1. Trang chủ
  2. » Luận Văn - Báo Cáo

Catalytic hydrodeoxygenation of guaiacol and its application in bio oil upgrading

198 8 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 198
Dung lượng 7,97 MB

Nội dung

STATUS OF THESIS Title of thesis Catalytic hydrodeoxygenation of guaiacol and its application in bio-oil upgrading TRAN THI TO NGA I _ hereby allow my thesis to be placed at the Information Resource Center (IRC) of Universiti Teknologi PETRONAS (UTP) with the following conditions: The thesis becomes the property of UTP The IRC of UTP may make copies of the thesis for academic purposes only This thesis is classified as Confidential  Non-confidential If this thesis is confidential, please state the reason: _ _ _ The contents of the thesis will remain confidential for _ years Remarks on disclosure: _ _ _ Endorsed by Signature of Author Signature of Supervisor 22 Chau Hiep Permanent address: town, Nam Phuoc ward, Duy Xuyen Name of Supervisor Prof Dr Yoshimitsu Uemura district, Quang Nam province, Vietnam Date : _ Date : UNIVERSITI TEKNOLOGI PETRONAS CATALYTIC HYDRODEOXYGENATION OF GUAIACOL AND ITS APPLICATION IN BIO-OIL UPGRADING by TRAN THI TO NGA The undersigned certify that they have read, and recommend to the Postgraduate Studies Programme for acceptance this thesis for the fulfillment of the requirements for the degree stated Signature: Main Supervisor: Prof Dr Yoshimitsu Uemura Signature: Co-Supervisor: Assoc Prof Dr Anita Bt Ramli Signature: Head of Department: Assoc Prof Dr Suriati Bt Sufian Date: CATALYTIC HYDRODEOXYGENATION OF GUAIACOL AND ITS APPLICATION IN BIO-OIL UPGRADING by TRAN THI TO NGA A Thesis Submitted to the Postgraduate Studies Programme as a Requirement for the Degree of DOCTOR OF PHILOSOPHY CHEMICAL ENGINEERING UNIVERSITI TEKNOLOGI PETRONAS BANDAR SERI ISKANDAR, PERAK OCTOBER 2018 DECLARATION OF THESIS Title of thesis Catalytic hydrodeoxygenation of guaiacol and its application in bio-oil upgrading TRAN THI TO NGA I _ hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged I also declare that it has not been previously or concurrently submitted for any other degree at UTP or other institutions Witnessed by Signature of Author Signature of Supervisor 22 Chau Hiep Permanent address: Name of Supervisor town, Nam Phuoc ward, Duy Xuyen Prof Dr Yoshimitsu Uemura district, Quang Nam province, Vietnam Date : _ Date : DEDICATION To my family for their unconditional love, encouragement and support To my supervisor who always be the inspiration for this thesis v ACKNOWLEDGEMENTS I would like to express my deepest gratitude and appreciation to my supervisor, Prof Yoshimitsu Uemura, for his excellent and constant guidance, patience, generous support, and encouragement I am also very thankful to my co-supervisors, AP Dr Anita Binti Ramli and Dr Sujan Chowdhury, for tremendous support and valuable discussion Moreover, I would like to offer my most profound gratitude to Centre for Biofuel and Biochemical Research, and Chemical Engineering department, Universiti Teknologi PETRONAS, Malaysia for providing a congenial work environment and state-of-the-art research facilities I gratefully acknowledge Prof Masaharu Komiyama and Prof Taufiq Yap Yun Hin for their valuable supports, comments and suggestions I would like to acknowledge the financial support from Mitsubishi Corporation Educational Trust Fund and Universiti Teknologi PETRONAS, Malaysia Last but not least, I would like to thank to my parents for raising, loving and supporting me all my life; to my brother for his guideline in my childhood; to my husband, Trinh Hoai Thanh, for being on my side, supporting, inspiration and encouraging me to achieve my goals; and to my daughter for what she means to my life vi ABSTRACT Fast pyrolysis of lignocellulosic biomass is an attractive thermochemical conversion process to produce bio-oil as an alternative liquid fuel source Upgrading of bio-oil via hydrodeoxygenation (HDO) is an important route to accomplish this renewable energy production process However, there are still some challenges such as high hydrogen consumption, carbon loss, catalyst deactivation, complex reaction network, and limitation in upgrading of real bio-oil In this study, Al-MCM-41 supported monometallic (Ni, Co and Fe) and bimetallic (Pd-Co and Pd-Fe) catalysts were prepared, characterized and evaluated for HDO of guaiacol at atmospheric pressure in a fixed-bed continuous flow reactor A detail kinetic model has been established for HDO of guaiacol over Pd-Co and Pd-Fe catalysts Furthermore, Pd-Fe and Pd-Co catalysts were screened for successive pyrolysis and catalytic upgrading of lignin to produce bio-oil In vapor-phase HDO of guaiacol, Ni was found as an active metal for methanization activity while Co favored the deoxygenation activity The Co/Al-MCM-41 catalyzed not only HDO to remove oxygen but also transalkylation to prevent the carbon loss via methanization Furthermore, increasing reaction temperature improved the HDO and suppressed the hydrogenation but promoted the methanization activities In comparison with Co catalyst, Fe catalyst had higher HDO yield and lower gas-phase yield in HDO of guaiacol Moreover, bimetallic Pd-Co and Pd-Fe shown higher stability and HDO yield than monometallic Co and Fe The addition of Pd enhanced significantly the stability of both Co and Fe catalysts since it might prevent the coke formation during the HDO reaction Pd-Fe had higher stability, regeneration ability and lower gasification activity than Pd-Co catalyst From the kinetic model, guaiacol was converted to phenol through demethoxylation over Pd-Fe catalyst while it was transformed to catechol and further to phenol over Pd-Co catalyst The lignin-derived bio-oil mainly contained phenolic compounds which have one to three oxygen atoms The catalytic upgrading could eliminate significantly the oxygen vii in phenolic molecular to produce the lower oxygen content bio-oil In summary, Pd-Fe/Al-MCM-41 present as a suitable catalyst for upgrading of lignin-derived biooil since it produced not only more monooxygenated phenolic but also less dioxygenated, trioxygenated and gas-phase products than Pd-Co catalyst viii ABSTRAK Pirolisis pantas dengan menggunakan biomas lignoselulosa merupakan proses penukaran termokimia yang berkesan untuk menghasilkan bio-minyak yang memainkan peranan sebagai sumber alternatif bahan api cecair Penaikkan taraf biominyak melalui hidrodeoksigenasi (HDO) merupakan laluan proses yang penting untuk memastikan pengeluaran tenaga yang boleh diperbaharui lancar Walau bagaimanapun, masih terdapat banyak cabaran seperti penggunaan hidrogen yang tinggi, kehilangan karbon, penyahaktifan pemangkin, rangkaian reaksi yang kompleks, dan had dalam peningkatan bio-minyak tulen Dalam kajian ini, Al-MCM-41 menyokong mono-logam (Ni, Co dan Fe) dan bi-logam (Pd-Co dan Pd-Fe) pemangkin dikategorasikan dan dinilai untuk HDO guaikol yang beroperasi pada tekanan atmosfera dalam reaktor tetap Model kinetik yang terperinci iaitu HDO guaikol melalui pemangkin Pd-Co dan Pd-Fe telah dihasilkan Selain daripada itu, pemangkin Pd-Fe dan Pd-Co telah dikaji melalui pirolisis berturutan dan peningkatan lignin untuk menghasilkan bio-minyak Tambahan pula, bi-logam Pd-Fe dan Pd-Co pemangkin disaring untuk Dalam fasa wap HDO, Ni telah dijumpai sebagai logam aktif untuk aktiviti pembukaan cincin manakala Co lebih sesuai untuk aktiviti deoksigenasi Co/Al-MCM-41 pemangkin bukan sahaja HDO untuk mengeluarkan oksigen tetapi transaklisasi untuk mengelakkan kehilangan karbon melalui aktiviti metanisasi Selainitu, meringgikai suhu reaksi telah bertanbah baik HDO dan merirdas hidrogerasi, tetapi merggalakkar aktiviti metarisasi Dalam membandingkan dengan pemangkin Co, pemangkin Fe mempunyai HDO hasil yang lebih tinggi dan hasil fasa gas yang kurang dalam HDO guaikol Selain itu, bi-logam Pd-Co dan Pd-Fe menunjukkan kestabilan yang lebih tinggi dan hasil HDO daripada mono-logam Co dan Fe Penambahan Pd meningkatkan dengan ketara kestabilan pemangkin Co dan Fe sebab pemangkin yang dinyatakan mungkin dapat mengelakkan pembentukan kok semasa reaksi HDO Pd-Fe mempunyai kestabilan yang lebih tinggi, keupayaan penjanaan semula dan aktiviti gasifikasi yang lebih rendah daripada ix pemangkin Pd-Co Daripada model kinetik, guaiacol telah ditukar kepada fenol melalui demethoxylation dengan pemangkin Pd-Fe manakala ia telah berubah kepada catechol dan seterusnya kepada fenol dengan pemangkin Pd-Co Lignin yang diperolehi daripada bio-minyak terutamanya mengandungi sebatian fenolik yang mempunyai satu hingga tiga atom oksigen Penaik taraf pemangkin dapat menghapuskan oksigen dalam molekul fenolik untuk menghasilkan bio-minyak dengan kandungan oksigen yang rendah Ringkasnya, Pd-Fe/Al-MCM-41 hadir sebagai pemangkin yang sesuai untuk menaik taraf bio-minyak lignin kerana ia menghasilkan bukan sahaja menghasillar lebih bayak mono-oksigen fenol, tetapi juga kurang diokseganisi, tri-oksigenasi dan fasa gas produk berbanding pemangkin Pd-Co x Figure A.26 GC-FID chromatograms of HDO samples on fresh 10Co/Al-MCM-41 Reaction condition: T = 400 oC, P = atm, H2/Gua = 25, W/F = 0.83 h, TOS = 30 158 Figure A.27 GC-FID chromatograms of HDO samples on fresh 10Fe/Al-MCM-41 Reaction condition: T = 400 oC, P = atm, H2/Gua = 25, W/F = 0.83 h, TOS = 30 159 Figure A.28 GC-FID chromatograms of HDO samples on fresh 2Pd/Al-MCM-41 Reaction condition: T = 400 oC, P = atm, H2/Gua = 25, W/F = 0.83 h, TOS = 30 160 Figure A.29 GC-FID chromatograms of HDO samples on fresh 2Pd10Co/Al-MCM41 Reaction condition: T = 400 oC, P = atm, H2/Gua = 25, W/F = 0.83 h, TOS = 30 161 Figure A.30 GC-FID chromatograms of HDO samples on fresh 2Pd10Fe/Al-MCM41 Reaction condition: T = 400 oC, P = atm, H2/Gua = 25, W/F = 0.83 h, TOS = 30 162 Figure A.31 GC-FID chromatograms of phenol hydrotreatment sample on 10Co/AlMCM-41 Reaction condition: T = 400 oC, P = atm, H2/Gua = 25, W/F = 0.43 h, TOS = 30 163 Figure A.32 GC-FID chromatograms of anisole hydrotreatment sample on 10Co/AlMCM-41 Reaction condition: T = 400 oC, P = atm, H2/Gua = 25, W/F = 0.47 h, TOS = 30 164 Figure A.34 GC-FID chromatograms of benzene hydrotreatment sample on 10Co/AlMCM-41 Reaction condition: T = 400 oC, P = atm, H2/Gua = 25, W/F = 0.53 h, TOS = 30 165 APPENDIX B SAMPLE CALCULATIONS The benzene yield in sample (TOS = 30 min) were calculated as shown in Table A.1 and Table A.2 Information which we known; Sample 1-1 (Cold trap 1): From experiment: mass m1-1 = 1.853 g; CISTD = 1.98 wt%; From GC-FID analysis: Peak area ABenzene = 1229162, AISTD = 1520535, From calibration curve (Table 4.3) abenzene (cab) = 0.9969 Then, the amount of benzene can be calculated as 𝑚1−1 = 1229162 1.98 × × × 1.853 = 0.0297 (𝑔) 1520535 0.9969 100 Sample 1-2 (Cold trap 2): From experiment: mass m1-2 = 1.613 g; CISTD = 2.01 wt%; From GC-FID analysis: Peak area ABenzene = 276677, AISTD = 1400166, From calibration curve (Table 4.3) abenzene (cab) = 0.9969 The amount of benzene was calculated as below: 𝑚1−2 = 276677 2.01 × × × 1.613 = 0.0064 (𝑔) 1400166 0.9969 100 The total molar of benzene in sample is 166 𝑛𝐶 = × 𝑚1−1 + 𝑚1−2 0.0297 + 0.0064 = 6× = 0.0028 (𝑚𝑜𝑙) 𝑀 78.1 The guaiacol feed rate was 1.08 mL/h; the density of guaiacol is 1.112 g/cm3; MGUA = 124.14 g/mol So, the total molar of guaiacol was fed for 30 is 𝑛𝐺𝑈𝐴𝑖𝑛 = 1.08 × 1.112 30 × = 0.0048 (𝑚𝑜𝑙) 124.14 60 The benzene yield of sample was calculated by equation (3.14) as 𝑌𝐵𝑒𝑛𝑧𝑒𝑛𝑒 = 𝑛𝐵𝑒𝑛𝑧𝑒𝑛𝑒 × 0.0028 × 100 = = 8.23 (%) 𝑛𝐺𝑈𝐴𝑖𝑛 × 0.0048 × 167 APPENDIX C OPTIMIZATION CODE FOR KINETIC USING MATLAB -clear all; close all; clc global_init; %% - control information Enable_opt = 1; % for optimization, for current solution k0 and n0 % optimization option % for full optimize, for nonlinear least square (lsqnonlin), for fmincon % for fminsearch optimization Opt_options = 1; % formart for display eng_format = true; %% So lieu thi nghiem % global vspan; global expV exp_value; % range khao sat khoi luong xuc tac fprintf('Reading experimental data '); % Y data % gia tri thi nghiem - lay tu excel va copy vao ham exp_data % exp V = X data and exp_value = Y data lay tu ham mac dinh exp_value = exp_data_PdFe_s14; % khoi tao function de fill in gia tri thuc nghiem %expV = [0 0.25 0.50 1.00 2.00]; vspan = [min(expV) max(expV)]; %so lieu thuc nghiem %xdata = [0.9 1.5 13.8 19.8 24.1 28.2 35.2 60.3 74.6 81.3]; %ydata = [455.2 428.6 124.1 67.3 43.2 28.1 13.1 -0.4 -1.3 -1.5]; %% kinetic model % - thiet lap thong so dong hoc % %initial estimate cho cac hang so phan ung global k0 n0; global exp_init; global Species_name_kin; % -define pt dong hoc kinetic % fprintf('Set up kinetic model \n'); %GUI, CAT, Cresol, Phenol, Benzene, Toluene, other %parameter retrive from exp data function, but can modified if required 168 %lesser species %n_species = 9; %can be collected in kinetic function n_reactions = 21; % eqipvalent to number of k of reaction from kinetic model % goi n la bac phan ung cua pu thu k n0 = [ 1 1 1 1 1 1 1 1 1 1 1]; k0 = [1 1 1 1 1 1 1 1 1 1]; k0 = [3.7466e+000 205.8228e-003 63.7605e-003 144.9131e-003 210.0725e003 1.0000e-006 690.7078e-003 1.0000e-006 711.0612e-003 93.0188e-003 404.2543e-003 243.8904e-003 1.1656e+000 109.1308e-003 993.6475e-003 23.6085e+000 172.3349e-003 1.0000e-006 848.4665e-003 1.0000e-006 1.2601e+000] % kinetic model %myfunc = @kinetic_PdFe_Aug23; myfunc = @HDOkinetic_21reactions; fprintf(func2str(myfunc)); fprintf(' is used for kinetic model\n'); %% Kiem tra final n_species (compound) and extract the current experiments if size(exp_value,1) > n_species warning('the number of compound is different from the experimental data Resize the experimental value for calculation\n'); exp_value = exp_value(1:n_species,:); end %lay gia tri so lieu thuc nghiem de lam initial cho ODE o thoi diem exp_init = exp_value(1:n_species,1); %% -kiem tra cac thong so k0 va n0 -% %check k0 nn = size(k0,2); if nn > n_reactions k0 = k0(1:n_reactions); else while nn < n_reactions k0(nn+1)=1; nn = size(k0,2); end end %check n0 nn = size(n0,2); if nn > n_reactions 169 n0 = n0(1:n_reactions); else while nn < n_reactions n0(nn+1)=1; nn = size(n0,2); end end % checking kinetic function n_s_kinetic = size(myfunc(expV,ones(1,n_species),k0,n0),1); if n_s_kinetic ~= n_species fprintf(n_s_kinetic); fprintf(n_species); warning('Wrong kinetic function or experimental data\n'); %break; end %% Prepare for ploting % For ploting and legend -% %GUI, CAT, Cresol, Phenol, Benzene, Toluene, other %Species_name = {'GUI' 'CAT' 'Cresol' 'Phenol' 'Benzene' 'Toluene','others'}; for i=1:n_species L_name(1,i)= strcat('exp-',Species_name(i)); L_name(3,i)= strcat('sim-',Species_name(i)); L_name(2,i)= strcat('opt-',Species_name(i)); end %for L_name1(1,:) = L_name(1,:); % -ve thi cho so lieu thi nghiem -% figure(1); % ve thi bieu dien cac duong thuc nghiem %plot(expV,transpose(exp_value),' o'); plot(expV,transpose(exp_value),'o','linewidth',4); title('Data and Fitted Curve') hold on; %% Main flow if not(Enable_opt) % Solve ODE equations with k0 and n0 if not optimize and calculate cost at % k0 and n0 min_error = objFcn(k0,n0); fprintf('Solution Error: \n'); disp(min_error); plot(expV,transpose(simY),'-s'); 170 L_name1(2,:) = L_name(3,:); legend_name = reshape(transpose(L_name1),1,n_species*2); else bestk = k0; bestn = n0; fprintf('Optimizing \n'); %% toi uu switch Opt_options case % full optimization k and n % initial and call optimization module [bestk,bestn] = optimize_all(k0,zeros(n_reactions,1)); case % optimize k with lsnonlin method [bestk, obj_error] = optimize_k(k0,n0); case % optimize k with fmincon method [bestk, obj_error] = optimize_k2(k0,n0); case % optimize k with fminsearch method myObjective = @(k) objFcn(k, n0); bestn = n0; bestk = fminsearch(myObjective,k0,optimset('MaxFunEvals',1e18)); k0; otherwise warning('Unexpected optimization option Kindly chose on option for optimization\n'); end; %% Statistical analysis % Final solution fprintf('Final Solution: \n'); %disp(Species_name); fprintf('best n'); disp(bestn); if eng_format format shortEng; fprintf('best k'); disp(bestk); format short; end %plot with optimum ODE_Sol = ode45(@(v,c)myfunc(v,c,bestk,bestn),vspan,exp_init); simYopt = deval(ODE_Sol, expV); % Evaluate the solution at the experimental time steps error_min = norm(simYopt-exp_value)^2; 171 RMSD_opt = sqrt(mean((simYopt(:)-exp_value(:)).^2)); NRMSD = RMSD_opt/mean(exp_value(:)); fprintf('Square Error:'); disp(error_min); fprintf('RMSD = '); disp(RMSD_opt); fprintf('NRMSD = '); disp(NRMSD); %% ve thi %ve thi va dat legend L_name1 = L_name(1:2,:); legend_name = reshape(transpose(L_name1),1,n_species*2); plot(expV,transpose(simYopt),'-^'); title(strcat('Data and Fitted Curve ',func2str(myfunc))); xlabel('catalyst weight (gram)'); ylabel('consumption/formation (mol.%)'); legend(legend_name,'Location','southoutside','Orientation','horizontal'); hold off; %figure compare before and after optimized L_name1 = L_name(2:3,:); legend_name = reshape(transpose(L_name1),1,n_species*2); figure(2); error_init = objFcn(k0,n0); plot(expV,transpose(simYopt),'-^'); hold on; %times = linspace(expV(1),expV(end)); %plot(expV,exp_value,'ko'); %times,myfun(expV,times),'b-') %legend('Data','Fitted exponential') end %if else end % Final solution %fprintf('Final Solution: \n'); % Ve phan cuoi cua thi plot(expV,transpose(simY),'-s'); xlabel('catalyst weight (gram)'); ylabel('conversion/product (%)'); legend(legend_name); hold off; 172 ... (MolCarbon%) Yilignin Product i yield in upgrading of lignin-derived bio- oil, (wt%) Ywater Water yield in upgrading of lignin-derived bio- oil, (wt%) xxv CHAPTER INTRODUCTION 1.1 Back ground of study Malaysia... Characterization of bio- oil on the basis of different biomass sources and production method 14 Table 2.3: Summary of catalytic HDO for upgrading of bio- oil and its model compounds... supports [37, 47] Catalytic upgrading of real bio- oil were mostly conducted in the batch autoclave due to the complex composition and instability of bio- oil [22] The catalytic upgrading could not

Ngày đăng: 28/02/2021, 21:34

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN