Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 17 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
17
Dung lượng
864,5 KB
Nội dung
Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 -ĐỀ SỐ 01 ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC KỲ I NĂM HỌC: 2010 – 2011 Môn: Toán – Lớp 9 Thời gian làm bài: 90 phút Câu1: (2,5 điểm) Tính: a/ 121 - 2 16 c/ ( ) − 2 5 2 b/ − 2 2 61 60 d/ + −2 32 98 3 18 Câu 2: (2,5 điểm) a/ Trên cùng hệ trục tọa độ vẽ đồ thị các hàm số sau: (d 1 ): y = -2x + 5 (d 2 ): y= x + 2. b/ Tìm tọa độ giao điểm của A của (d 1 ) và (d 2 ). c/ Xác định hàm số có đồ thị đi qua gốc tọa độ O và điểm A. Câu 3: (2,5 điểm): a/ Tìm nghiệm tổng quát của phương trình: 2x – y =1 và vẽ đường thẳng biểu diễn tập nghiệm của nó. b/ Cho ∆ ABC vuông tại A có AB = 3cm, AC = 4cm. Kẻ đường cao AH và tia phân giác AK. Tính: BC; AH; BK? Câu 4: (2,5 điểm) Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại M. Kẻ tiếp tuyến chung ngoài AB, A ∈ (O) và B ∈ (O’). Tiếp tuyến chung trong tại M cắt tiếp tuyến chung ngoài AB tại K. a/ Chứng minh · 0 AMB 90= . b/ Chứng minh ∆ OKO’ là tam giác vuông và AB là tiếp tuyến của đường tròn đường kính OO’. c/ Biết AM = 8cm, BM = 6cm. Tính độ dài bán kính OM? ---------------------------------------- Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 HƯỚNG DAN CHẤM BÀI KIỂM TRA HỌC KỲ I NĂM HỌC: 2010 – 2011 Môn: TOÁN - Lớp 9 Câu Nội dung Điểm 1 2,5 điểm a/ 121 - 2 16 = 11 – 2.4 = 11 – 8 = 3 0,5 b/ − 2 2 61 60 = ( ) ( ) − +61 60 61 60 = 1.121 = 11 0,5 c/ ( ) − 2 5 2 = −5 2 = − 5 2 (Vì 5 >2) 0,5 d/ + − 2 32 98 3 18 = + − 2 16.2 49.2 3 9.2 = + − = 8 2 7 2 9 2 6 2 0,5 0,5 2 2,5 điểm a/ * Vẽ (d 1 ): y =- 2x + 5 x = 0 ⇒ y = 5 y = 0 ⇒ x = 5 2 − − = 2,5 2 2,5 3 -2 5 y=-2x+5 y=x+2 1 x y A 0 - Xác định và vẽ đúng (d 1 )0,5đ * Vẽ (d 2 ): y = x + 2 x = 0 ⇒ y = 2 y = 0 ⇒ x = 2 1 − = - 2 - Xác định và vẽ đúng (d 1 )0,5đ b/ Phương trình hoành độ giao điểm của (d 1 ) và (d 2 ): x + 2 = -2x + 5 ⇔ x + 2x = 5 -2 0,5 ⇔ 3x =3 ⇔ x = 1 0,25 Thế x = 1 vào hàm số y = x + 2, ta có: y = 1 + 2 =3 Tọa độ giao điểm A(1; 3) 0,25 c/ Hàm số cầm tìm có dạng: y =ax Thế x = 1; y = 3 vào hàm số, ta có: 3 = a.1 ⇒ a =3 Hàm số phải xác định là: y = 3x. 0,25 0,25 3 2,5 điểm a/ 2x – y = 1 ⇔ y= 2x – 1 Nghiệm tổng quát của phương trình (x ∈ ¡ ; y = 2x -1) Vẽ (d): y = 2x – 1 x = 0 ⇒ y = -1 y = 0 ⇒ x = = 1 0,5 2 0,5 - Xác định và vẽ đúng (d)0,5đ b/ * Trong ∆ vABC, Ta có: BC = ( ) + = + = 2 2 2 2 AB AC 3 4 5 cm 0,5 KH C B A 3 4 Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 * Ta có: BC.AH = AB.AC ⇒ AH = ( ) = = AB.AC 3.4 2,4 cm BC 5 0,5 * Vì AK là tia phân giác của µ A . Nên: BK AB CK AC = ⇒ BK CK AB AC = = BK CK BC AB AC AB AC + = + + = = + 5 5 3 4 7 ⇒ BK = ( ) = = 5.AB 5.3 15 cm 7 7 7 0,5 4 2,5 điểm a/ Ta có: AK = MK; MK = KB ( 2 tiếp tuyến cắt nhau) ⇒ AK = MK = KB = AB 2 ⇒ ∆ AMB vuông tại M ⇒ · 0 AMB 90 = . b/ KO là tia phân giác của · AKM KO’là tia phân giác của · BKM Mà · AKM & · BKM kề bù nhau ⇒ · 0 OKO' 90 = ⇒ ∆ OKO’ là tam giác vuông tại K. c/ * Gọi I là trung điểm của OO’. Ta có: IK là trung tuyến thuộc cạnh huyền của ∆ vuông OKO’. Nên: IK = OO' 2 ⇒ K thuộc đường tròn đường kinh OO’ (1). * Ta có: OA P O’B ⇒ OABO’ là hình thang ⇒ IK là đường trung bình của hình thang. ⇒ IK P OA và O’B. Mà: OA ⊥ AB ⇒ IK ⊥ AB tại K (2). Từ (1) & (2) ⇒ AB là tiếp tuyến của đường tròn đường kính OO’ tại K. 0,25 0,25 0,25 0,25 0,25 0,25 0,5 0,25 0,25 -ĐỀ SỐ 02 K I M O O' B A Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 Bài 1: (1,5 điểm) 1) Tìm x để biểu thức 1 1x x + có nghĩa: 2) Rút gọn biểu thức : A = ( ) 2 2 3 2 288+ − Bài 2. (1,5 điểm) 1) Rút gọn biểu thức A. A = 2 1 x x x x x x − − − − với ( x >0 và x ≠ 1) 2) Tính giá trị của biểu thức A tại 3 2 2x = + Bài 3. (2 điểm). Cho hai đường thẳng (d 1 ) : y = (2 + m)x + 1 và (d 2 ) : y = (1 + 2m)x + 2 1) Tìm m để (d 1 ) và (d 2 ) cắt nhau: 2) Với m = – 1 , vẽ (d 1 ) và (d 2 ) trên cùng mặt phẳng tọa độ Oxy rồi tìm tọa độ giao điểm của hai đường thẳng (d 1 ) và (d 2 ) bằng phép tính. Bài 4: (1 điểm) Giải phương trình: 1 9 27 3 4 12 7 2 x x x − + − − − = Bài 5.(4 điểm) Cho đường tròn tâm (O;R) đường kính AB và điểm M trên đường tròn sao cho · 0 60MAB = . Kẻ dây MN vuông góc với AB tại H. 1. Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM): 2. Chứng minh MN 2 = 4 AH .HB . 3. Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó. 4. Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N; E; F thẳng hàng. ----HẾT---- BÀI GIẢI CHI TIẾT ĐỀ SỐ 02 Bài 1: (1,5 điểm) 1) Tìm x để biểu thức 1 1x x + có nghĩa: Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 Biểu thức 1 1x x + có nghĩa 0 0 1 0 1 x x x x ≠ ≠ ⇔ ⇔ + ≥ ≥ − 2) Rút gọn biểu thức : A = ( ) 2 2 3 2 288+ + = ( ) 2 2 2 2.2.3 2 3 2+ + + 144.2 = 4 12 2 18 + + + 12 2 = 22 24 2 + Bài 2. (1,5 điểm) 1) Rút gọn biểu thức A. A = 2 1 x x x x x x − − − − với ( x >0 và x ≠ 1) = ( ) ( ) 2 1 1 1 x x x x x x − − − − = 2 1 1 1 x x x x − − − − = 2 1 1 x x x − + − = ( ) 2 1 1 x x − − = 1x − 2) Tính giá trị của biểu thức A tại 3 2 2x = + Tại 3 2 2x = + giá trị biểu A = ( ) 2 3 2 2 1 2 1 1 2 1 1 2+ − = + − = + − = Bài 3. (2 điểm) 1) Tìm m để (d 1 ) và (d 2 ) cắt nhau: (d 1 ) cắt (d 2 ) ' a a ⇔ ≠ 2 1 2m m ⇔ + ≠ + 2 2 1m m ⇔ − ≠ − 1m ⇔ ≠ 2) Với m = – 1 , vẽ (d 1 ) và (d 2 ) trên cùng mặt phẳng tọa độ Oxy rồi tìm tọa độ giao điểm của hai đường thẳng (d 1 ) và (d 2 ) bằng phép tính. Với m = – 1 ta có: (d 1 ): y = x + 1 và (d 2 ): y = – x + 2 (d 1 ) là đường thẳng đi qua hai điểm: (0; 1) và (– 1; 0) (d 2 ) là đường thẳng đi qua hai điểm: (0; 2) và (2; 0) (các em tự vẽ đồ thị) Tìm tọa độ giao điểm của (d 1 ): y = x + 1 và (d 2 ): y = – x + 2 bằng phép tính: Phương trình hoành độ giao điểm của (d 1 ) và (d 2 ) là nghiệm phương trình: x + 1 = – x + 2 ⇔ x + x = 2 – 1 ⇔ 2x = 1 1 2 x ⇔ = Tung độ giao điểm của (d 1 ) và (d 2 ) là : y = 1 3 1 2 2 + = Tọa độ giao điểm của (d 1 ) và (d 2 ) là: 1 3 ; 2 2 ÷ Bài 4: (1 điểm) 60 ° F E H O N M B A Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 Giải phương trình: 1 9 27 3 4 12 7 2 x x x − + − − − = ( ) ( ) 1 9 3 3 4 3 7 2 x x x ⇔ − + − − − = 1 3 3 3 .2 3 7 2 x x x ⇔ − + − − − = 3 3 7x⇔ − = 7 3 3 x⇔ − = (đk : x ≥ 3) 49 3 9 x ⇔ − = 76 9 x ⇔ = (thỏa mãn điều kiện ) Vậy S = 76 9 Bài 5.(4 điểm) 1. Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM): ΔAMB nội tiếp đường tròn (O) có AB là đường kính nên ΔAMB vuông ở M. Điểm M ∈ (B;BM), AM MB ⊥ nên AM là tiếp tuyến của đường tròn (B; BM) Chứng minh tương tự ta được AN là tiếp tuyến của đường tròn (B; BM) 2. Chứng minh MN 2 = 4 AH .HB Ta có: AB ⊥ MN ở H ⇒ MH = NH = 1 2 MN (1) (tính chất đường kính và dây cung) ΔAMB vuông ở B, MH ⊥ AB nên: MH 2 = AH . HB ( hệ thức lượng trong tam giác vuông) Hay 2 2 MN = ÷ AH. HB 2 4 .MN AH HB ⇒ = (đpcm) 3) Chứng minh tam giác BMN là tam giác đều và O là trọng tâm tam giác BMN Từ (1) suy ra AB là là đường trung trực MN nên BM = BN. · · 0 60MAB NMB= = (cùng phụ với · MBA ). Suy ra tam giác BMN đều Tam giác OAM có OM = OA = R và · 0 60MAO = nên nó là tam giác đều . MH ⊥ AO nên HA = HO = 2 OA = 2 OB Tam giác MBN có BH là đường trung tuyến ( vì HM = HN) và OH = 1 2 OB nên O là trọng tâm của tam giác . 4) Chứng minh ba điểm N, E, F thẳng hàng. ΔMNE nội tiếp đường tròn (O) đường kính AB nên nó vuômg ở N MN EN ⇒ ⊥ ΔMNF nội tiếp đường tròn (B) đường kính MF nên nó vuômg ở N MN FN ⇒ ⊥ Do đó ba điểm N, E, F thẳng hàng.---- hết---- ĐỀ SỐ 03 Thời gian tập giải mỗi đề : 90 phút Bài 1.( 1,5điểm) Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 1. Tính giá trị các biểu thức sau: 2 3 2 2− − 2. Chứng minh rằng 3 3 1 1 2 2 + + = Bài 2.(2điểm) Cho biểu thức : P = 4 4 4 2 2 a a a a a + + − + + − ( Với a ≥ 0 ; a ≠ 4 ) 1) Rút gọn biểu thức P. 2) Tính P tại a thoả mãn điều kiện a 2 – 7a + 12 = 0 3) Tìm giá trị của a sao cho P = a + 1. Bài 3. (2điểm) Cho hai đường thẳng : (d 1 ): y = 1 2 2 x + và (d 2 ): y = 2x − + 1. Vẽ (d 1 ) và (d 2 ) trên cùng một hệ trục tọa độ Oxy. 2. Gọi A và B lần lượt là giao điểm của (d 1 ) và (d 2 ) với trục Ox , C là giao điểm của (d 1 ) và (d 2 ) . Tính chu vi và diện tích của tam giác ABC (đơn vị trên hệ trục tọa độ là cm) Bài 4. (4,5điểm) Cho tam giác ABC nhọn . Đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM. 1) Chứng minh AH ⊥ BC . 2) Gọi E là trung điểm AH. Chứng minh ME là tiếp tuyến của đường tròn (O) 3) Chứng minh MN. OE = 2ME. MO 4) Giả sử AH = BC. Tính tang BAC. ---HẾT--- BÀI GIẢI CHI TIẾT ĐỀ SỐ 03 Bài 1.( 1,5điểm) 1. Tính giá trị các biểu thức sau: 2 3 2 2− − = ( ) 2 2 2 2 2 2.1 1− − + = ( ) 2 2 2 1− − = 2 2 1− − = ( ) 2 2 1− − = 2 2 1 1 − + = K _ _ = = H E O N M C B A Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 2. Chứng minh rằng 3 3 1 1 2 2 + + = Biến đổi vế trái ta có: 3 2 3 1 2 2 + + = = ( ) 2 2 3 4 + = 4 2 3 4 + = ( ) 2 3 1 2 + = 3 1 2 + Vậy 3 3 1 1 2 2 + + = Bài 2.(2điểm) 1) Rút gọn biểu thức P. P = 4 4 4 2 2 a a a a a + + − + + − ( Với a ≥ 0 ; a ≠ 4 ) = ( ) ( ) ( ) 2 2 2 2 2 2 a a a a a + + − + + − = 2 2a a+ + + = 2 4a + 2) Tính P tại a thoả mãn điều kiện a 2 – 7a + 12 = 0 Ta có: a 2 – 7a + 12 = 0 2 3 4 12 0a a a ⇔ − − + = ( ) ( ) 3 4 3 0a a a ⇔ − − − = ( ) ( ) 3 4 0a a ⇔ − − = 3a ⇔ = (thỏa mãn đk) ; a = 4( loại) Với a = 3 ( ) 2 2 3 4 3 1P⇒ = + = + = 3 1 + 3) Tìm giá trị của a sao cho P = a + 1 P = a + 1 ⇔ 2 4a + = a + 1 2 3 0a a⇔ − − = ( ) ( ) 3 1 0a a⇔ − + = . Vì 0 1 0a a≥ ⇒ + ≠ . Do đó: 3 0 9a a− = ⇔ = (thỏa mãn đk) Vậy : P = a + 1 9a ⇔ = Bài 3. (2điểm) (d 1 ): y = 1 2 2 x + và (d 2 ): y = 2x − + 1. Vẽ (d 1 ) và (d 2 ) trên cùng một hệ trục tọa độ Oxy. (d 1 ) là đường thẳng đi qua hai điểm (0; 2) và ( ) 4;0 − (d 2 ) là đường thẳng đi qua hai điểm (0; 2) và ( ) 2;0 ( các em tự vẽ hình để đối chiếu câu 2 ) Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 2. Tính chu vi và diện tích của tam giác ABC (d 1 ) và (d 2 ) cùng cắt nhau tại một điểm trên trục tung có tung độ bằng 2 Áp dụng định lý Pi ta go cho các tam giác AOC và BOC vuông ở O ta được: 2 2 4 2 20 2 5AC = + = = ; 2 2 2 2 8 2 2BC = + = = Chu vi tam giác ABC : AC + BC + AB = 2 5 2 2 6 13,30 + + ≈ (cm) Diện tích tam giác ABC : 2 1 1 . . .2.6 6 2 2 OC AB cm = = Bài 4. (4,5 điểm) 1) Chứng minh AH ⊥ BC . ΔBMC và ΔBNC nội tiếp đường tròn (O) đường kính BC Suy ra · · 0 90BMC BNC= = . Do đó: BN AC ⊥ , CM AB ⊥ , Tam giác ABC có hai đường cao BN , CM cắt nhau tại H Do đó H là trực tâm tam giác. Vậy AH ⊥ BC. 2) Gọi E là trung điểm AH. Chứng minh ME là tiếp tuyến của đường tròn (O) OB = OM (bk đường tròn (O)) ⇒ ΔBOM cân ở M. Do đó: · · OMB OBM= (1) ΔAMH vuông ở M , E là trung điểm AH nên AE = HE = 1 2 AH . Vậy ΔAME cân ở E. Do đó: · · AME MAE = (2) Từ (1) và (2) suy ra: · · · · OMB AME MBO MAH+ = + . Mà · · 0 90MBO MAH+ = (vì AH ⊥ BC ) Nên · · 0 90OMB AME+ = . Do đó · 0 90EMO = . Vậy ME là tiếp tuyến của đường tròn (O). 3) Chứng minh MN. OE = 2ME. MO OM = ON và EM = EN nên OE là đường trung trực MN. Do đó OE ⊥ MN tại K và MK = 2 MN . ΔEMO vuông ở M , MK ⊥ OE nên ME. MO = MK . OE = 2 MN .OE. Suy ra: MN. OE = 2ME. MO 4) Giả sử AH = BC. Tính tang BAC. ΔBNC và ΔANH vuông ở N có BC = AH và · · NBC NAH = (cùng phụ góc ACB) ΔBNC = ΔANH (cạnh huyền, góc nhọn) ⇒ BN = AN. ΔANB vuông ở N · 1 BN tg NAB AN ⇒ = = . Do đó: tang BAC =1. -------HẾT------ ĐỀ SỐ 04 Thời gian tập giải : 90 phút Bài 1. (2,5 điểm) 1. Trục căn thức ở mẫu của các biểu thức sau: a) 2009 2009 b) 1 2010 2009− 2. Rút gọn biểu thức: ( ) ( ) 2 3 . 4 12− + Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 2. Tìm điều kiện cho x để ( ) ( ) 3 1 3. 1x x x x− + = − + . Bài 2. (1,5 điểm) Cho hàm số y = ax + b . Xác định các hệ số a và b trong các trường hợp sau: 1. Đồ thị hàm số là đường thẳng cắt trục tung tại điểm có tung độ bằng 3 và đi qua điểm (2;1). 2. Đồ thị hàm số cắt trục hoành tại điểm có hoành độ có hoành độ bằng – 1 và song song với đường thẳng chứa tia phân giác góc vuông phần tư I và III. Bài 3. (2 điểm) 1. Giải phương trình sau: ( ) 2 2 1 2 1x x− = − 2. Tìm các số nguyên x thỏa mãn: 1 2x − < Bài 4. (4 điểm) Cho tam giác ABC vuông ở A, đường cao AH. Gọi D và E lần lượt là hình chiếu của điểm H trên các cạnh AB và AC. 1. Chứng minh AD. AB = AE. AC 2. Gọi M, N lần lượt là trung điểm của BH và CH. Chứng minh DE là tiếp tuyến chung của hai đường tròn (M; MD) và (N; NE) 3. Gọi P là trung điểm MN, Q là giao điểm của DE và AH . Giả sử AB = 6 cm, AC = 8 cm . Tính độ dài PQ. -----HẾT---- ĐỀ SỐ 05 Thời gian tập giải : 90 phút Bài 1. (1,5 điểm) Rút gọn các biểu thức sau: 1. M = ( ) 3 6 2 3 3 2+ − 2. P = 6 2 3 3 3 − − 3. Q = ( ) 3 3 3 16 128 : 2− Bài 2. (2 điểm) Cho biểu thức : B = 1 4 1 1 2 x x x x − − + + + − (với 0x ≥ ; 4x ≠ ) 1. Rút gọn biểu thức B. 2. Tìm các giá trị của x thỏa mãn B = 3 6x x− + Bài 3. (2 diểm) Cho hàm số y = (m + 2)x – 3 . (m ≠ 2 ) 1. Tìm m để hàm số đã cho nghịch biến trên R. 2. Vẽ đồ thị hàm số khi m = –3 3. Gọi (d) là đường thẳng vẽ được ở câu 2, khi x [ ] 2;5∈ − , tìm giá trị lớn nhất, bé nhất của hàm số. Bài 4. (4,5 điểm) . tập các đề thi kì I. N¨m häc 2 010 - 2011 -ĐỀ SỐ 01 ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC KỲ I NĂM HỌC: 2 010 – 2011 Môn: Toán – Lớp 9 Thời gian làm bài: 90 phút Câu1:. SỐ 04 Thời gian tập giải : 90 phút Bài 1. (2,5 điểm) 1. Trục căn thức ở mẫu của các biểu thức sau: a) 20 09 20 09 b) 1 2 010 20 09 2. Rút gọn biểu thức: (