THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 57 |
Dung lượng | 1,63 MB |
Nội dung
Ngày đăng: 27/02/2021, 23:52
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết |
---|---|---|
[8]. Skyline an open-source framework for real-time anomaly detection using Python, https://github.com/etsy/skyline/wiki | Link | |
[9]. Splunk document detecting anomalies http://docs.splunk.com/Documentation/Splunk/7.2.0/Search/Detectinganomalies [10]. Graphite document guidehttps://graphite.readthedocs.io/en/latest/index.html | Link | |
[11]. IBM Security QRadar SIEM V7.3.0 Product Documentation https://www-01.ibm.com/support/docview.wss?uid=swg27049537 | Link | |
[21]. Elastic Stack and Product Documentation, https://www.elastic.co/learn [22]. Varun Chandola. Anomaly detection for symbolic sequences and timeseries data : Ph.d dissertation | Link | |
[34]. Việt Nam thuộc top 10 quốc gia bị tấn công DDoS nhiều nhất https://congnghe.tuoitre.vn/viet-nam-thuoc-top-10-quoc-gia-bi-tan-cong-ddos-nhieu-nhat-20180226095210865.htm | Link | |
[1]. Chandola, V., Banerjee, A. and Kumar, V., 2009. Anomaly detection: A survey. ACM computing surveys , 41(3), p.15 | Khác | |
[2]. Dorothy E. Denning. An intrusion-detection model. Software Engineering, IEEE Transactions on, (2):222–232, 1987 | Khác | |
[3]. Aleksandar Lazarevic, Levent Ertoz, Vipin Kumar, Aysel Ozgur, and Jaideep Srivastava. A comparative study of anomaly detection schemes in network intrusion detection. Proc. SIAM, 2003 | Khác | |
[4]. Pedro Garcia-Teodoro, J. Diaz-Verdejo, Gabriel Maci´a-Fern´andez, and Enrique V´azquez. Anomaly-based network intrusion detection: Techniques, systems and challenges. computers & security, 28(1):18–28, 2009 | Khác | |
[5]. Gupta, M., Gao, J., Aggarwal, C.C. and Han, J., 2014. Outlier detection for temporal data: A survey. IEEE Transactions on Knowledge and Data Engineering, 26(9), pp.2250-2267 | Khác | |
[7]. Nguyen Linh Giang, Le Tuan Anh, Pham Duy, Tran Duc Quy, Anomaly detection by statistical analysis and neural networks, RIFV2007, Proceedings of RIFV2007, Addendum contribution, pp 137-141. 2007 | Khác | |
[14]. Sheng Zhang, Amit Chakrabarti, James Ford, and Fillia Makedon. Attack detection in time series for recommender systems. In KDD ’06: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 809–814, New York, NY, USA, 2006. ACM | Khác | |
[15]. Manuele Bicego and Vittorio Murino. Investigating hidden markov models’ capabilities in 2d shape classification. IEEE Trans. Pattern Anal.Mach. Intell., 26(2):281–286, 2004 | Khác | |
[16]. Haibin Cheng, Pang-Ning Tan, Christopher Potter, and Steven Klooster. Detection and characterization of anomalies in multivariate time series. In Proceedings of the ninth SIAM International Conference on Data Mining, 2009 | Khác | |
[17]. Junshui Ma and Simon Perkins. Online novelty detection on temporal sequences. In KDD ’03: Proceedings of the ninth ACM SIGKDDinternational conference on Knowledge discovery and data mining, pages 613–618, New York, NY, USA, 2003. ACM | Khác | |
[18]. Qingtao Wu and Zhiqing Shao. Network anomaly detection using time series analysis. In Proceedings of the Joint International Conference on Autonomic and Autonomous Systems and International Conference on Networking and Services, page 42, Washington, DC, USA, 2005. IEEE Computer Society | Khác | |
[19]. Li Wei, Nitin Kumar, Venkata Lolla, Eamonn J. Keogh, Stefano Lonardi, and Chotirat Ratanamahatana. Assumption-free anomaly detection in time series. In Proceedings of the 17th international conference on Scientific and statistical database management, pages 237–240, Berkeley, CA, US, 2005.Lawrence Berkeley Laboratory | Khác | |
[20]. B. Pincombe. Anomaly detection in time series of graphs using arma processes. ASOR BULLETIN, 24(4):2–10, 2005 | Khác | |
[23]. M. Basseville, M. Abdelghani, and A. Benveniste. Subspace-based fault detection algorithms for vibration monitoring. Automatica, 36:101–109, 2000 | Khác | |
[24]. Stephanie Forrest, Christina Warrender, and Barak Pearlmutter. Detecting intrusions using system calls: Alternate data models. In Proceedings of the 1999 IEEE ISRSP, pages 133–145, Washington, DC, USA, 1999. IEEE Computer Society | Khác |
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN