1. Trang chủ
  2. » Giáo án - Bài giảng

10_de_thi_HKI +DA-Toan_9.@

17 186 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 864,5 KB

Nội dung

Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 -ĐỀ SỐ 01 ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC KỲ I NĂM HỌC: 2010 – 2011 Môn: Toán – Lớp 9 Thời gian làm bài: 90 phút Câu1: (2,5 điểm) Tính: a/ 121 - 2 16 c/ ( ) − 2 5 2 b/ − 2 2 61 60 d/ + −2 32 98 3 18 Câu 2: (2,5 điểm) a/ Trên cùng hệ trục tọa độ vẽ đồ thị các hàm số sau: (d 1 ): y = -2x + 5 (d 2 ): y= x + 2. b/ Tìm tọa độ giao điểm của A của (d 1 ) và (d 2 ). c/ Xác định hàm số có đồ thị đi qua gốc tọa độ O và điểm A. Câu 3: (2,5 điểm): a/ Tìm nghiệm tổng quát của phương trình: 2x – y =1 và vẽ đường thẳng biểu diễn tập nghiệm của nó. b/ Cho ∆ ABC vuông tại A có AB = 3cm, AC = 4cm. Kẻ đường cao AH và tia phân giác AK. Tính: BC; AH; BK? Câu 4: (2,5 điểm) Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại M. Kẻ tiếp tuyến chung ngoài AB, A ∈ (O) và B ∈ (O’). Tiếp tuyến chung trong tại M cắt tiếp tuyến chung ngoài AB tại K. a/ Chứng minh · 0 AMB 90= . b/ Chứng minh ∆ OKO’ là tam giác vuông và AB là tiếp tuyến của đường tròn đường kính OO’. c/ Biết AM = 8cm, BM = 6cm. Tính độ dài bán kính OM? ---------------------------------------- Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 HƯỚNG DAN CHẤM BÀI KIỂM TRA HỌC KỲ I NĂM HỌC: 2010 – 2011 Môn: TOÁN - Lớp 9 Câu Nội dung Điểm 1 2,5 điểm a/ 121 - 2 16 = 11 – 2.4 = 11 – 8 = 3 0,5 b/ − 2 2 61 60 = ( ) ( ) − +61 60 61 60 = 1.121 = 11 0,5 c/ ( ) − 2 5 2 = −5 2 = − 5 2 (Vì 5 >2) 0,5 d/ + − 2 32 98 3 18 = + − 2 16.2 49.2 3 9.2 = + − = 8 2 7 2 9 2 6 2 0,5 0,5 2 2,5 điểm a/ * Vẽ (d 1 ): y =- 2x + 5 x = 0 ⇒ y = 5 y = 0 ⇒ x = 5 2 − − = 2,5 2 2,5 3 -2 5 y=-2x+5 y=x+2 1 x y A 0 - Xác định và vẽ đúng (d 1 )0,5đ * Vẽ (d 2 ): y = x + 2 x = 0 ⇒ y = 2 y = 0 ⇒ x = 2 1 − = - 2 - Xác định và vẽ đúng (d 1 )0,5đ b/ Phương trình hoành độ giao điểm của (d 1 ) và (d 2 ): x + 2 = -2x + 5 ⇔ x + 2x = 5 -2 0,5 ⇔ 3x =3 ⇔ x = 1 0,25 Thế x = 1 vào hàm số y = x + 2, ta có: y = 1 + 2 =3 Tọa độ giao điểm A(1; 3) 0,25 c/ Hàm số cầm tìm có dạng: y =ax Thế x = 1; y = 3 vào hàm số, ta có: 3 = a.1 ⇒ a =3 Hàm số phải xác định là: y = 3x. 0,25 0,25 3 2,5 điểm a/ 2x – y = 1 ⇔ y= 2x – 1 Nghiệm tổng quát của phương trình (x ∈ ¡ ; y = 2x -1) Vẽ (d): y = 2x – 1 x = 0 ⇒ y = -1 y = 0 ⇒ x = = 1 0,5 2 0,5 - Xác định và vẽ đúng (d)0,5đ b/ * Trong ∆ vABC, Ta có: BC = ( ) + = + = 2 2 2 2 AB AC 3 4 5 cm 0,5 KH C B A 3 4 Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 * Ta có: BC.AH = AB.AC ⇒ AH = ( ) = = AB.AC 3.4 2,4 cm BC 5 0,5 * Vì AK là tia phân giác của µ A . Nên: BK AB CK AC = ⇒ BK CK AB AC = = BK CK BC AB AC AB AC + = + + = = + 5 5 3 4 7 ⇒ BK = ( ) = = 5.AB 5.3 15 cm 7 7 7 0,5 4 2,5 điểm a/ Ta có: AK = MK; MK = KB ( 2 tiếp tuyến cắt nhau) ⇒ AK = MK = KB = AB 2 ⇒ ∆ AMB vuông tại M ⇒ · 0 AMB 90 = . b/ KO là tia phân giác của · AKM KO’là tia phân giác của · BKM Mà · AKM & · BKM kề bù nhau ⇒ · 0 OKO' 90 = ⇒ ∆ OKO’ là tam giác vuông tại K. c/ * Gọi I là trung điểm của OO’. Ta có: IK là trung tuyến thuộc cạnh huyền của ∆ vuông OKO’. Nên: IK = OO' 2 ⇒ K thuộc đường tròn đường kinh OO’ (1). * Ta có: OA P O’B ⇒ OABO’ là hình thang ⇒ IK là đường trung bình của hình thang. ⇒ IK P OA và O’B. Mà: OA ⊥ AB ⇒ IK ⊥ AB tại K (2). Từ (1) & (2) ⇒ AB là tiếp tuyến của đường tròn đường kính OO’ tại K. 0,25 0,25 0,25 0,25 0,25 0,25 0,5 0,25 0,25 -ĐỀ SỐ 02 K I M O O' B A Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 Bài 1: (1,5 điểm) 1) Tìm x để biểu thức 1 1x x + có nghĩa: 2) Rút gọn biểu thức : A = ( ) 2 2 3 2 288+ − Bài 2. (1,5 điểm) 1) Rút gọn biểu thức A. A = 2 1 x x x x x x − − − − với ( x >0 và x ≠ 1) 2) Tính giá trị của biểu thức A tại 3 2 2x = + Bài 3. (2 điểm). Cho hai đường thẳng (d 1 ) : y = (2 + m)x + 1 và (d 2 ) : y = (1 + 2m)x + 2 1) Tìm m để (d 1 ) và (d 2 ) cắt nhau: 2) Với m = – 1 , vẽ (d 1 ) và (d 2 ) trên cùng mặt phẳng tọa độ Oxy rồi tìm tọa độ giao điểm của hai đường thẳng (d 1 ) và (d 2 ) bằng phép tính. Bài 4: (1 điểm) Giải phương trình: 1 9 27 3 4 12 7 2 x x x − + − − − = Bài 5.(4 điểm) Cho đường tròn tâm (O;R) đường kính AB và điểm M trên đường tròn sao cho · 0 60MAB = . Kẻ dây MN vuông góc với AB tại H. 1. Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM): 2. Chứng minh MN 2 = 4 AH .HB . 3. Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó. 4. Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N; E; F thẳng hàng. ----HẾT---- BÀI GIẢI CHI TIẾT ĐỀ SỐ 02 Bài 1: (1,5 điểm) 1) Tìm x để biểu thức 1 1x x + có nghĩa: Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 Biểu thức 1 1x x + có nghĩa 0 0 1 0 1 x x x x ≠ ≠   ⇔ ⇔   + ≥ ≥ −   2) Rút gọn biểu thức : A = ( ) 2 2 3 2 288+ + = ( ) 2 2 2 2.2.3 2 3 2+ + + 144.2 = 4 12 2 18 + + + 12 2 = 22 24 2 + Bài 2. (1,5 điểm) 1) Rút gọn biểu thức A. A = 2 1 x x x x x x − − − − với ( x >0 và x ≠ 1) = ( ) ( ) 2 1 1 1 x x x x x x − − − − = 2 1 1 1 x x x x − − − − = 2 1 1 x x x − + − = ( ) 2 1 1 x x − − = 1x − 2) Tính giá trị của biểu thức A tại 3 2 2x = + Tại 3 2 2x = + giá trị biểu A = ( ) 2 3 2 2 1 2 1 1 2 1 1 2+ − = + − = + − = Bài 3. (2 điểm) 1) Tìm m để (d 1 ) và (d 2 ) cắt nhau: (d 1 ) cắt (d 2 ) ' a a ⇔ ≠ 2 1 2m m ⇔ + ≠ + 2 2 1m m ⇔ − ≠ − 1m ⇔ ≠ 2) Với m = – 1 , vẽ (d 1 ) và (d 2 ) trên cùng mặt phẳng tọa độ Oxy rồi tìm tọa độ giao điểm của hai đường thẳng (d 1 ) và (d 2 ) bằng phép tính. Với m = – 1 ta có: (d 1 ): y = x + 1 và (d 2 ): y = – x + 2 (d 1 ) là đường thẳng đi qua hai điểm: (0; 1) và (– 1; 0) (d 2 ) là đường thẳng đi qua hai điểm: (0; 2) và (2; 0) (các em tự vẽ đồ thị) Tìm tọa độ giao điểm của (d 1 ): y = x + 1 và (d 2 ): y = – x + 2 bằng phép tính: Phương trình hoành độ giao điểm của (d 1 ) và (d 2 ) là nghiệm phương trình: x + 1 = – x + 2 ⇔ x + x = 2 – 1 ⇔ 2x = 1 1 2 x ⇔ = Tung độ giao điểm của (d 1 ) và (d 2 ) là : y = 1 3 1 2 2 + = Tọa độ giao điểm của (d 1 ) và (d 2 ) là: 1 3 ; 2 2    ÷   Bài 4: (1 điểm) 60 ° F E H O N M B A Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 Giải phương trình: 1 9 27 3 4 12 7 2 x x x − + − − − = ( ) ( ) 1 9 3 3 4 3 7 2 x x x ⇔ − + − − − = 1 3 3 3 .2 3 7 2 x x x ⇔ − + − − − = 3 3 7x⇔ − = 7 3 3 x⇔ − = (đk : x ≥ 3) 49 3 9 x ⇔ − = 76 9 x ⇔ = (thỏa mãn điều kiện ) Vậy S = 76 9       Bài 5.(4 điểm) 1. Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM): ΔAMB nội tiếp đường tròn (O) có AB là đường kính nên ΔAMB vuông ở M. Điểm M ∈ (B;BM), AM MB ⊥ nên AM là tiếp tuyến của đường tròn (B; BM) Chứng minh tương tự ta được AN là tiếp tuyến của đường tròn (B; BM) 2. Chứng minh MN 2 = 4 AH .HB Ta có: AB ⊥ MN ở H ⇒ MH = NH = 1 2 MN (1) (tính chất đường kính và dây cung) ΔAMB vuông ở B, MH ⊥ AB nên: MH 2 = AH . HB ( hệ thức lượng trong tam giác vuông) Hay 2 2 MN   =  ÷   AH. HB 2 4 .MN AH HB ⇒ = (đpcm) 3) Chứng minh tam giác BMN là tam giác đều và O là trọng tâm tam giác BMN Từ (1) suy ra AB là là đường trung trực MN nên BM = BN. · · 0 60MAB NMB= = (cùng phụ với · MBA ). Suy ra tam giác BMN đều Tam giác OAM có OM = OA = R và · 0 60MAO = nên nó là tam giác đều . MH ⊥ AO nên HA = HO = 2 OA = 2 OB Tam giác MBN có BH là đường trung tuyến ( vì HM = HN) và OH = 1 2 OB nên O là trọng tâm của tam giác . 4) Chứng minh ba điểm N, E, F thẳng hàng. ΔMNE nội tiếp đường tròn (O) đường kính AB nên nó vuômg ở N MN EN ⇒ ⊥ ΔMNF nội tiếp đường tròn (B) đường kính MF nên nó vuômg ở N MN FN ⇒ ⊥ Do đó ba điểm N, E, F thẳng hàng.---- hết---- ĐỀ SỐ 03 Thời gian tập giải mỗi đề : 90 phút Bài 1.( 1,5điểm) Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 1. Tính giá trị các biểu thức sau: 2 3 2 2− − 2. Chứng minh rằng 3 3 1 1 2 2 + + = Bài 2.(2điểm) Cho biểu thức : P = 4 4 4 2 2 a a a a a + + − + + − ( Với a ≥ 0 ; a ≠ 4 ) 1) Rút gọn biểu thức P. 2) Tính P tại a thoả mãn điều kiện a 2 – 7a + 12 = 0 3) Tìm giá trị của a sao cho P = a + 1. Bài 3. (2điểm) Cho hai đường thẳng : (d 1 ): y = 1 2 2 x + và (d 2 ): y = 2x − + 1. Vẽ (d 1 ) và (d 2 ) trên cùng một hệ trục tọa độ Oxy. 2. Gọi A và B lần lượt là giao điểm của (d 1 ) và (d 2 ) với trục Ox , C là giao điểm của (d 1 ) và (d 2 ) . Tính chu vi và diện tích của tam giác ABC (đơn vị trên hệ trục tọa độ là cm) Bài 4. (4,5điểm) Cho tam giác ABC nhọn . Đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM. 1) Chứng minh AH ⊥ BC . 2) Gọi E là trung điểm AH. Chứng minh ME là tiếp tuyến của đường tròn (O) 3) Chứng minh MN. OE = 2ME. MO 4) Giả sử AH = BC. Tính tang BAC. ---HẾT--- BÀI GIẢI CHI TIẾT ĐỀ SỐ 03 Bài 1.( 1,5điểm) 1. Tính giá trị các biểu thức sau: 2 3 2 2− − = ( ) 2 2 2 2 2 2.1 1− − + = ( ) 2 2 2 1− − = 2 2 1− − = ( ) 2 2 1− − = 2 2 1 1 − + = K _ _ = = H E O N M C B A Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 2. Chứng minh rằng 3 3 1 1 2 2 + + = Biến đổi vế trái ta có: 3 2 3 1 2 2 + + = = ( ) 2 2 3 4 + = 4 2 3 4 + = ( ) 2 3 1 2 + = 3 1 2 + Vậy 3 3 1 1 2 2 + + = Bài 2.(2điểm) 1) Rút gọn biểu thức P. P = 4 4 4 2 2 a a a a a + + − + + − ( Với a ≥ 0 ; a ≠ 4 ) = ( ) ( ) ( ) 2 2 2 2 2 2 a a a a a + + − + + − = 2 2a a+ + + = 2 4a + 2) Tính P tại a thoả mãn điều kiện a 2 – 7a + 12 = 0 Ta có: a 2 – 7a + 12 = 0 2 3 4 12 0a a a ⇔ − − + = ( ) ( ) 3 4 3 0a a a ⇔ − − − = ( ) ( ) 3 4 0a a ⇔ − − = 3a ⇔ = (thỏa mãn đk) ; a = 4( loại) Với a = 3 ( ) 2 2 3 4 3 1P⇒ = + = + = 3 1 + 3) Tìm giá trị của a sao cho P = a + 1 P = a + 1 ⇔ 2 4a + = a + 1 2 3 0a a⇔ − − = ( ) ( ) 3 1 0a a⇔ − + = . Vì 0 1 0a a≥ ⇒ + ≠ . Do đó: 3 0 9a a− = ⇔ = (thỏa mãn đk) Vậy : P = a + 1 9a ⇔ = Bài 3. (2điểm) (d 1 ): y = 1 2 2 x + và (d 2 ): y = 2x − + 1. Vẽ (d 1 ) và (d 2 ) trên cùng một hệ trục tọa độ Oxy. (d 1 ) là đường thẳng đi qua hai điểm (0; 2) và ( ) 4;0 − (d 2 ) là đường thẳng đi qua hai điểm (0; 2) và ( ) 2;0 ( các em tự vẽ hình để đối chiếu câu 2 ) Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 2. Tính chu vi và diện tích của tam giác ABC (d 1 ) và (d 2 ) cùng cắt nhau tại một điểm trên trục tung có tung độ bằng 2 Áp dụng định lý Pi ta go cho các tam giác AOC và BOC vuông ở O ta được: 2 2 4 2 20 2 5AC = + = = ; 2 2 2 2 8 2 2BC = + = = Chu vi tam giác ABC : AC + BC + AB = 2 5 2 2 6 13,30 + + ≈ (cm) Diện tích tam giác ABC : 2 1 1 . . .2.6 6 2 2 OC AB cm = = Bài 4. (4,5 điểm) 1) Chứng minh AH ⊥ BC . ΔBMC và ΔBNC nội tiếp đường tròn (O) đường kính BC Suy ra · · 0 90BMC BNC= = . Do đó: BN AC ⊥ , CM AB ⊥ , Tam giác ABC có hai đường cao BN , CM cắt nhau tại H Do đó H là trực tâm tam giác. Vậy AH ⊥ BC. 2) Gọi E là trung điểm AH. Chứng minh ME là tiếp tuyến của đường tròn (O) OB = OM (bk đường tròn (O)) ⇒ ΔBOM cân ở M. Do đó: · · OMB OBM= (1) ΔAMH vuông ở M , E là trung điểm AH nên AE = HE = 1 2 AH . Vậy ΔAME cân ở E. Do đó: · · AME MAE = (2) Từ (1) và (2) suy ra: · · · · OMB AME MBO MAH+ = + . Mà · · 0 90MBO MAH+ = (vì AH ⊥ BC ) Nên · · 0 90OMB AME+ = . Do đó · 0 90EMO = . Vậy ME là tiếp tuyến của đường tròn (O). 3) Chứng minh MN. OE = 2ME. MO OM = ON và EM = EN nên OE là đường trung trực MN. Do đó OE ⊥ MN tại K và MK = 2 MN . ΔEMO vuông ở M , MK ⊥ OE nên ME. MO = MK . OE = 2 MN .OE. Suy ra: MN. OE = 2ME. MO 4) Giả sử AH = BC. Tính tang BAC. ΔBNC và ΔANH vuông ở N có BC = AH và · · NBC NAH = (cùng phụ góc ACB) ΔBNC = ΔANH (cạnh huyền, góc nhọn) ⇒ BN = AN. ΔANB vuông ở N · 1 BN tg NAB AN ⇒ = = . Do đó: tang BAC =1. -------HẾT------ ĐỀ SỐ 04 Thời gian tập giải : 90 phút Bài 1. (2,5 điểm) 1. Trục căn thức ở mẫu của các biểu thức sau: a) 2009 2009 b) 1 2010 2009− 2. Rút gọn biểu thức: ( ) ( ) 2 3 . 4 12− + Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 2. Tìm điều kiện cho x để ( ) ( ) 3 1 3. 1x x x x− + = − + . Bài 2. (1,5 điểm) Cho hàm số y = ax + b . Xác định các hệ số a và b trong các trường hợp sau: 1. Đồ thị hàm số là đường thẳng cắt trục tung tại điểm có tung độ bằng 3 và đi qua điểm (2;1). 2. Đồ thị hàm số cắt trục hoành tại điểm có hoành độ có hoành độ bằng – 1 và song song với đường thẳng chứa tia phân giác góc vuông phần tư I và III. Bài 3. (2 điểm) 1. Giải phương trình sau: ( ) 2 2 1 2 1x x− = − 2. Tìm các số nguyên x thỏa mãn: 1 2x − < Bài 4. (4 điểm) Cho tam giác ABC vuông ở A, đường cao AH. Gọi D và E lần lượt là hình chiếu của điểm H trên các cạnh AB và AC. 1. Chứng minh AD. AB = AE. AC 2. Gọi M, N lần lượt là trung điểm của BH và CH. Chứng minh DE là tiếp tuyến chung của hai đường tròn (M; MD) và (N; NE) 3. Gọi P là trung điểm MN, Q là giao điểm của DE và AH . Giả sử AB = 6 cm, AC = 8 cm . Tính độ dài PQ. -----HẾT---- ĐỀ SỐ 05 Thời gian tập giải : 90 phút Bài 1. (1,5 điểm) Rút gọn các biểu thức sau: 1. M = ( ) 3 6 2 3 3 2+ − 2. P = 6 2 3 3 3 − − 3. Q = ( ) 3 3 3 16 128 : 2− Bài 2. (2 điểm) Cho biểu thức : B = 1 4 1 1 2 x x x x − − + + + − (với 0x ≥ ; 4x ≠ ) 1. Rút gọn biểu thức B. 2. Tìm các giá trị của x thỏa mãn B = 3 6x x− + Bài 3. (2 diểm) Cho hàm số y = (m + 2)x – 3 . (m ≠ 2 ) 1. Tìm m để hàm số đã cho nghịch biến trên R. 2. Vẽ đồ thị hàm số khi m = –3 3. Gọi (d) là đường thẳng vẽ được ở câu 2, khi x [ ] 2;5∈ − , tìm giá trị lớn nhất, bé nhất của hàm số. Bài 4. (4,5 điểm) . tập các đề thi kì I. N¨m häc 2 010 - 2011 -ĐỀ SỐ 01 ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC KỲ I NĂM HỌC: 2 010 – 2011 Môn: Toán – Lớp 9 Thời gian làm bài: 90 phút Câu1:. SỐ 04 Thời gian tập giải : 90 phút Bài 1. (2,5 điểm) 1. Trục căn thức ở mẫu của các biểu thức sau: a) 20 09 20 09 b) 1 2 010 20 09 2. Rút gọn biểu thức: (

Ngày đăng: 06/11/2013, 02:11

HÌNH ẢNH LIÊN QUAN

⇒ IK là đường trung bình của hình thang. ⇒IKP OA và O’B. - 10_de_thi_HKI +DA-Toan_9.@
l à đường trung bình của hình thang. ⇒IKP OA và O’B (Trang 3)
(các em tự vẽ hình để đối chiếu câu 2) - 10_de_thi_HKI +DA-Toan_9.@
c ác em tự vẽ hình để đối chiếu câu 2) (Trang 8)
w