Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 98 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
98
Dung lượng
1,17 MB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI - LUẬN VĂN THẠC SĨ KHOA HỌC NGHIÊN CỨU ÁP DỤNG PHƯƠNG PHÁP ĐIỀU KHIỂN DỰ BÁO TRÊN CƠ SỞ HỆ LOGIC MỜ NGÀNH: ĐIỀU KHIỂN TỰ ĐỘNG MÃ SỐ: ĐỖ HỒNG VÂN Người hướng dẫn khoa học: PGS.TS PHAN XUÂN MINH HÀ NỘI 2008 ĐỖ HỒNG VÂN BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI - LUẬN VĂN THẠC SĨ KHOA HỌC NGÀNH: ĐIỀU KHIỂN TỰ ĐỘNG ĐIỀU KHIỂN TỰ ĐỘNG NGHIÊN CỨU ÁP DỤNG PHƯƠNG PHÁP ĐIỀU KHIỂN DỰ BÁO TRÊN CƠ SỞ HỆ LOGIC MỜ ĐỖ HỒNG VÂN 2006 - 2008 Hà Nội 2008 HÀ NỘI 2008 LỜI CAM ĐOAN Tôi xin cam đoan cơng trình nghiên cứu thực Các số liệu, kết nêu luận văn trung thực chưa công bố cơng trình khoa học Tác giả luận văn ĐỖ HỒNG VÂN Trang MỤC LỤC CHƯƠNG I TỔNG QUAN VỀ ĐIỀU KHIỂN DỰ BÁO DỰA THEO MƠ HÌNH 1.1 Giới thiệu chung 1.2 Khái niệm điều khiển dự báo dựa theo mơ hình 11 1.3 Lưu đồ thuật toán điều khiển dự báo theo mơ hình 13 1.4 Các khối chức điều khiển dự báo theo mô hình 14 1.4.1 Khối tạo “Tạo tín hiệu chuẩn” 14 1.4.2 Khối “Mơ hình” 15 1.4.3 Khối “Hàm mục tiêu” 20 1.4.4 Khối “Tối ưu hóa” 21 CHƯƠNG II 22 MÔ HÌNH MỜ DỰ BÁO 22 2.1 Hệ thống suy luận mờ 22 2.2 Xây dựng mơ hình mờ dự báo cho hệ phi tuyến 22 2.3 Cấu trúc hệ mờ dự báo cho đối tượng phi tuyến 24 2.4 Lựa chọn thành phần vector hồi quy 25 2.5 Tính tốn, chỉnh định thơng số cho mơ hình mờ 26 2.5.1 Bình phương cực tiểu mẻ (Batch Least Squares) 27 2.5.2 Bình phương cực tiểu hồi quy (Recursive Least Squares) 29 2.5.3 Chuyển động ngược hướng gradient (Gradient Descent) 32 CHƯƠNG III 34 THUẬT TỐN ĐIỀU KHIỂN DỰ BÁO DỰA THEO MƠ HÌNH 34 3.1 Phương pháp giải thuật di truyền (Genetic Algorithm) 34 3.1.1 Mã hóa nhiễm sắc thể 37 Trang 3.1.2 Khởi tạo quần thể 38 3.1.3 Xây dựng hàm thích nghi 38 3.1.4 Các phép toán thuật toán di truyền 38 3.1.5 Cấu trúc thuật toán di truyền tổng quát 42 3.2 Phương pháp rẽ nhánh giới hạn (Branch and Bound) 44 3.2.1 Nguyên lý hoạt động 44 3.2.2 Ưu, nhược diểm phương pháp hướng khắc phục 46 3.2.2.1 Ưu nhược điểm phương pháp 46 3.2.2.2 Phương pháp khắc phục nhược điểm 48 CHƯƠNG IV 50 ỨNG DỤNG BỘ ĐIỀU KHIỂN MPC TRÊN CƠ SỞ HỆ LOGIC MỜ CHO ĐỐI TƯỢNG CÔNG NGHIỆP 50 4.1 Đối tượng mô 50 4.2 Mô hệ sử dụng điều khiển PID kinh điển 51 4.3 Xây dựng mơ hình mờ dự báo cho đối tượng “Lò nhiệt độ” 52 4.3.1 Xác định phần tử hồi quy thích hợp ( ϕ ) 52 4.3.2 Xác định cấu trúc mơ hình mờ 53 4.3.3 Xác định tham số thích hợp cho mơ hình mờ ( θ ) 54 4.3.4 Thực thi thuật tốn xây dựng mơ hình mờ dự báo 55 4.3.5 Kết nhận dạng 57 4.4 Xây dựng điều khiển theo phương pháp Giải thuật di truyền 64 4.4.1 Khởi tạo quần thể ban đầu 64 4.4.2 Giải mã nhiễm sắc thể 64 4.4.3 Tái sinh 64 4.4.4 Lai ghép 65 4.4.5 Đột biến 65 Trang 4.4.6 Thực thi điều khiển GA 65 4.4.7 Kết mô điều khiển GA 72 Thời gian bước tính giảm xuống cịn khoảng 1.53s 77 Xây dựng điều khiển Rẽ nhánh giới hạn – B&B 77 4.5.1 Chỉnh định hệ số tỉ lệ γ 77 4.5 4.5.2 Thực thi điều khiển B&B 81 4.5.3 Kết mô điều khiển B&B 88 TÀI LIỆU THAM KHẢO 94 Trang DANH MỤC HÌNH VẼ Hình 1 Lưu đồ thuật tốn MPC 13 Hình Sơ đồ khối hệ thống điều khiển dự báo 14 Hình Quĩ đạo quy chiếu 15 Hình Đáp ứng xung 17 Hình Đáp ứng bước nhảy 18 Hình Tìm kiếm để chọn thành phần hồi quy 26 Hình Bánh xe quay Roulette 39 Hình Sơ đồ thực thi giải thuật di truyền 43 Hình 3 Sơ đồ minh họa Branch and Bound 44 Hình Mơ hình simulink đối tượng điều khiển khơng có nhiễu 50 Hình Mơ hình simulink đối tượng điều khiển có nhiễu 50 Hình Bộ ĐK PID: Đáp ứng khơng có nhiễu 51 Hình 4 Bộ ĐK PID: Đáp ứng có nhiễu 51 Hình Kết thu thập liệu từ đối tượng 58 Hình Kết huấn luyện kiểm chứng mơ hình mờ dự báo 59 Hình Mơ hình mờ dự báo đối tượng 60 Hình Các hàm membership ứng với đầu vào thứ nhất: y(k-1) 61 Hình Các hàm membership ứng với đầu vào thứ hai: u(k-1) 61 Hình 10 Các hàm membership ứng với đầu vào thứ ba: u(k-2) 62 Hình 11 Các hàm membership đầu 62 Hình 12 Hệ luật mơ hình mờ dự báo thu 63 Hình 13 Bộ ĐK GA: lamda=0.01; Hp=3; num_bit=10; num_chro=60 (khơng có nhiễu) 72 Hình 14 Bộ ĐK GA: lamda=0.01; Hp=3; num_bit=10; num_chro=60 (khi có nhiễu) 72 Trang Hình 15 Bộ ĐK GA: lamda=0.01; Hp=5; num_bit=10; num_chro=60 (khơng có nhiễu) 73 Hình 16 Bộ ĐK GA: lamda=0.01; Hp=5; num_bit=10; num_chro=60 (khi có nhiễu) 74 Hình 17 Bộ ĐK GA: lamda=0.3; Hp=5; num_bit=10; num_chro=60 (khơng có nhiễu) 75 Hình 18 Bộ ĐK GA: lamda=0.01; Hp=3; num_bit=10; num_chro=60 (khi có nhiễu) 75 Hình 19 Bộ ĐK GA: lamda=0.3; Hp=5; num_bit=8; num_chro=40 (khơng có nhiễu) 76 Hình 20 Bộ ĐK GA: lamda=0.3; Hp=5; num_bit=8; num_chro=40 (khi có nhiễu) 77 Hình 21 Mơ hình mờ chỉnh định hệ số tỉ lệ γ 78 Hình 22 Các hàm membership ứng với đầu vào eˆ ( k + Hp ) 79 Hình 23 Các hàm membership ứng với đầu vào ∆e ( k ) 79 Hình 24 Hệ luật cho mơ hình mờ chỉnh định hệ số γ 80 Hình 25 Các hàm membership đầu mơ hình mờ chỉnh định γ 81 Hình 26 Bộ ĐK BB: lamda=0.1; Hp=2; NN=7 (khơng có nhiễu) 88 Hình 27 Bộ ĐK BB: lamda=0.1; Hp=2; NN=7 (khi có nhiễu) 89 Hình 28 Bộ ĐK BB: lamda=0.1; Hp=10; NN=7 (khơng có nhiễu) 90 Hình 29 Bộ ĐK BB: lamda=0.1; Hp=10; NN=7 (khi có nhiễu) 90 Hình 30 Bộ ĐK BB: lamda=0.3; Hp=10; NN=7 (khơng có nhiễu) 91 Hình 31 Bộ ĐK BB: lamda=0.3; Hp=10; NN=7 (khi có nhiễu) 91 Hình 32 Bộ ĐK BB: lamda=0.3; Hp=10; NN=5 (khơng có nhiễu) 92 Hình 33 Bộ ĐK BB: lamda=0.3; Hp=10; NN=5 (khi có nhiễu) 93 Trang MỞ ĐẦU Phương pháp điều khiển dự báo đời cách khoảng hai thập kỷ có nhiều ứng dụng thành cơng cơng nghiệp (Richalet 1993) Hiện nay, điều khiển dự báo chiến lược điều khiển sử dụng phổ biến việc điều khiển trình Bộ điều khiển dự báo dùng mơ hình để đốn trước đáp ứng tương lai đối tượng điều khiển thời điểm rời rạc phạm vi dự báo định Dựa vào đáp ứng dự báo này, thuật toán tối ưu hố sử dụng để tính tốn chuỗi tín hiệu điều khiển tương lai phạm vi điều khiển cho sai lệch đáp ứng dự báo mơ hình tín hiệu chuẩn cho trước tối thiểu Chiến lược điều khiển dự báo Phương pháp điều khiển dự báo phương pháp tổng quát thiết kế điều khiển miền thời gian áp dụng cho hệ tuyến tính hệ phi tuyến, nhiên thực tế, việc áp dụng chiến lược điều khiển dự báo cho hệ phi tuyến gặp nhiều khó khăn: - Thứ phải xây dựng mơ hình để dự báo xác trạng thái trình cần điều khiển phạm vi dự báo Đối với hệ phi tuyến, việc xây dựng mơ hình tốn học xác tốn khó đặc tính phi tuyến đa dạng Trang - Thứ hai phải giải tốn tối ưu phi tuyến để tính tốn chuỗi tín hiệu điều khiển phạm vi điều khiển, thường tốn tối ưu khơng lồi có nhiều cực trị cục Tất toán tối ưu hoá phi tuyến thuật tốn lặp địi hỏi số lượng phép tính lớn, điều làm hạn chế khả áp dụng chiến lược điều khiển dự báo vào hệ thống tốc độ cao Các nghiên cứu thiết kế điều khiển dự báo cho hệ phi tuyến chủ yếu tập trung vào việc giải hai khó khăn vừa nêu Trong năm gần đây, lý thuyết mờ phát triển mạnh áp dụng thành cơng vào tốn điều khiển nhận dạng hệ phi tuyến Mơ hình mờ Tagaki – Sugeno mơ hình mờ điển hình có nhiều ưu điểm như: rút từ liệu vào quan sát cách dùng kỹ thuật phân nhóm, tốc độ tính tốn nhanh cho kết xác Nhiều thuật tốn tối ưu hố khác áp dụng để tìm tín hiệu điều khiển dự báo tối ưu cho hệ phi tuyến, thuật tốn có ưu điểm khuyết điểm định (Roubos đồng tác giả, 1999) Phương pháp đơn giản tìm lời giải tối ưu cho mơ hình tuyến tính cục bộ, tín hiệu điều khiển hệ thống tính trung bình có trọng số lời giải cục theo hệ qui tắc mờ Phương pháp có khuyết điểm tín hiệu điểu khiển suy từ lời giải tối ưu cục chưa lời giải tối ưu cho hệ phi tuyến Thuật toán QP (Quadratic Programing) SQP (Sequential Quadratic Programing) thuật toán thơng dụng để tìm lời giải tốn tối ưu phi tuyến khơng ràng buộc có ràng buộc, thuật tốn tìm kiếm lời giải tối ưu dựa vào đạo hàm nên dễ rơi vào cực trị cục Để khắc phục khó khăn trên, luận văn xin đề xuất phương án điều khiển dự báo hệ phi tuyến dựa vào mơ hình mờ Tagaki – Sugeno hai thuật toán tối ưu hoá giải thuật di truyền (Genetic Algorithm) thuật toán Trang 81 Hình 25 Các hàm membership đầu mơ hình mờ chỉnh định γ 4.5.2 Thực thi điều khiển B&B Bộ điều khiển B&B xây dựng hàm sau: out=mpc_BB(myfis, TDLy, TDLu, lamda, model, Ts, range, range_du, gamafis, Hc, Hp, NN, anpha, Amp, K_fb, Tmax); Trong đó: myfis: mơ hình mờ dự báo đối tượng điều khiển TDLy ,TDLu: đường dây trễ y đường dây trễ u lamda: trọng số phiếm hàm mục tiêu model: đối tượng cần điều khiển Ts: chu kỳ trích mẫu range: dải giá trị đầu vào rang_du: dải biến thiên du gamafis: mô hình mờ chỉnh định hệ số tỉ lệ γ Hc: giới hạn điều khiển Hp: giới hạn dự báo Trang 82 NN: số mức lượng tử biến thiên tín hiệu điều khiển anpha: hệ số lọc tín hiệu đặt Amp: biên độ tín hiệu đặt K_fb: hệ số khuếch đại mạch phản hồi Tmax: thời gian mô % MAIN LOOP======================================== TDLy=[1]; TDLu=[1 2]; mpc_BB(myfis,TDLy,TDLu,0.1,model,Ts,[0 1],[-0.5 0.5],gamafis_vdk,1,10,7,0,0.7,1,200); %================================================ function out=mpc_BB(myfis,TDLy,TDLu,lamda,model,Ts,range,range_du,gamafis,Hc,Hp,N N,anpha,Amp,K_fb,Tmax) % NL_model01,dt_nhiet01; TDL_max=max([TDLy TDLu err_Hp = Amp; % sai lech du bao tai thoi diem t+Hp max_time = 1000; time=Ts*(0:max_time)'; ref = Amp*ones(1,length(time)); % Tin hieu dat la hang so ref(60:end) = ref(60:end) -0.4; ref(101:end) = ref(101:end) + 0.25;% ref=[zeros(1,TDL_max) ref]; ref_or=ref; y_res = 0*time; u_res = y_res; out=u_res; u = 0*time; y = 0*time; % khai bao J J_cost = zeros(Hc,NN); uh=range(2); ul=range(1); du_max=range_du(2); du_min=range_du(1); g=u; slmh=y; % main loop u_opt = uh; % gia tri tin hieu dieu khien toi uu Jl = 0.0001; % = uoc luong t1 = clock; Trang 83 warning('off','all'); u_temp1=0; sig=0.01;e_mu1=0;e_mh1=0; for t=(TDL_max+1):Tmax to=time(1:t); [to,x,y_temp]=sim(model,to,[],[to,[u(1:t-1);u(t-1)]]); y(t) = y_temp(t); % tinh dau theo mo hinh y_mu=fisval(myfis,TDLy,TDLu,y,u,t); e_mh=(y(t)-y_mu); slmh(t)=e_mh; e_mu=0.2929*e_mh1+0.2929*e_mh+0.4142*e_mu1; d_model=K_fb*e_mu; e_mu1=e_mu;e_mh1=e_mh; ref(t:t+Hp)=ref_or(t:t+Hp)-d_model; derr_t=(ref(t)-ref(t-1))-(y(t)-y(t-1)); % -t0 = clock; y_t=y(t); if y_tdu_max; du_h=du_max;end if du_luh;u(t)=uh;elseif u(t)