ C) Composition 32 (0) 122 (50) 212 (100) Sodium hydroxide (caustic soda) NaOH 420 1448 3388 Sodium nitrate (Chile salt- peter) NaNO 3 733 1148 1755 Sodium sulfate (Glauber salts) Na 2 SO 4 ⅐ 10H 2 O49 466 422 Zinc chloride ZnCl 2 2044 4702 6147 Zinc nitrate Zn(NO 3 ) 2 ⅐ 6H 2 O 947 Zinc sulfate ZnSO 4 ⅐ 7H 2 O 419 768 807 *59 Њ F (l5 Њ C). §50 Њ F (10 Њ C). ‡In cold water. †68 Њ F (20 Њ C). Source: From Avallonc and Baumeister. 1 TABLE 2.4 Solubility of Gases in Water (By volume, at atmospheric pressure) t, Њ F( Њ C) 32 (0) 68 (20) 212 (100) Air 0.032 0.020 0.012 Acetylene 1.89 1.12 Ammonia 1250 700 Carbon dioxide 1.87 0.96 0.26 Carbon monoxide 0.039 0.025 Chlorine 5.0 2.5 0.00 Hydrogen 0.023 0.020 0.018 Hydrogen sulfide 5.0 2.8 0.87 Hydrochloric acid 560 480 Nitrogen 0.026 0.017 0.0105 Oxygen 0.053 0.034 0.0185 Sulfuric acid 87 43 Source: From Avallone and Baumeister. 1 Thermal diffusivity ( ␣ ) Dynamic viscosity ( ) Kinematic viscosity ( ) Surface tension ( ) Coefficient of thermal expansion (  ) The kinematic viscosity of a fluid is its dynamic viscosity divided by its density, or ϭ / . Its units are m 2 /s. The surface tension of a fluid is the work done in 2.8 TABLE 2.5 Properties of Metallic Solids Properties at 20 Њ C Thermal conductivity, k (W /m ⅐ K) Metal (kg /m 3 ) c p (J/kg ⅐ K) k (W /m ⅐ K) ␣ (10 Ϫ 6 m 2 /s) Ϫ 170 Њ C Ϫ 100 Њ C0 Њ C 100 Њ C 200 Њ C 300 Њ C 400 Њ C 600 Њ C 800 Њ C1000 Њ C Aluminum Pure 2,707 905 237 9.61 302 242 236 240 238 234 228 215 ϳ 95 (liq) 99% pure 211 220 206 209 Duralumin ( ϳ 4% Cu) 2,787 883 164 6.66 126 164 182 194 Chromium 7,190 453 90 2.77 158 120 95 88 85 82 77 69 64 62 Copper and Cu alloys Pure 8,954 384 398 11.57 483 420 401 391 389 384 378 366 352 336 Bass (30% Zn) 8,522 385 109 3.32 73 89 106 133 143 146 147 Bronze (25% Sn) 8,666 343 26 0.86 (Data on this and other bronzes vary by a factor of about 2) Constantan (40% Ni) 8,922 410 22 0.61 17 19 22 26 35 German silver (15% Ni, 22% Zn) 8,618 394 25 0.73 18 19 24 31 40 45 48 Gold 19,320 129 315 12.64 318 309 Ferrous metals Pure iron 7,897 447 80 2.26 132 98 84 72 63 56 50 39 30 29.5 Cast iron (0.4% C) 7,272 420 52 1.70 Steels (C Ͻ 1.5%) 0.5% carbon (mild) 7,833 465 54 1.47 55 52 48 45 42 35 31 29 1.0% carbon 7,801 473 43 1.17 43 43 42 40 36 33 29 28 1.5% carbon 7,753 486 36 0.97 36 36 36 35 33 31 28 28 2.9 Stainless steel, type: 304 8,000 400 13.8 0.4 15 17 19 21 25 316 8,000 460 13.5 0.37 12 15 16 17 19 21 24 26 347 8,000 420 15 0.44 13 16 18 19 20 23 26 28 410 7,700 460 25 0.7 25 26 27 27 28 414 7,700 460 25 0.7 29 29 Lead 11,373 130 35 2.34 40 37 36 34 33 31 17 (liq.) 20 (liq.) Magnesium 1,746 1023 156 8.76 17 16 157 154 152 150 148 90 (liq.) Mercury (polycrystalline) 32 30 7.8 (liq.) Nickel Pure 8,906 445 91 2.30 156 114 94 83 74 67 64 69 73 78 Nichrome (24% Fe, 16% Cr) 8,250 448 0.34 13 Nichrome V (20% Cr) 8,410 466 13 0.33 12 14 15 17 19 Platinum 21,450 133 71 2.50 78 73 72 72 72 73 74 77 80 84 Silver 99.99% pure 10,524 236 427 17.19 449 431 428 422 417 409 401 386 370 176 (liq.) 99.9% pure 10,524 236 411 16.55 422 405 373 367 364 Tin (polycrystalline) 7,304 ϳ 220 67 4.17 85 76 68 63 Titanium (polycrystalline) 4,540 523 22 0.93 31 26 22 21 20 20 19 21 21 22 Tunsten 19,350 133 178 6.92 235 223 182 166 153 141 134 125 122 114 Uranium 18,700 116 28 1.29 22 24 27 29 31 33 36 41 46 Zinc 7,144 388 121 4.37 124 122 122 117 110 106 100 60 (liq.) Source: From Lienhard. 2 Portions of the original table have been omitted where not rele vant to this chapter. The data can also be found in Refs. 1, 2, and 4 through 9. CHAPTER TWO 2.10 extending the surface of a liquid one unit of area or work per unit area. Its units are N/m. Also, note that ␣ ϭ k/ c and 1 Ѩ  ϭϪ ϭ const ͩͪ p Ѩ t In general, all thermophysical properties are strong functions of temperature. Table 2.5 shows properties of metallic solids. Table 2.6 shows properties of nonmetallic solids. Table 2.7 shows properties of saturated liquids. (Note that the Prandtl number Pr ϭ / ␣ .) Table 2.8 shows properties of gases at atmospheric pressure. Table 2.9 shows data of surface tension of various liquids. Approximate relations for thermal expansions are given in Table 2.14. MECHANICAL PROPERTIES Mechanical properties commonly used by engineers are Ultimate tensile strength Tensile yield strength Elongation Modulus of elasticity Compressive strength Shear strength Endurance limit Ultimate tensile strength is defined as the maximum load per unit of original cross-sectional area sustained by a material during a tension test. It is also called ultimate strength. Tensile yield strength is defined as the stress corresponding to some permanent deformation from the modulus slope, e.g., 0.2 percent offset in the case of heat- treated alloy steels. Elongation is defined as the amount of permanent extension in a ruptured tensile test specimen; it is usually expressed as a percentage of the original gage length. Elongation is usually taken as a measure of ductility. Modulus of elasticity is the property of a material which indicates its rigidity. This property is the ratio of stress to strain within the elastic range. On a stress-strain diagram, the modulus of elasticity is usually represented by the straight portion of the curve when the stress is directly proportional to the strain. The steeper the curve, the higher the modulus of elasticity and the stiffer the ma- terial. Compressive strength is defined as the maximum compressive stress that a ma- terial is capable of developing based on the original cross-sectional area. The gen- eral design practice is to assume the compressive strength of a steel is equal to its tensile strength, although it is actually somewhat greater. Shear strength is defined as the stress required to produce fracture in the plane of cross section, the conditions of loading being such that the directions of force and of resistance are parallel and opposite although their paths are offset a specified minimum amount. The ultimate shear strength is generally assumed to be three- fourths the material’s ultimate tensile strength. GENERAL PROPERTIES OF MATERIALS 2.11 TABLE 2.6 Properties of Nonmetallic Solids Material Tem- perature range, Њ C Density , kg / m 3 Specific heat c, J/kg ⅐ Њ C Thermal conduc- tivity k, W/m ⅐ Њ C Thermal diffusivity ␣ ,m 2 /s Asbestos Cement board 20 0.6 Fiber (properties vary 20 1930 0.8 with packing) 20 980 0.14 Asphalt 20–25 0.75 Beef 25 1.35 ϫ 10 07 Brick B&W, K-28 insulating 300 0.3 B&W, K-28 insulating 1000 0.4 Cement 10 720 0.34 Common 0–1000 0.7 Chrome 100 1.9 Firebrick 300 2000 960 0.1 5.4 ϫ 10 Ϫ 8 Firebrick 1000 0.2 Carbon Diamond (type II b) 20 ϳ 3250 510 1350. 8.1 ϫ 10 Ϫ 4 Graphite 20 ϳ 2100 ϳ 2090 Highly variable structure Cardboard 0–20 790 0.14 Clay Fireclay 500–750 1. Sandy clay 20 1780 0.9 Coal Anthracite 900 ϳ 1500 ϳ 0.2 Brown coal 900 ϳ 0.1 Bituminous in situ ϳ 1300 0.5–0.7 3 to 4 ϫ 10 Ϫ 7 Concrete Limestone gravel 20 1850 0.6 Portland cement 90 2300 1.7 Sand:cement (3:1) 230 0.1 Slag cement 20 0.14 Corkboard (medium )30170 0.04 Egg white 20 1.37 ϫ 10 Ϫ 7 Glass Lead 36 1.2 Plate 20 1.3 Pyrex 60–100 2210 753 1.3 7.8 ϫ 10 Ϫ 7 Soda 20 0.7 Window 46 1.3 Glass wool 20 64–160 0.04 Ice 0 917 2100 2.215 1.15 ϫ 10 Ϫ 6 Ivory 80 0.5 Kapok 30 0.035 CHAPTER TWO 2.12 TABLE 2.6 Properties of Nonmetallic Solids (Continued) Material Tem- perature range, Њ C Density , kg / m 3 Specific heat c, J/kg ⅐ Њ C Thermal conduc- tivity k, W/m ⅐ Њ C Thermal diffusivity ␣ ,m 2 /s Magnesia (85%) 38 0.067 93 0.071 150 0.074 204 0.08 Lunar surface dust (high vacuum) 250 1500 ע 300 ϳ 600 ϳ 0.0006 ϳ 7 ϫ 10 Ϫ 10 Rock wool Ϫ 5 ϳ 130 0.03 93 0.05 Rubber (hard) 0 1200 2010 0.15 6.2 ϫ 10 Ϫ 8 Silica aerogel 0 140 0.024 120 136 0.022 Silo-cel (diatomaceous earth) 0 320 0.061 Soil (mineral) Dry 15 1500 1840 1. 4 ϫ 10 Ϫ 7 Wet151930 2. Stone Granite (NTS) 20 ϳ 2640 ϳ 820 1.6 ϳ 7.4 ϫ 10 Ϫ 7 Limestone (Indiana) 100 2300 ϳ 900 1.1 ϳ 5.3 ϫ 10 Ϫ 7 Sandstone (Berea) 25 ϳ 3 Slate 100 1.5 Wood (perpendicular to grain) Ash 15 740 0.15–0.3 Balsa 15 100 0.05 Cedar 15 480 0.11 Fir 15 600 2720 0.12 7.4 ϫ 10 Ϫ 8 Mahogany 20 700 0.16 Oak 20 600 2390 0.1–0.4 (0.7–2.8) ϫ 10 Ϫ 7 Pitch pine 20 450 0.14 Sawdust (dry) 17 128 0.14 Spruce 20 410 0.11 Wool (sheep) 20 145 0.05 Source: From Lienhard. 2 Portions of the original table have been omitted where not relevant to this chapter. The data can also be found in Refs. 1, 2, and 4 through 9. Endurance limit is defined as the maximum stress to which the material can be subjected for an indefinite service life. Although the standards vary for various types of members and different industries, it is common practice to assume that carrying a certain load for several million cycles of stress reversals indicates that the load can be carried for an indefinite time. Hardness measures the resistance of the material to indentation. Hardness tests measure the plastic deformation (the size or depth) of an indentation. Brinell hard- GENERAL PROPERTIES OF MATERIALS 2.13 TABLE 2.7 Thermophysical Properties of Saturated Liquids Temp., K Њ C , kg/m 3 c p , J/kg ⅐ K k, W/m ⅐ K ␣ ,m 2 /s ,m 2 /s Pr  , K Ϫ 1 Ammonia (there is considerable disagreement among sources) 220 Ϫ 53 706 4426 0.66 2.11 ϫ 10 Ϫ 7 240 Ϫ 33 682 4484 0.61 2.00 4.17 ϫ 10 Ϫ 7 2.09 260 Ϫ 13 656 4547 0.57 1.91 3.27 1.71 280 7 629 4625 0.52 1.79 2.68 1.50 0.00025 300 27 600 4736 0.470 1.65 2.32 1.41 320 47 568 4962 0.424 1.50 2.06 1.37 340 67 533 5214 0.379 1.36 1.79 1.32 360 87 490 5635 0.335 1.21 1.55 1.28 380 107 436 0.289 1.34 400 127 345 0.245 1.19 CO 2 250 Ϫ 23 1046 1990 0.135 6.49 ϫ 10 Ϫ 8 260 Ϫ 13 998 2110 0.123 5.84 1.15 ϫ 10 Ϫ 7 1.97 270 Ϫ 3 944 2390 0.113 5.09 1.08 2.12 280 7 883 2760 0.102 4.19 1.04 2.48 290 17 805 3630 0.090 3.08 0.99 3.20 0.014 300 27 676 7690 0.076 1.46 0.88 6.04 303 30 604 D 2 O (heavy water) 589 316 740 2034 0.0509 0.978 ϫ 10 Ϫ 7 1.23 ϫ 10 Ϫ 7 1.257 Freon 11 (trichlorofluoromethane) 220 Ϫ 53 829 0.110 240 Ϫ 33 1607 841 0.105 7.8 ϫ 10 Ϫ 8 4.78 ϫ 10 Ϫ 7 6.1 260 Ϫ 13 1564 855 0.099 7.4 4.10 5.5 280 7 1518 871 0.093 7.0 3.81 5.4 0.00154 300 27 1472 888 0.088 6.7 2.82 4.2 0.00163 320 47 1421 906 0.082 6.4 340 67 1369 927 0.076 6.0 Freon 12 (dichlorodifluoromethane) 160 Ϫ 113 0.133 180 Ϫ 93 1664 834 0.124 8.935 ϫ 10 Ϫ 8 200 Ϫ 73 1610 856 0.1148 8.33 220 Ϫ 53 1555 873 0.1057 7.79 3.2 ϫ 10 Ϫ 7 4.11 0.00263 240 Ϫ 33 1498 892 0.0965 7.22 2.60 3.60 260 Ϫ 13 1438 914 0.0874 6.65 2.26 3.40 280 7 1374 942 0.0782 6.04 2.06 3.41 300 27 1305 980 0.0690 5.39 1.95 3.62 320 47 1229 1031 0.0599 4.72 1.9 4.03 340 67 1097 0.0507 Glycerin (or glycerol) 273 0 1276 2200 0.282 1.00 ϫ 10 Ϫ 7 0.0083 83,000 293 20 1261 2350 0.285 0.962 0.001120 11,630 0.00048 303 30 1255 2400 0.285 0.946 0.000488 5,161 0.00049 313 40 1249 2460 0.285 0.928 0.000227 2,451 0.00049 323 50 1243 2520 0.285 0.910 0.000114 1,254 0.00050 CHAPTER TWO 2.14 TABLE 2.7 Thermophysical Properties of Saturated Liquids (Continued ) Temp., K Њ C , kg / m 3 c p , J/kg ⅐ K k, W/m ⅐ K ␣ ,m 2 /s ,m 2 /s Pr  , K Ϫ 1 Glycerin (or glycerol) (Continued ) 644 371 10,540 159 16.1 1.084 ϫ 10 Ϫ 5 2.276 ϫ 10 Ϫ 7 0.024 755 482 10,442 155 15.6 1.223 1.85 0.017 811 538 10,348 145 15.3 1.02 1.68 0.017 Mercury 234 Ϫ 39 141.5 6.97 3.62 ϫ 10 Ϫ 6 250 Ϫ 23 140.5 7.32 3.83 300 27 13,611 139.1 8.34 4.41 1.2 ϫ 10 Ϫ 7 0.027 350 77 3,489 137.7 5.29 4.91 1.0 0.020 400 127 13,367 136.7 5.69 5.83 ϫ 10 Ϫ 6 0.95 ϫ 10 Ϫ 7 0.016 500 277 13,128 135.6 6.36 6.00 0.80 0.013 600 327 135.4 6.93 6.55 0.68 0.010 700 427 136.1 7.34 800 527 7.40 Methyl alcohol (methanol) 260 Ϫ 13 823 2336 0.2164 1.126 ϫ 10 Ϫ 7 Ϫ 1.3 ϫ 10 Ϫ 6 ϳ 11.5 280 7 804 2423 0.2078 1.021 ϳ 0.9 ϳ 8.8 0.00114 300 27 785 2534 0.2022 1.016 ϳ 0.7 ϳ 6.9 320 47 767 2672 0.1965 0.959 ϳ 0.6 ϳ 6.3 340 67 748 2856 0.1908 0.893 ϳ 0.44 ϳ 4.9 360 87 729 3036 0.1851 0.836 ϳ 0.36 ϳ 4.3 380 107 710 3265 0.1794 0.774 ϳ 0.30 ϳ 4.1 Oxygen 54 1276 1648 0.191 9.08 ϫ 10 Ϫ 8 6.5 ϫ 10 Ϫ 7 7.15 60 Ϫ 213 1649 0.185 80 Ϫ 193 1653 0.1623 90 Ϫ 183 1114 1655 0.1501 8.14 ϫ 10 Ϫ 8 1.75 ϫ 10 Ϫ 7 2.15 120 Ϫ 153 0.1096 150 Ϫ 123 0.061 Oils (some approximate viscosities) 273 0 MS-20 0.0076 100,000 339 66 California crude (heavy) 0.00008 289 16 California crude (light) 0.00005 339 66 California crude (light) 0.000010 289 16 Light machine oil 0.0007 339 66 Light machine oil 0.00004 289 16 Light machine oil ( ϭ 907) 0.00016 339 66 Light machine oil ( ϭ 907) 0.000013 289 16 SAE 30 0.00044 Ϫ 5,000 339 66 SAE 30 0.00003 289 16 SAE 30 (Eastern) 0.00011 339 66 SAE 30 (Eastern) 0.00001 289 16 Spindle oil ( ϭ 885) 0.00005 339 66 Spindle oil ( ϭ 885) 0.000007 GENERAL PROPERTIES OF MATERIALS 2.15 TABLE 2.7 Thermophysical Properties of Saturated Liquids (Continued ) Temp., K Њ C , kg/m 3 c p , J/kg ⅐ K k, W/m ⅐ K ␣ ,m 2 /s ,m 2 /s Pr  , K Ϫ 1 Water 273 0 999.8 4205 0.5750 1.368 ϫ 10 Ϫ 7 1.753 ϫ 10 Ϫ 6 12.81 280 7 999.9 4196 0.5818 1.386 1.422 10.26 300 27 996.6 4177 0.6084 1.462 0.826 5.65 0.000275 320 47 989.3 4177 0.6367 1.541 ϫ 10 Ϫ 7 0.566 ϫ 10 Ϫ 6 3.67 0.000435 340 67 979.5 4187 0.6587 1.606 0.420 2.61 360 87 967.4 4206 0.6743 1.657 0.330 1.99 373 100 957.2 4219 0.6811 1.683 0.290 1.72 400 127 937.5 4241 0.6864 1.726 0.229 1.33 420 147 919.9 4306 0.6836 1.726 ϫ 10 Ϫ 7 2.000 ϫ 10 Ϫ 7 1.16 440 167 900.5 4391 0.6774 1.713 1.786 1.04 460 187 879.5 4456 0.6672 1.703 1.626 0.955 480 207 856.6 4534 0.6530 1.681 1.504 0.894 500 227 831.5 4647 0.6348 1.463 1.412 0.859 520 247 803.9 4831 0.6123 1.577 ϫ 10 Ϫ 7 1.345 ϫ 10 Ϫ 7 0.853 540 267 773.0 5099 0.5857 1.486 1.298 0.873 560 287 738.2 5487 0.555 1.370 1.269 0.926 580 307 697.6 6010 0.520 1.240 1.240 1.000 600 327 648.8 6691 0.481 1.108 1.215 1.097 620 347 586.3 1.213 ϫ 10 Ϫ 7 640 367 482.1 1.218 647.3 374.2 306.8 1.356 Source: From Lienhard. Portions of the original table have been omitted where not relevant to this chapter. The data can also be found in Refs. 1. 2, and 4 through 9. ness tests use spheres as indenters; the Vickers test uses pyramids. Rockwell tests use cones or spheres. Microhardness tests for specimens are also available, using the Knoop method with miniature pyramid indenters. Another hardness scale is Mohs’ scale, which lists materials in order of their hardness, beginning with talc and ending with diamond. Table 2.15 shows typical Brinell hardness number (BHN) for metals. Table 2.10 shows typical mechanical properties of some metals and alloys. See Ref. 11 for more data. Note on Hardness Testing Method Hardness tests on materials consist of pressing a hardened ball point into a specimen and measuring the size of the resulting indentation (see Figure 2.1). The method shown is the Brinell method, which utilizes a ball. The ball size is 10 mm for most cases or 1 mm for light work. Let: D ϭ diameter of indentation (mm) D ϭ diameter of baIl (mm) b F ϭ force on ball (kg ) f (continues on page 2.22)