Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 353 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
353
Dung lượng
10,84 MB
Nội dung
NEW AND EFFICIENT APPROACHES TO FUNCTIONALIZATION VIA METALCATALYZED AND PHOTO-INDUCED TRANSFORMATIONS by VU TRAN NGUYEN, M Eng DISSERTATION Presented to the Graduate Faculty of The University of Texas at San Antonio in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY IN CHEMISTRY COMMITTEE MEMBERS: Oleg V Larionov, Ph.D., Chair Francis K Yoshimoto, Ph.D Hyunsoo Han, Ph.D John C.-G Zhao, Ph.D THE UNIVERSITY OF TEXAS AT SAN ANTONIO College of Science Department of Chemistry December 2020 DEDICATION To my wife and my dear daughter who always believe in me To my parents who provide me with constant inspiration ACKNOWLEDGEMENTS First and foremost, I have to thank my family who has supported me not only through graduate school but through life thus far Their concern and encouragement are what kept me going every moment in my life I owe my deepest gratitude to my wife for her silent sacrifice to my little family I owe my mother, who inspired me and let me know about the beautiful world of chemistry Secondly, I need to thank Dr Oleg V Larionov for his constant encouragement and support to push me to become better Without him motivating me, I would never have the achievement today I learned from him the way of thinking and developing a project I hope that I can continue to grow and advance as I finish my career at UTSA I want to also acknowledge my committee members, Dr Hyunsoo Han, Dr Francis Yoshimoto, and Dr John C.-G Zhao, for all the time and effort you all have made to help me become a well-rounded chemist You all have been key to my professional development by always being ready to question me to help me achieve all the critical milestones of graduate school Thank you for always encouraging me to better I would like to thank the Department of Chemistry at the University of Texas at San Antonio for the constant support and continued dedication to providing opportunities for success There is not one faculty member who I have not interacted with, asked advice, or been evaluated by I would also like to thank all the professors that took part in teaching me during my education at UTSA I would like to thank my lab members for all the years we have spent together Without your support, I know that I also would not have been nearly successful as today Special thanks to Anh Vo, who gave me an opportunity to join the group of Dr Larionov and begun my career here at UTSA All are owed thanks (not limited too or in any specific order): David Stephens, Bhuwan Chhetri, Johant Lakey-Beitia, John Doyle, Jessica Burch, Victoria Soto, Adelphe Mfuh, Shengfei Jin, Xianwei Sui, Graham Haug, Brett Schneider, Oscar Garcia, Carsten Flores-Hansen, Dat Nguyen, Hang Dang, Viet Nguyen, Ngan Vuong, Hoang Pham, Trang Le, Dat Le, Tiffany Nguyen, Tu Ho I want to thank various agencies and foundations for supporting our work at the lab of Dr Larionov: the Max and Minnie Tomerlin Voelcker Fund, the Welch Foundation, the National Institute of General Medical Sciences, and the University of Texas at San Antonio I also want to iv thank Dr Judith Walmsley for her generous donation to my awards at UTSA: Abrams and Walmsley awards These awards helped me focus on science and get some achievements so far “This Master’s Thesis/Recital Document or Doctoral Dissertation was produced in accordance with guidelines which permit the inclusion as part of the Master’s Thesis/Recital Document or Doctoral Dissertation the text of an original paper, or papers, submitted for publication The Master’s Thesis/Recital Document or Doctoral Dissertation must still conform to all other requirements explained in the “Guide for the Preparation of a Master’s Thesis/Recital Document or Doctoral Dissertation at The University of Texas at San Antonio.” It must include a comprehensive abstract, a full introduction and literature review, and a final overall conclusion Additional material (procedural and design data as well as descriptions of equipment) must be provided in sufficient detail to allow a clear and precise judgment to be made of the importance and originality of the research reported It is acceptable for this Master’s Thesis/Recital Document or Doctoral Dissertation to include as chapters authentic copies of papers already published, provided these meet type size, margin, and legibility requirements In such cases, connecting texts, which provide logical bridges between different manuscripts, are mandatory Where the student is not the sole author of a manuscript, the student is required to make an explicit statement in the introductory material to that manuscript describing the student’s contribution to the work and acknowledging the contribution of the other author(s) The approvals of the Supervising Committee which precede all other material in the Master’s Thesis/Recital Document or Doctoral Dissertation attest to the accuracy of this statement.” December 2020 v NEW AND EFFICIENT APPROACHES TO FUNCTIONALIZATION VIA METALCATALYZED AND PHOTO-INDUCED TRANSFORMATIONS Vu Tran Nguyen, Ph.D The University of Texas at San Antonio, 2020 Supervising Professor: Oleg V Larionov, Ph.D Functionalization has emerged as an attractive strategy for the diversification of compounds especially in drug development and materials science The recent emerging trend in chemical functionalization is not only to access challenging and valuable compounds using abundant and inexpensive materials but also to consider environmental aspects of new methodologies New methodologies in the fields of photocatalysis, transition metal catalysis, radical chemistry, and redox chemistry have found applications in functionalization Herein, new and efficient approaches to functionalization of common aryl halides, abundant carboxylic acids, and readily available alkenes via metal-catalyzed or photoinduced transformations will be discussed Specifically, the focus will be on the following transformations: conversion of aryl halides to borylated compounds and corresponding sulfones, as well as conversion of carboxylic acids to amines, alkenes, and other important compounds Alkenes take part in discrete carboborative ring contractions or challenging dienes syntheses In some cases, discussion of the mechanistic investigations and density functional theory calculations will be included to provide insights into the reaction details Some ongoing works with preliminary results in decarboxylation and dienylation will be briefly discussed vi TABLE OF CONTENTS ACKNOWLEDGEMENTS iv ABSTRACT vi TABLE OF CONTENTS vii LIST OF FIGURES xiii CHAPTER I INTRODUCTION CHAPTER II PHOTO-INDUCED RING CONTRACTION INTRODUCTION EXPERIMENTAL DESIGN RESULTS AND DISCUSSIONS 12 MECHANISTIC INVESTIGATION 15 CONCLUSION 21 GENERAL PROCEDURES AND CHARACTERIZATION OF PRODUCTS 21 CHAPTER III SULFOLENE SYNTHESIS AND TRANSITION METAL – CATALYZED DIENYLATION USING SULFOLENE 49 CHAPTER III.1 SULFOLENE SYNTHESIS 50 INTRODUCTION 50 EXPERIMENTAL DESIGN 51 RESULTS AND DISCUSSIONS 53 CONCLUSION 54 GENERAL PROCEDURES AND CHARACTERIZATION OF PRODUCTS 54 vii CHAPTER III.2 PALLADIUM-CATALYZED DIENYLATION 58 INTRODUCTION 58 EXPERIMENTAL DESIGN 60 RESULTS AND DISCUSSIONS 61 CONCLUSION 66 GENERAL PROCEDURES AND CHARACTERIZATION OF PRODUCTS 66 CHAPTER III.3 NICKEL-CATALYZED DIENYLATION 85 INTRODUCTION 85 EXPERIMENTAL DESIGN 85 RESULTS AND DISCUSSIONS 87 CONCLUSION 88 GENERAL PROCEDURES AND CHARACTERIZATION OF PRODUCTS 88 CHAPTER IV ACRIDINE-CATALYZED DECARBOXYLATION AND FUNCTIONALIZATION OF CARBOXYLIC ACIDS 92 CHAPTER IV.1 DECARBOXYLATIVE OLEFINATION 93 INTRODUCTION 93 EXPERIMENTAL DESIGN 96 RESULTS AND DISCUSSIONS 99 CONCLUSION 116 GENERAL PROCEDURES AND CHARACTERIZATION OF PRODUCTS 116 viii CHAPTER IV.2 DECARBOXYLATIVE AMINATION 165 INTRODUCTION 165 EXPERIMENTAL DESIGN 167 RESULTS AND DISCUSSIONS 169 CONCLUSION 178 GENERAL PROCEDURES AND CHARACTERIZATION OF PRODUCTS 178 CHAPTER IV.3 DECARBOXYLATIVE SULFONYLATION 234 INTRODUCTION 234 EXPERIMENTAL DESIGN 234 CHAPTER V FUNCTIONALIZATION OF ARYL HALIDES 236 CHAPTER V.1 BORYLATION OF ARYL HALIDES 237 INTRODUCTION 237 EXPERIMENTAL DESIGN 238 RESULTS AND DISCUSSIONS 239 CONCLUSION 244 GENERAL PROCEDURES AND CHARACTERIZATION OF PRODUCTS 244 CHAPTER V.2 SULFONE SYNTHESIS 257 INTRODUCTION 257 EXPERIMENTAL DESIGN 259 RESULTS AND DISCUSSIONS 260 ix CONCLUSION 268 GENERAL PROCEDURES AND CHARACTERIZATION OF PRODUCTS 268 CHAPTER VI DIMERIZATION OF QUINOLINES 286 INTRODUCTION 287 EXPERIMENTAL DESIGN 287 RESULTS AND DISCUSSIONS 288 CONCLUSION 293 GENERAL PROCEDURES AND CHARACTERIZATION OF PRODUCTS 293 APPENDIX A Copyright Clearance 301 APPENDIX B Copies of 1H and 13CNMR Spectra for Chapter II 307 APPENDIX C Copies of 1H and 13CNMR Spectra for Chapter III 365 APPENDIX D Copies of 1H and 13CNMR Spectra for Chapter IV.1 422 APPENDIX E Copies of 1H and 13CNMR Spectra for Chapter IV.2 533 APPENDIX F Copies of 1H and 13CNMR Spectra for Chapter V.1 666 APPENDIX H Copies of 1H and 13CNMR Spectra for Chapter VI 729 APPENDIX G Copies of 1H and 13CNMR Spectra for Chapter V.2 758 REFERENCES 797 VITA x LIST OF TABLES Chapter II Table II.1.Optimization for photoinduced carboborative ring contraction 10 Table II.2 Photoinduced carboborative ring contraction in the presence of different photosensitizers 11 Table II.3 Scope of the Photoinduced Carboborative Ring Contraction 12 Table II.4 Scope of the Photoinduced Carboborative Ring Contraction of Terpenoids 14 Chapter III Table III.1 Optimization of the 3-sulfolene synthesis from 1,3-dienes 52 Table III.2 Synthesis of 3-sulfolenes from 1,3-dienes 53 Table III.3 Optimization of Reaction Conditions 61 Table III.4 Scope of the Reaction with Sulfolene 62 Table III Scope of the Reaction with Substituted Sulfolenes 64 Table III.6 Optimization tables for Ni-catalyzed dienylation 86 Chapter IV Table IV.1 Reaction conditions for dehydrodecarboxylation 97 Table IV.2 Reaction conditions for cooperative chemoenzymatic LACo process 98 Table IV.3 Reaction conditions for interrogation of the decarboxylation-on-cobaloxime mechanism 106 xi (35) Y Ma, X Yao, L Zhang, P Ni, R Cheng, J Ye, Angew Chem., Int Ed Engl 2019, 58, 16548–16552 (36) H L Li, Y Kuninobu, M Kanai, Angew Chem., Int Ed 2017, 56, 1495–1499 (37) V H Tran, M T La, H K Kim, Tetrahedron Lett 2019, 60, 1860–1863 (38) K Matsumoto, S Takeda, T Hirokane, M Yoshida, Org Lett 2019, 21, 7279–7283 CHAPTER IV.3 (1) (a) Metzner, P.; Thuillier, A Sulfur Reagents in Organic Synthesis Elsevier, 2013 (b) Cremlyn, R J An Introduction to Organosulfur Chemistry John Wiley and Sons: Chichester, 1996 (c) Simpkins, N S Sulfones in Organic Synthesis; Pergamon Press: Oxford, 1993 (2) (a) Smith, B R.; Eastman, C M.; Njardarson, J T Beyond C, H, O, and N! Analysis of the Elemental Composition of US FDA Approved Drug Architectures: Miniperspective J Med Chem 2014, 57, 9764−9773 (b) Scott, K A.; Njardarson, J T Analysis of US FDA Drugs Containing Sulfur Atoms Top Curr Chem 2018, 1, 376 (c) Ilardi, E A.; Vitaku, E.; Njardarson, J T Data-mining for Sulfur and Fluorine: An Evaluation of Pharmaceuticals to Reveal Opportunities for Drug Design and Discovery: Miniperspective J Med Chem 2013, 57, 2832−2842 (3) (a) Gangjee, A.; Zhu, Y.; Queener, S F 6-Substituted 2,4-Diaminopyrido[3,2-d] Pyrimidine Analogues of Piritrexim as Inhibitors of Dihydrofolate Reductase from Rat Liver, Pneumocystis carinii, and Toxoplasma gondii as Antitumor Agents J Med Chem 1998, 41, 4533−4541 (b) Tanaka, A.; Terasawa, T.; Hagihara, H.; Ishibe, N.; Sawada, M.; Sakuma, Y.; Hashimoto, M.; Takasugi, H.; Tanaka, H Inhibitors of Acyl-CoA: Cholesterol O-Acyltransferase Discovery of a Novel Series of N-Alkyl-N-[(fluorophenoxy)benzyl]-Nʹ-arylureas with Weak Toxicological Effects on Adrenal Glands J Med Chem 1998, 41, 4408−4420 (c) Shearer, B G.; Wiethe, R W.; Ashe, A.; Billin, A N.; Way, J M.; Stanley, T B.; Wagner, C D.; Xu, R X.; Leesnitzer, L M.; Merrihew, R V.; Shearer, T W Identification and Characterization of 4-Chloro-N-(2-{[5trifluoromethyl)-2-pyridyl]sulfonyl}ethyl)benzamide (GSK3787), a Selective and Irreversible Peroxisome Proliferator-Activated Receptor δ (PPARδ) Antagonist J Med Chem 2010, 53, 1857–1861 (d) Han, S.; Narayanan, S.; Kim, S.H.; Calderon, I.; Zhu, X.; Kawasaki, A.; Yue, D.; 819 Lehmann, J.; Wong, A.; Buzard, D J.; Semple, G Discovery of Novel trans-1,4Dioxycyclohexane GPR119 Agonist Series Bioorg Med Chem Lett 2015, 25, 3034–3038 (e) Lee, H Y.; Chang, C Y.; Su, C J.; Huang, H L.; Mehndiratta, S.; Chao, Y H.; Hsu, C M.; Kumar, S.; Sung, T Y.; Huang, Y Z.; Li, Y H 2-(Phenylsulfonyl)Quinoline Nhydroxyacrylamides as Potent Anticancer Agents Inhibiting Histone Deacetylase Eur J Med Chem 2016, 122, 92‒101 (4) (a) Zhao, Y.; Huang, W.; Zhu, L.; Hu, J Difluoromethyl 2-Pyridyl Sulfone: A New gemDifluoroolefination Reagent For Aldehydes and Ketones Org Lett 2010, 12, 1444−1447 (b) Aïssa, C Mechanistic Manifold and New Developments of the Julia–Kocienski Reaction Eur J Org Chem 2009, 12, 1831–1844 (5) Guan, Y.; Wang, C.; Wang, D.; Dang, G.; Chen, C.; Zhou, H.; Zhao, X Methylsulfone As A Leaving Group for Synthesis of Hyperbranched Poly(arylene pyrimidine ether)s by Nucleophilic Aromatic Substitution RSC Adv 2015, 5, 12821‒12823 (6) (a) Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Hor, T A.; Liu, X Recent Advances in C–S Bond Formation via C–H Bond Functionalization and Decarboxylation Chem Soc Rev 2015, 44, 291−314 (b) Liu, N W.; Liang, S.; Manolikakes, G Recent Advances in the Synthesis of Sulfones Synthesis 2016, 48, 1939−1973 (c) Deeming, A S.; Russell, C J.; Willis, M C Palladium(II)‐Catalyzed Synthesis of Sulfinates from Boronic Acids and DABSO: A Redox‐Neutral, Phosphine‐Free Transformation Angew Chem Int Ed Engl 2016, 55, 747−750 (d) Sleet, C E.; Tambar, U K Copper−Catalyzed Aminothiolation of 1,3-Dienes via a Dihydrothiazine Intermediate Angew Chem Int Ed 2017, 56, 5536−5540 (e) Zheng, D.; Yu, J.; Wu, J Generation of Sulfonyl Radicals from Aryldiazonium Tetrafluoroborates and Sulfur Dioxide: The Synthesis of 3-Sulfonated Coumarins Angew Chem Int Ed Engl 2016, 55, 11925−11929 (f) Yang, X.-H.; Davison, R.; Dong, V M Catalytic Hydrothiolation: Regio- and Enantioselective Coupling of Thiols and Dienes J Am Chem Soc 2018, 140, 10443−10446 (g) Markovic, T.; Murray, P R.; Rocke, B N.; Shavnya, A.; Blakemore, D C.; Willis, M C Heterocyclic Allylsulfones as Latent Heteroaryl Nucleophiles in Palladium-Catalyzed CrossCoupling Reactions J Am Chem Soc 2018, 140, 15916–15923 (7) Nguyen, V T.; Nguyen, V D.; Haug, G C.; Dang, H T.; Jin, S.; Li, Z.; Flores-Hansen, C.; Benavides, B.; Arman, H D.; Larionov, O V Alkene Synthesis by Photocatalytic, 820 Chemoenzymatically-Compatible Dehydrodecarboxylation of Carboxylic Acids and Biomass ACS Catal 2019, 9, 9485–9498 (8) Nguyen, V T.; Nguyen, V D.; Haug, G C.; Vuong, N T H.; Dang, H T.; Arman, H D.; Larionov, O V Visible Light‐Enabled Direct Decarboxylative N‐Alkylation Angew Chem., Int Ed 2020, 59, 7921-7927 CHAPTER IV.1 (1) (a) Suzuki, A.; Brown, H C Organic Syntheses Via Boranes; Aldrich Chemical Company: Milwakee, 2003; Vol (b) Boronic Acids, 2nd ed.; Hall, D G., Ed.; Wiley-VCH, Weinheim, 2011 (c) Gutekunst, W R.; Baran, P S Chem Soc Rev 2011, 40, 1976 (2) (a) Fujita, N.; Shinkai, S.; James, T D Chem Asian J 2008, 3, 1076 (b) Mastalerz, M Angew Chem., Int Ed 2010, 49, 5042 (3) (a) Wade, C R.; Broomsgrove, A E J.; Aldridge, S.; Gabbai, F P Chem Rev 2010, 110, 3958 (b) Wu, J.; Kwon, B.; Liu, W.; Anslyn, E V.; Wang, P.; Kim, J S Chem Rev 2015, 115, 7893 (4) (a) Entwistle, C D.; Marder, T B Chem Mater 2004, 16, 4574 (b) Jakle, F Chem Rev 2010, 110, 3985 (c) Lorbach, A.; Hübner, A.; Wagner, M Dalton Trans 2012, 41, 6048 (5) (a) Huang, N.; Ding, X.; Kim, J.; Ihee, H.; Jiang, D Angew Chem., Int Ed 2015, 54, 8704 (b) Seifert, S.; Shoyama, K.; Schmidt, D.; Wuerthner, F Angew Chem., Int Ed 2016, 55, 6390 (c) Liu, J.; Lavigne, J J In Boronic Acids, 2nd ed.; Hall, D G., Ed.; Wiley-VCH, Weinheim, 2011 (6) (a) Shimizu, M.; Tomioka, Y.; Nagao, I.; Hiyama, T Synlett 2009, 3147 (b) Leowanawat, P.; Resmerita, A.-M.; Moldoveanu, C.; Liu, C.; Zhang, N.; Wilson, D A.; Hoang, L M.; Rosen, B M.; Percec, V J Org Chem 2010, 75, 7822 (c) Togashi, K.; Nomura, S.; Yokoyama, N.; Yasuda, T.; Adachi, C J Mater Chem 2012, 22, 20689 (7) (a) Ishiyama, T.; Murata, M.; Miyaura, N J Org Chem 1995, 60, 7508 (b) Murata, M.; Watanabe, S.; Masuda, Y J Org Chem 1997, 62, 6458 (c) Ishiyama, T.; Miyaura, N.; J Organomet Chem 2000, 611, 392 (d) Ishiyama, T.; Miyaura, N In Boronic Acids, 2nd ed.; Hall, D G., Ed.; Wiley-VCH, Weinheim, 2011 821 (8) (a) Seven, O.; Bolte, M.; Lerner, H.-W.; Wagner, M Organometallics 2014, 33, 1291 (b) Durka, K.; Lulinski, S.; Serwatowski, J.; Wozniak, K Organometallics 2014, 33, 1608 (9) (a) Cho, J.-Y.; Tse, M K.; Holmes, D.; Maleczka, R E.; Smith, M R., III Science 2002, 295, 305 (b) Mkhalid, I A I.; Barnard, J H.; Marder, T B.; Murphy, J M.; Hartwig, J F Chem Rev 2010, 110, 890 (c) Hartwig, J F Acc Chem Res 2012, 45, 864 (d) Stahl, T.; Muether, K.; Ohki, Y.; Tatsumi, K.; Oestreich, M J Am Chem Soc 2013, 135, 10978 (10) (a) Eliseeva, M N.; Scott, L T J Am Chem Soc 2012, 134, 15169 (b) Ros, A.; LopezRodriguez, R.; Estepa, B.; Alvarez, E.; Fernandez, R.; Lassaletta, J M J Am Chem Soc 2012, 134, 4573 (c) Ji, L.; Fucke, K.; Bose, S K.; Marder, T B J Org Chem 2015, 80, 661 (e) Wang, G.; Xu, L.; Li, P J Am Chem Soc 2015, 137, 8058 (11) Bose, S K.; Deissenberger, A.; Eichhorn, A.; Steel, P G.; Lin, Z.; Marder, T B Angew Chem., Int Ed 2015, 54, 11843 (12) (a) Yoshida, H.; Okada, K.; Kawashima, S.; Tanino, K.; Ohshita, J Chem Commun 2010, 46, 1763 (b) Yoshida, H.; Kawashima, S.; Takemoto, Y.; Okada, K.; Ohshita, J.; Takaki, K Angew Chem., Int Ed 2012, 51, 235 (c) Pareek, M.; Fallon, T.; Oestreich, M Org Lett 2015, 17, 2082 (13) (a) Karapire, C.; Siddik, I In CRC Handbook of Organic Photochemistry and Photobiology, 2nd Ed.; Horspool, W M.; Lenci, F., Eds.; CRC Press: Boca Raton, 2004 (b) Schutt, L.; Bunce, N J In CRC Handbook of Organic Photochemistry and Photobiology, 2nd Ed.; Horspool, W M.; Lenci, F., Eds.; CRC Press: Boca Raton, 2004 (14) (a) Gasper, S M.; Devadoss, C.; Schuster, G B J Am Chem Soc 1995, 117, 5206 (b) Freccero, M.; Fagnoni, M.; Albini, A J Am Chem Soc 2003, 125, 13182 (c) Fagnoni, M.; Albini, A Acc Chem Res 2005, 38, 713 (d) Dichiarante, V.; Fagnoni, M Synlett 2008, 787 (e) Lazzaroni, S.; Dondi, D.; Fagnoni, M.; Albini, A J Org Chem 2010, 75, 315 (f) Raviola, C.; Ravelli, D.; Protti, S.; Albini, A.; Fagnoni, M Synlett 2015, 26, 471 (15) (a) Bunnett, J F Acc Chem Res 1978, 11, 413 (b) Uyeda, C.; Tan, Y C.; Fu, G C.; Peters, J C J Am Chem Soc 2013, 135, 9548 (c) Tan, Y C.; Munoz-Molina, J M.; Fu, G C.; Peters, J C Chem Sci 2014, 5, 2831 (d) Li, L.; Liu, W.; Zeng, H.; Mu, X.; Cosa, G.; Mi, Z.; Li, C.-J J Am Chem Soc 2015, 137, 8328 (e) Chen, K.; He, P.; Zhang, S.; Li, P Chem Commun 2016, DOI: 10.1039/c6cc01135g 822 (16) (a) Mella, M.; Coppo, P.; Guizzardi, B.; Fagnoni, M.; Freccero, M.; Albini, A J Org Chem 2001, 66, 6344 (b) Guizzardi, B.; Mella, M.; Fagnoni, M.; Albini, A Chem Eur J 2003, 9, 1549 (c) Zheng, X L.; Yang, L.; Du, W Y.; Ding, A S.; Guo, H Chem - Asian J 2014, 9, 439 (17) (a) Dichiarante, V.; Fagnoni, M.; Albini, A Angew Chem Int Ed 2007, 46, 6495 (b) Buden, M E.; Guastavino, J F.; Rossi, R A Org Lett 2013, 15, 1174 (c) Ruch, J.; Aubin, A.; Erbland, G.; Fortunato, A.; Goddard, J.-P Chem Commun 2016, 52, 2326 (18) (a) Grimshaw, J.; de Silva, A P Chem Soc Rev 1981, 10, 181 (b) Park, Y T.; Song, N W.; Hwang, C G.; Kim, K W.; Kim, D J Am Chem Soc 1997, 119, 10677 (c) Lu, S C.; Zhang, X X.; Shi, Z J.; Ren, Y W.; Li, B.; Zhang, W Adv Synth Cat 2009, 351, 2839 (19) Mfuh, A M.; Doyle, J D.; Chhetri, B.; Arman, H D.; Larionov, O V J Am Chem Soc 2016, 138, 2985 (20) For other examples of metal-free borylation reactions of haloarenes and arenes, see: (a) Mo, F.; Jiang, Y.; Qiu, D.; Zhang, Y Wang, J Angew Chem., Int Ed 2010, 49, 1846 (b) De Vries, T S.; Prokofjevs, A.; Vedejs, E Chem Rev 2012, 112, 4246 (c) Ingleson, M J Synlett 2012, 23, 1411 (d) Yamamoto, E.; Izumi, K.; Horita, Y.; Ito, H J Am Chem Soc 2012, 134, 19997 (e) Nagashima, Y.; Takita, R.; Yoshida, K.; Hirano, K.; Uchiyama, M J Am Chem Soc 2013, 135, 18730 (f) Qiu, D.; Jin, L.; Zheng, Z.; Meng, H.; Mo, F.; Wang, X.; Zhang, Y.; Wang, J J Org Chem 2013, 78, 1923 (g) Bose, S K.; Marder, T B Org Lett 2014, 16, 4562 (h) Qiu, D.; Zhang, Y.; Wang, J Org Chem Front 2014, 1, 422 (i) Erb, W.; Hellal, A.; Albini, M.; Rouden, J.; Blanchet, J Chem Eur J 2014, 20, 6608 (j) Yamamoto, E.; Ukigai, S.; Ito, H Chem Sci 2015, 6, 2943 (k) Uematsu, R.; Yamamoto, E.; Maeda, S.; Ito, H.; Taketsugu, T J Am Chem Soc 2015, 137, 4090 (l) Ingleson, M J Top Organomet Chem 2015, 49, 39 (m) Warner, A J.; Lawson, J R.; Fasano, V.; Ingleson, M J Angew Chem., Int Ed 2015, 54, 11245 (n) Légaré, M.-A.; Courtemanche, M.-A.; Rochette, E.; Fontaine, G.-G Science 2015, 349, 513 (o) Bose, S K.; Marder, T B Science 2015, 349, 473 (21) (a) Davies, A G.; Roberts, B P.; Scaiano, J C J Chem Soc B 1971, 2171 (b) Nozaki, K.; Oshima, K.; Utimoto, K Bull Chem Soc Jpn 1991, 64, 403 (c) Brown, H C.; Midland, M M Angew Chem., Int Ed Engl 1972, 11, 692 (d) Ollivier, C.; Renaud, P Chem Rev 2001, 101, 3415 823 (22) (a) Chen, K.; Zhang, S.; He, P.; Li, P Chem Sci 2016, 7, 3676 (b) Chen, K.; Cheung, M S.; Lin, Z.; Li, P Org Chem Front 2016, 3, 875 (23) Boryl group can provide up to 14.5 kcal/mol of radical stabilization: (a) Grotewold, J.; Lissi, E A.; Scaiano, J C J Organomet Chem 1969, 19, 431 (b) Pelter, A.; Pardasani, R T.; Pardasani, P Tetrahedron 2000, 56, 7339 (24) (a) Nguyen, P.; Dai, C.; Taylor, N J.; Power, W P.; Marder, T B.; Pickett, N L.; Norman, N C Inorg Chem 1995, 34, 4290 (b) Kleeberg, C.; Crawford, A G.; Batsanov, A S.; Hodgkinson, P.; Apperley, D C.; Cheung, M S.; Lin, Z.; Marder, T B J Org Chem 2012, 77, 785 (c) Pietsch, S.; Neeve, E C.; Apperley, D C.; Bertermann, R.; Mo, F.; Qiu, D.; Cheung, M S.; Dang, L.; Wang, J.; Radius, U.; Lin, Z.; Kleeberg, C.; Marder, T B Chem Eur J 2015, 21, 7082 (25) Harvey, D R.; Norman, R O C J Chem Soc 1962, 3822 (26) Hansch, C.; Leo, A.; Taft, R W Chem Rev 1991, 91, 165 (27) (a) Dolbier, W R., Jr Chim Oggi 2003, 21, 66 (b) Savoie, P R.; Welch, J T Chem Rev 2015, 115, 1130 (28) Yoshida, H.; Okada, K.; Kawashima, S.; Tanino, K.; Ohshita, J Chem Commun 2010, 46, 1763–1765 (29) Han, F S.; Higuchi, M.; Kurth, D G Org Lett 2007, 9, 559–562 CHAPTER V.2 (1) (a) Metzner, P.; Thuillier, A Sulfur Reagents in Organic Synthesis Elsevier, 2013 (b) Cremlyn, R J An Introduction to Organosulfur Chemistry John Wiley and Sons: Chichester, 1996 (c) Simpkins, N S Sulfones in Organic Synthesis; Pergamon Press: Oxford, 1993 (2) (a) Smith, B R.; Eastman, C M.; Njardarson, J T Beyond C, H, O, and N! Analysis of the Elemental Composition of US FDA Approved Drug Architectures: Miniperspective J Med Chem 2014, 57, 9764−9773 (b) Scott, K A.; Njardarson, J T Analysis of US FDA Drugs Containing Sulfur Atoms Top Curr Chem 2018, 1, 376 (c) Ilardi, E A.; Vitaku, E.; Njardarson, J T Data-mining for Sulfur and Fluorine: An Evaluation of Pharmaceuticals to Reveal 824 Opportunities for Drug Design and Discovery: Miniperspective J Med Chem 2013, 57, 2832−2842 (3) (a) Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Hor, T A.; Liu, X Recent Advances in C–S Bond Formation via C–H Bond Functionalization and Decarboxylation Chem Soc Rev 2015, 44, 291−314 (b) Liu, N W.; Liang, S.; Manolikakes, G Recent Advances in the Synthesis of Sulfones Synthesis 2016, 48, 1939−1973 (c) Deeming, A S.; Russell, C J.; Willis, M C Palladium(II)‐Catalyzed Synthesis of Sulfinates from Boronic Acids and DABSO: A Redox‐Neutral, Phosphine‐Free Transformation Angew Chem Int Ed Engl 2016, 55, 747−750 (d) Sleet, C E.; Tambar, U K Copper−Catalyzed Aminothiolation of 1,3-Dienes via a Dihydrothiazine Intermediate Angew Chem Int Ed 2017, 56, 5536−5540 (e) Zheng, D.; Yu, J.; Wu, J Generation of Sulfonyl Radicals from Aryldiazonium Tetrafluoroborates and Sulfur Dioxide: The Synthesis of 3-Sulfonated Coumarins Angew Chem Int Ed Engl 2016, 55, 11925−11929 (f) Yang, X.-H.; Davison, R.; Dong, V M Catalytic Hydrothiolation: Regio- and Enantioselective Coupling of Thiols and Dienes J Am Chem Soc 2018, 140, 10443−10446 (g) Markovic, T.; Murray, P R.; Rocke, B N.; Shavnya, A.; Blakemore, D C.; Willis, M C Heterocyclic Allylsulfones as Latent Heteroaryl Nucleophiles in Palladium-Catalyzed CrossCoupling Reactions J Am Chem Soc 2018, 140, 15916–15923 (4) (a) Gangjee, A.; Zhu, Y.; Queener, S F 6-Substituted 2,4-Diaminopyrido[3,2-d] Pyrimidine Analogues of Piritrexim as Inhibitors of Dihydrofolate Reductase from Rat Liver, Pneumocystis carinii, and Toxoplasma gondii as Antitumor Agents J Med Chem 1998, 41, 4533−4541 (b) Tanaka, A.; Terasawa, T.; Hagihara, H.; Ishibe, N.; Sawada, M.; Sakuma, Y.; Hashimoto, M.; Takasugi, H.; Tanaka, H Inhibitors of Acyl-CoA: Cholesterol O-Acyltransferase Discovery of a Novel Series of N-Alkyl-N-[(fluorophenoxy)benzyl]-Nʹ-arylureas with Weak Toxicological Effects on Adrenal Glands J Med Chem 1998, 41, 4408−4420 (c) Shearer, B G.; Wiethe, R W.; Ashe, A.; Billin, A N.; Way, J M.; Stanley, T B.; Wagner, C D.; Xu, R X.; Leesnitzer, L M.; Merrihew, R V.; Shearer, T W Identification and Characterization of 4-Chloro-N-(2-{[5trifluoromethyl)-2-pyridyl]sulfonyl}ethyl)benzamide (GSK3787), a Selective and Irreversible Peroxisome Proliferator-Activated Receptor δ (PPARδ) Antagonist J Med Chem 2010, 53, 1857–1861 (d) Han, S.; Narayanan, S.; Kim, S.H.; Calderon, I.; Zhu, X.; Kawasaki, A.; Yue, D.; Lehmann, J.; Wong, A.; Buzard, D J.; Semple, G Discovery of Novel trans-1,4- 825 Dioxycyclohexane GPR119 Agonist Series Bioorg Med Chem Lett 2015, 25, 3034–3038 (e) Lee, H Y.; Chang, C Y.; Su, C J.; Huang, H L.; Mehndiratta, S.; Chao, Y H.; Hsu, C M.; Kumar, S.; Sung, T Y.; Huang, Y Z.; Li, Y H 2-(Phenylsulfonyl)Quinoline Nhydroxyacrylamides as Potent Anticancer Agents Inhibiting Histone Deacetylase Eur J Med Chem 2016, 122, 92‒101 (5) (a) Zhao, Y.; Huang, W.; Zhu, L.; Hu, J Difluoromethyl 2-Pyridyl Sulfone: A New gemDifluoroolefination Reagent For Aldehydes and Ketones Org Lett 2010, 12, 1444−1447 (b) Aïssa, C Mechanistic Manifold and New Developments of the Julia–Kocienski Reaction Eur J Org Chem 2009, 12, 1831–1844 (6) Guan, Y.; Wang, C.; Wang, D.; Dang, G.; Chen, C.; Zhou, H.; Zhao, X Methylsulfone As A Leaving Group for Synthesis of Hyperbranched Poly(arylene pyrimidine ether)s by Nucleophilic Aromatic Substitution RSC Adv 2015, 5, 12821‒12823 (7) Liu, N W.; Liang, S.; Margraf, N.; Shaaban, S.; Luciano, V.; Drost, M.; Manolikakes, G Nickel‐Catalyzed Synthesis of Diaryl Sulfones from Aryl Halides and Sodium Sulfinates Eur J Org Chem 2018, 10, 1208‒1210 (8) (a) Markovic, T.; Rocke, B N.; Blakemore, D C.; Mascitti, V.; Willis, M C Catalyst Selection Facilitates the Use of Heterocyclic Sulfinates as General Nucleophilic Coupling Partners in Palladium-Catalyzed Coupling Reactions Org Lett 2017, 19, 6033–6035 (b) Srinivas, B T V.; Rawat, V S.; Konda, K.; Sreedhar, B Magnetically Separable Copper Ferrite Nanoparticles‐Catalyzed Synthesis of Diaryl, Alkyl/Aryl Sulfones from Arylsulfinic Acid Salts and Organohalides/Boronic Acids Adv Synth Catal 2014, 356, 805–817 (c) Markovic, T.; Rocke, B N.; Blakemore, D C.; Mascitti, V.; Willis, M C Pyridine Sulfinates as General Nucleophilic Coupling Partners in Palladium-catalyzed Cross-coupling Reactions with Aryl Halides Chem Sci 2017, 8, 4437–4442 (d) Yuan, Y Q.; Guo, S R A Mild and Efficient Synthesis of Aryl Sulfones from Aryl Chlorides and Sulfinic Acid Salts Using Microwave Heating Synlett 2011, 18, 2750‒2756 (e) Shaaban, S.; Liang, S.; Liua, N.-W.; Manolikakes, G Synthesis of Sulfones via Selective C–H-functionalization Org Biomol Chem 2017, 15, 1947−1955 (f) Liu, J.; Zheng, L Recent Advances in Transition‐Metal‐Mediated Chelation‐Assisted Sulfonylation of Unactivated C−H Bonds Adv Synth Catal 2019, DOI: 10.1002/adsc.201801307 826 (9) (a) Maloney, K M.; Kuethe, J T.; Linn, K A Practical, One-Pot Synthesis of Sulfonylated Pyridines Org Lett 2011, 13, 102–105 (b) Reeves, J T.; Tan, Z.; Reeves, D C.; Song, J J.; Han, Z S.; Xu, Y.; Tang, W.; Yang, B S.; Razavi, H.; Harcken, C.; Kuzmich, D Development of an Enantioselective Hydrogenation Route to (S)-1-(2-(Methylsulfonyl)pyridin-4-yl)propan-1amine Org Process Res Dev 2014, 18, 904–911 (10) (a) Sun, C L.; Shi, Z J Transition-metal-free Coupling Reactions Chem Rev 2014, 114, 9219‒9280 (b) Roscales, S.; Csákÿ, A G Transition-Metal-Free C–C Bond Forming Reactions of Aryl, Alkenyl and Alkynylboronic Acids and Their Derivatives Chem Soc Rev 2014, 43, 8215‒8225 (c) Toutov, A A.; Liu, W B.; Betz, K N.; Fedorov, A.; Stoltz, B M.; Grubbs, R H Silylation of C–H Bonds in Aromatic Heterocycles by an Earth-Abundant Metal Catalyst Nature 2015, 518, 80‒84 (d) Dichiarante, V.; Fagnoni, M.; Albini, A Metal‐Free Synthesis of Sterically Crowded Biphenyls by Direct Ar‒H Substitution in Alkyl Benzenes Angew Chem Int Ed Engl 2007, 46, 6495‒6498 (e) Mfuh, A M.; Doyle, J D.; Chhetri, B.; Arman, H D.; Larionov, O V Scalable, Metal-and Additive-Free, Photoinduced Borylation of Haloarenes and Quaternary Arylammonium Salts J Am Chem Soc 2016, 138, 2985–2988 (f) Mfuh, A M.; Nguyen, V T.; Chhetri, B.; Burch, J E.; Doyle, J D.; Nesterov, V N.; Arman, H D.; Larionov, O V Additiveand Metal-Free, Predictably 1,2-and 1,3-Regioselective, Photoinduced Dual C–H/C–X Borylation of Haloarenes J Am Chem Soc 2016, 138, 8408–8411 (g) Xie, P.; Wang, J.; Liu, Y.; Fan, J.; Wo, X.; Fu, W.; Sun, Z.; Loh, T P Water-Promoted C‒S Bond Formation Reactions Nat Commun 2018, 9, 1321 (11) (a) Moad, G.; Solomon, D H The Chemistry of Radical Polymerization, Elsevier, (2005) (b) Mandal, S.; Bera, T.; Dubey, G.; Saha, J.; Laha, J K Uses of K2S2O8 in Metal-Catalyzed and Metal-Free Oxidative Transformations ACS Catal 2018, 8, 5085–5144 (12) Nguyen, V T.; Dang, H T.; Pham, H H.; Nguyen, V D.; Flores-Hansen, C.; Arman, H D.; Larionov, O V Highly Regio-and Stereoselective Catalytic Synthesis of Conjugated Dienes and Polyenes J Am Chem Soc 2018, 140, 8434–8438 (13) Sheldon, R A The E Factor 25 Years on: the Rise of Green Chemistry and Sustainability Green Chem 2017, 19, 18‒43 (14) Kotha, S.; Khedkar, P Rongalite: a Useful Green Reagent in Organic Synthesis Chem Rev 2012, 112, 1650–1680 827 (15) (a) Zhao, P.; Yin, H.; Gao, H.; Xi, C Cu-Catalyzed Synthesis of Diaryl Thioethers and SCycles By Reaction of Aryl Iodides with Carbon Disulfide in the Presence of DBU J Org Chem 2013, 78, 5001‒5006 (b) Hajipour, A R.; Pourkaveh, R.; Karimi, H Synthesis of Diaryl Thioethers from Aryl Halides and Potassium Thiocyanate Appl Organomet Chem 2014, 28, 879-883 (c) Ruppenthal, S.; Brückner, R Prochiral Diheteroaryl Sulfoxides and Their Reactions with (S)-Li2−BINOLate-Activated Diisobutylmagnesium Eur J Org Chem 2018, 1, 89−98 (16) Baxter, R D.; Liang, Y.; Hong, X.; Brown, T A.; Zare, R N.; Houk, K N.; Baran, P S.; Blackmond, D G Mechanistic Insights into Two-Phase Radical C–H Arylations ACS Cent Sci 2015, 1, 456−462 (17) For an example of an oxidation of carboxylates by the sulfate anion radical, see: Tanner, D D.; Osman, S A A Oxidative Decarboxylation On the Mechanism of the Potassium Persulfate Promoted Decarboxylation Reaction J Org Chem 1987, 52, 4689−4693 (18) Guthrie, J P Hydrolysis of Esters of Oxy Acids: pKa Values for Strong Acids Can J Chem 1978, 56, 2342–2354 (19) De Filippo, D.; Momicchioli, F A Study of Benzenesulfinic and Seleninic Acids: Determination and Theoretical Interpretation of pK Tetrahedron 1969, 25, 5733–5744 (20) (a) Brown, A C.; Carpino, L A Magnesium in Methanol: Substitute for Sodium Amalgam in Desulfonylation Reactions J Org Chem 1985, 50, 1749−1750 (b) Lee, G H.; Lee, H K.; Choi, E B.; Kim, B T.; Pak, C S An Efficient Julia Olefination Mediated by Magnesium in Ethanol Tetrahedron Lett 1995, 36, 5607−5608 (c) Lee, G H.; Choi, E B.; Lee, E.; Pak, C S An Efficient Desulfonylation Method Mediated by Magnesium in Ethanol Tetrahedron Lett 1993, 34, 4541−4542 (21) (a) Khurana, J M.; Sharma, V.; Chacko, S A Deoxygenation of Sulfoxides, Selenoxides, Telluroxides, Sulfones, Selenones and Tellurones with Mg–MeOH Tetrahedron 2007, 63, 966– 969 (b) Handa, Y.; Inanaga, J.; Yamaguchi, M Rapid and Mild Deoxygenation of Organoheteroatom Oxides with the Efficient Electron Transfer System SmI2–Tetrahydrofuran– Hexamethylphosphoric Triamide J Chem Soc.; Chem Commun 1989, 0, 298–299 (22) Alfassi, Z B.; S-Centered Radicals John Wiley & Sons, 1999 828 (23) Schlesener, C J.; Amatore, C.; Kochi, J K Kinetics and Mechanism of Aromatic Oxidative Substitutions via Electron Transfer Application of Marcus Theory to Organic Processes in the Endergonic Region J Am Chem Soc 1984, 106, 3567−3577 (24) (a) Djeghidjegh, N.; Simonet, J Bull Soc Chim Fr 1989, 39 (b) Hammerich, O.; Speiser, B Organic Electrochemistry: Revised and Expanded CRC Press, 2015 (25) (a) Madesclaire, M Reduction of Sulfoxides to Thioethers Tetrahedron 1988, 44, 6537‒6580 (b) Shiri, L.; Kazemi, M Deoxygenation of Sulfoxides Res Chem Intermed 2017, 43, 6007‒6041 (26) Tripathi, R C.; Saxena, M.; Chandra, S.; Saxena, A K Synthesis of 4‐Arylsulfonyl/piperazinyl‐7‐chloroquinolines and Related Compounds as Potential Antimalarial Agents ChemInform 1995, 26, 164–166 (27) Uchida, M.; Higashino, T.; Shimada, N.; Hayashi, E Mass Spectra of p(Tolylsulfonyl)diazines J Mass Spectrom Soc Jpn 1978, 26, 97−104 (28) Arnold, W R.; Coghlan, M J.; Jourdan, G P.; Krumkalns, E V.; Suhr, R G DowElanco, U.S Pat 1992, 145, 843 (29) Du, B.; Qian, P.; Wang, Y.; Mei, H.; Han, J.; Pan, Y Cu-catalyzed deoxygenative C2sulfonylation reaction of quinoline N-oxides with sodium sulfinate Org Lett 2016, 18, 4144−4147 (30) Maloney, K M.; Kuethe, J T.; Linn, K A Practical, One-Pot Synthesis of Sulfonylated Pyridines Org Lett 2010, 13, 102−105 (31) Tian, H.; Cao, A.; Qiao, L.; Yu, A.; Chang, J.; Wu, Y First palladium-catalyzed denitrated coupling of nitroarenes with sulfinates Tetrahedron 2014, 70, 9107−9112 (32) Su, Y.; Zhou, X.; He, C.; Zhang, W.; Ling, X.; Xiao, X In Situ Generated Hypoiodite Activator for the C2 Sulfonylation of Heteroaromatic N-oxides J Org Chem 2016, 81, 4981−4987 (33) Surrey, A R Basic esters and amides of 4-quinolylmercaptoacetic acid derivatives J Am Chem Soc 1948, 70, 2190−2193 (34) Maślankiewicz, M J.; Jaworska, M.; Lodowski, P Competition between S‐oxidation and nitration in reactions of some β‐and γ‐quinolinyl sulfides with nitrating mixture J Heterocycl Chem 2007, 44, 1091−1097 829 CHAPTER VI (1) (a) Bold, G.; Altmann, K.-H.; Frei, J.; Lang, M.; Manley, P W.; Traxler, P.; Wietfeld, B.; Brueggen, J.; Buchdunger, E.; Cozens, R.; Ferrari, S.; Furet, P.; Hofmann, F.; Martiny-Baron, G.; Mestan, J.; Roesel, J.; Sills, M.; Stover, D.; Acemoglu, F.; Boss, E.; Emmenegger, R.; Laesser, L.; Masso, E.; Roth, R.; Schlachter, C.; Vetterli, W.; Wyss, D.; Wood, J M J Med Chem 2000, 43, 2310 (b) Whitnall, M.; Howard, J.; Ponka, P.; Richardson, D R Proc Natl Acad Sci U S A 2006, 103, 14901 (b) Richardson, D R.; Sharpe, P C.; Lovejoy, D B.; Senaratne, D.; Kalinowski, D S.; Islam, M.; Bernhardt, P V J Med Chem 2006, 49, 6510 (2) (a) Najera, C.; Gil-Molto, J.; Karlstroem, S.; Falvello, L R Org Lett 2003, 5, 1451 (b) Burns, C T.; Jordan, R F Organometallics 2007, 26, 6737 (c) Karunadasa, H I.; Montalvo, E.; Sun, Y.; Majda, M.; Long, J R.; Chang, C J Science 2012, 335, 698 (3) (a) Boudalis, A K.; Donnadieu, B.; Nastopoulos, V.; Clemente-Juan, J M.; Mari, A.; Sanakis, Y.; Tuchagues, J.-P.; Perlepes, S P Angew Chem., Int Ed 2004, 43, 2266 (b) Lutz, B R.; Dentinger, C E.; Nguyen, L N.; Sun, L.; Zhang, J.; Allen, A N.; Chan, S.; Knudsen, B S ACS Nano 2008, 2, 2306 (c) Kubota, Y.; Tsuzuki, T.; Funabiki, K.; Ebihara, M.; Matsui, M Org Lett 2010, 12, 4010 (d) Lin, Y.-D.; Ke, B.-Y.; Chang, Y J.; Chou, P.-T.; Liau, K.-L.; Liu, C.-Y.; Chow, T J J Mater Chem A 2015, 3, 16831 (4) Abbotto, A.; Bradamante, S.; Pagani, G A.; Rzepa, H.; Stoppa, F Heterocycles 1995, 40, 757 (5) Clary, J W.; Rettenmaier, T J.; Snelling, R.; Bryks, W.; Banwell, J.; Wipke, W T.; Singaram, B J Org Chem 2011, 76, 9602 (6) (a) Dymova, T N.; Eliseeva, N G Russ J Inorg Chem 1963, 8, 820 (b) Ashby, E C.; Goel, A B J Am Chem Soc 1977, 99, 310 (7) Zhuo, F.-F.; Xie, W.-W.; Yang, Y.-X.; Zhang, L.; Wang, P.; Yuan, R.; Da, C.-S J Org Chem 2013, 78, 3243 (8) For examples of distal functionalization of azines, see: (a) Chen, Q.; Mollat du Jourdin, X.; Knochel, P J Am Chem Soc 2013, 135, 4958 (b) Stephens, D E.; Lakey-Beitia, J.; Chavez, G.; Ilie, C.; Arman, H D.; Larionov, O V Chem Commun., 2015, 51, 9507 (c) Stephens, D E.; 830 Lakey-Beitia, J.; Atesin, A C.; Ateşin, T A.; Chavez, G.; Arman, H D.; Larionov, O V ACS Catal., 2015, 5, 167 (d) Stephens, D E.; Larionov, O V Tetrahedron, 2015, 71, 8683 (9) (a) Andersson, H.; Sainte-Luce B., Thomas; D., Sajal; O., R.; Almqvist, F Chem Commun 2010, 46, 3384 (b) Larionov, O V.; Stephens, D.; Mfuh, A.; Chavez, G Org Lett 2014, 16, 864 (c) Stephens, D E.; Chavez, G.; Valdes, M.; Dovalina, M.; Arman, H D.; Larionov, O V Org Biomol Chem 2014, 12, 6190 See also: (d) Armitage, M A Mitchell, M B J Chem Soc., Perkin Trans 1990, 10, 2848 (e) Fakhfakh, M A.; Franck, X.; Fournet, A.; Hocquemiller, R.; Figadere, B Tetrahedron Lett 2001, 42, 3847 (f) Anzai, K.; Fukumoto, H.; Yamamoto, T Chem Lett 2004, 33, 252 (g) Zhang, F.; Zhang, S.; Duan, X.-F Org Lett 2012, 14, 5618 (h) Zhang, S.; Liao, L.-Y.; Zhang, F.; Duan, X.-F J Org Chem 2013, 78, 2720 (10) (a) de Koning, A J.; Boersma, J.; van der Kerk, G J M J Organomet Chem 1980, 186, 159 (b) de Koning, A J.; Budzelaar, P H M.; van Aarssen, B G K.; Boersma, J.; van der Kerk, G J M J Organomet Chem 1981, 217, C1 (c) Hill, M S.; MacDougall, D J.; Mahon, M F Dalton Trans 2010, 39, 11129 (d) Arrowsmith, M.; Hill, M S.; Hadlington, T.; Kociok-Köhn, G Organometallics 2011, 30, 5556 (e) Hill, M S.; Kociok-Köhn, G.; MacDougall, D J.; Mahon, M F Weetman, C Dalton Trans 2011, 40, 12500 (f) McSkimming, A.; Colbran, S B Chem Soc Rev 2013, 42, 5439 (11) Michalczyk, M J Organometallics 1992, 11, 2307 (12) (a) de Koning, A J.; Budzelaar, P H M.; Boersma, J.; van der Kerk, G J M J Organomet Chem 1980, 199, 153 (b) de Koning, A J.; Boersma, J.; van der Kerk, G J M J Organomet Chem 1980, 186, 173 (13) (a) Puscasu, I.; Mock, C.; Rauterkus, M.; Rondigs, A.; Tallen, G.; Gangopadhyay, S.; Wolff, J E A.; Krebs, B Z Anorg Allg Chem 2001, 627, 1292 (b) Zhang, F.; Prokopchuk, E M.; Broczkowski, M E.; Jennings, M C.; Puddephatt, R J Organometallics 2006, 25, 1583 (c) Deraeve, C.; Boldron, C.; Maraval, A.; Mazarguil, H.; Gornitzka, H.; Vendier, L.; Pitie, M.; Meunier, B Chem Eur J 2008, 14, 682 (14) Szpunar, M.; Loska, R Eur J Org Chem 2015, 2133–2137 (15) Kobayashi, T.; Arisawa, M.; Shuto, S Org Biomol Chem 2011, 9, 1219–1224 (16) Lewis, J C.; Bergman, R G.; Ellman, J A J Am Chem Soc 2007, 129, 5332–5333 (17) Paul, S.; Guin, J Chem Eur J 2015, 21, 17618–17622 831 (18) Grainger, R.; Nikmal, A.; Cornella, J.; Larrosa, I Org Biomol Chem 2012, 10, 3172– 3174 832 VITA Vu Nguyen was born in Quang Tri Province, Central Vietnam He graduated from Ho Chi Minh University of Technology with a B.E in Chemical Engineering before being a researcher in the Department of Chemical Engineering there He joined the laboratory of Dr Oleg V Larionov as a post-baccalaureate researcher at the University of Texas at San Antonio in summer 2015 after he obtained his M.E in Chemical Engineering from Ho Chi Minh University of Technology In the fall of 2016, he became a doctoral student working in the lab laboratory of Dr Oleg Larionov developing new and efficient methodologies for functionalization In the spring of 2021, he will join the Department of Chemical Engineering, Ho Chi Minh University of Technology as a lecturer ... Document or Doctoral Dissertation attest to the accuracy of this statement.” December 2020 v NEW AND EFFICIENT APPROACHES TO FUNCTIONALIZATION VIA METALCATALYZED AND PHOTO- INDUCED TRANSFORMATIONS. .. the fields of photocatalysis, transition metal catalysis, radical chemistry, and redox chemistry have found applications in functionalization Herein, new and efficient approaches to functionalization. .. abundant carboxylic acids, and readily available alkenes via metal- catalyzed or photoinduced transformations will be discussed Specifically, the focus will be on the following transformations: conversion