Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 18 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
18
Dung lượng
324,82 KB
Nội dung
ˆ ˆ ˆ ˆ ˆ tn ˆ tn k Se( ˆ ) ˆ Se( ˆ ) k tn k Se( ˆ ) ˆ ;t ˆ Se( ) t tn tn k k tn k ˆ t 0,6 ;t Se( ˆ ) 1 CuuDuongThanCong.com tn k https://fb.com/tailieudientucntt tn k tn k ˆ t Se( ˆ ) tn ;t tn k k ˆ t ;t ˆ Se( ) tn tn k k ˆ t ;t ˆ Se( ) tn tn k k R2 f (k 1) ;f (1 R ) (n k ) CuuDuongThanCong.com f (k 1, n k ) https://fb.com/tailieudientucntt R2 f (k f (k 1) f (k 1) (n k ) 1, n k ) f (k ˆ Y tn 1, n k ) k tn k ˆ ) Se(Y ˆ Y X ˆ Y ˆ ) Se(Y 0 ˆ ˆ ) Se(Y X) (X i ˆ Y ˆ 2( tn k ˆ ) Se(Y (X X ) (X i X ) n ˆ2 Se ( ˆ ) ˆ Y Se(Y0 ) ˆ (1 tn k Se(Y0 ) (X X ) (X i X ) n (1) f (k CuuDuongThanCong.com 1, n k 1) https://fb.com/tailieudientucntt Cov( U t , U t ) Var ( U t ) Var ( U t ) ˆ etet e i2 Cov( U t , U t ) Var ( U t ) ˆ ˆ ˆ ˆ h R 12 d n ) (1 n ).Var ( ˆ ) (1 U2 R 12 R 12 f ˆ (RSS RSS1 ) / ;f RSS1 /(n k 1) CuuDuongThanCong.com (1) f (1,n k 1) https://fb.com/tailieudientucntt U *t Yt* * * X 1*t ˆ* ˆ* ˆ ˆ ˆ Y * * k U *t 1, t ˆ* ˆ X *k k ˆ* j j (1 ) ˆ ˆ X ˆ X 1 k k ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ Y e 2t e 2t ˆˆ e 2t t ˆˆ ˆ ˆ ˆ ˆ Y ˆ ˆ Y ˆ ˆ2 Y ˆ3 ˆm Y Y ˆ2 Y ˆ3 ˆm Y Y ˆ2 ˆ3 Y Y i i ˆm Y i R 22 ( m 1) R 22 ˆ2 Y CuuDuongThanCong.com ˆ Y https://fb.com/tailieudientucntt ˆ2 Y i (R 32 f (1 R 32 ) R 12 ) ;f f (1,n k 1) (n k 1) ( 2) n i (k 3) 24 (1) a.X bji e i2 e i2 S2 i a.X bji e vi ln e i2 ln a ei ei X ji ei e i2 b ln X ji X ji Vi Vi Vi X ji X 1i R Vi X 2i X 1i X 2i X 12i X 22i Vi w R 2w CuuDuongThanCong.com ( k w 1) https://fb.com/tailieudientucntt ˆ2 Y i RD ˆ1 e i2 ˆ1 (1) R 2D ˆ1 Se( ˆ 1) f ;f f (1, n 2) i i i 2 i X ji X ji ˆ Y i ˆ Y i R *2 R *2 R *2 f (k * 1) ;f (1 R ) (n k * ) ˆ t Se( ˆ ˆ ) 1, n k * ) e i2 (n k ) RSS (n k ) ˆ2 f ( k* * ˆ Se( ˆ ˆ ) ;t tn k Se ( ˆ ) Se ( ˆ ) 2Cov( ˆ , ˆ ) CuuDuongThanCong.com https://fb.com/tailieudientucntt R2 f (k 1) ;f (1 R ) (n k ) (R 12 f (1 R 12 ) (R f R 22 ) nb R ib2 ) nb (1 R ) RSS1 (RSS ib f ˆ Y ˆ ˆ Y tn k ˆ Y ˆ ) Se(Y f ( m ,n k) m ;f f ( m ,n k) (n k ) RSS1 ) m ;f (n k ) RSS nb ) RSS nb ˆ X0 1 1, n k ) (n k ) (RSS f m ;f f (k f ( m ,n m ;f k) f ( m ,n k) (n k ) ˆ X0 X 10 X 02 ˆ k X 0k X 0k 1 ˆ Y tn k ˆ ) Se(Y ˆ / X0 ) Var (Y CuuDuongThanCong.com https://fb.com/tailieudientucntt ˆ / X0 ) Var (Y ˆ2 R2 X ˆ (X'.X) X X Cov( ˆ ).X RSS n k (1 R ).(n 1) (n k ) CuuDuongThanCong.com https://fb.com/tailieudientucntt ˆ ˆ Y i ˆ 2 ˆ1 Se( ˆ ) ˆ ˆ ˆ j CuuDuongThanCong.com j https://fb.com/tailieudientucntt ˆ ˆ ˆI e Y R e u t ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ j j t 29 , 05 ˆ * j Se( ˆ j ) 0,12708 0,06068 CuuDuongThanCong.com https://fb.com/tailieudientucntt ˆ * j Se( ˆ j ) ˆ * j Se( ˆ j ) 0,98339 0,02991 t 029, 025 CuuDuongThanCong.com https://fb.com/tailieudientucntt ˆ Y i ˆ ˆ ˆ ˆ Y i ˆ Y i ˆ * j Se( ˆ j ) ˆ * j Se( ˆ j ) ˆ ˆ j j ˆ * 8,9353 Se( ˆ j ) j Se( ˆ j ) ˆ j > -10) ˆ * j Se( ˆ j ) ˆ * j Se( ˆ j ) CuuDuongThanCong.com https://fb.com/tailieudientucntt ≠ ˆ * j Se( ˆ j ) ˆ ˆ ˆ ˆ ˆ ≠ ˆ * j Se( ˆ j ) ˆ * j Se( ˆ j ) CuuDuongThanCong.com https://fb.com/tailieudientucntt CuuDuongThanCong.com https://fb.com/tailieudientucntt e TL VL KH e u t CN ˆ ˆ ln CN ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ R /(k 1) (1 R ) /(n k ) R /(k 1) (1 R ) /(n k ) f (k ˆ j j t 12 , 05 ˆ * 0,595124 Se( ˆ ) j Se( ˆ j ) ˆ j j ˆ ˆ 0,99790 /( 1) (1 0,99790) /(16 4) 1, n k ) ˆ ˆ 1, n k ) f 0(,305,13) 1, n k ) f (k f (k CuuDuongThanCong.com https://fb.com/tailieudientucntt ˆ * j Se( ˆ j ) ˆ * 0,38846 0,5 0,088688 j Se( ˆ j ) t 12 , 025 R *2 (RSS** RSS* ) / RSS* /(n k 1) ˆ (1) f (1,n k 1) * j Se( ˆ j ) ˆ * j Se( ˆ j ) 0,9252 0,152 t 12 , 025 CuuDuongThanCong.com https://fb.com/tailieudientucntt CuuDuongThanCong.com https://fb.com/tailieudientucntt