+ An trả lời: còn nếu tôi cho bạn các bưu ảnh hoa của tôi thì số bưu ảnh của tôi gấp bốn lần số bưu ảnh của bạn. Tính số bưu ảnh của mỗi người.. Tính quãng đường mỗi người đã đi. Chứng m[r]
(1)ĐỀ THI HỌC SINH GIỎI TOÁN LỚP 7
ĐỀ SỐ 1:
(Thời gian làm 120 phút) Bài Tìm giá trị n nguyên dương:
a)
.16
n n
; b) 27 < 3n < 243
Bài Thực phép tính:
1 1 1 49
( )
4.9 9.14 14.19 44.49 89
Bài a) Tìm x biết: |2x+3|=x+2
b) Tìm giá trị nhỏ A = |x−2006|+|2007−x| Khi x thay đổi
Bài Hiện hai kim đồng hồ 10 Sau kim đồng hồ nằm đối diện đường thẳng
Bài Cho tam giác vuông ABC ( A = 1v), đường cao AH, trung tuyến AM Trên tia đối tia MA lấy điểm D cho DM = MA Trên tia đối tia CD lấy điểm I cho CI = CA, qua I vẽ đường thẳng song song với AC cắt đường thẳng AH E Chứng minh: AE = BC
ĐỀ SỐ 2:
ĐỀ THI HỌC SINH GIỎI
MÔN TOÁN LỚP (Thời gian làm 120 phút)
Bài 1:(4 điểm)
a) Thực phép tính:
12 10
6 9 3
2
2 25 49
A
125.7 14
2
b) Chứng minh : Với số nguyên dương n thỡ :
2
3n 2n 3n 2n
chia hết cho 10
Bài 2:(4 điểm)
(2)a
1
3,
3 5
x
b
1 11
7 x x
x x
Bài 3: (4 điểm)
Số A chia thành số tỉ lệ theo
2 : :
5 Biết tổng cỏc bỡnh phương ba số 24309 Tỡm số A
a) Cho a c
c b Chứng minh rằng:
2 2
a c a
b c b
Bài 4: (4 điểm)
Cho tam giác ABC, M trung điểm BC Trên tia đối của tia MA lấy điểm E cho ME = MA Chứng minh rằng:
a) AC = EB AC // BE
b) Gọi I điểm AC ; K điểm EB cho AI = EK Chứng minh ba điểm I , M , K thẳng hàng
c) Từ E kẻ EH BC HBC Biết HBE = 50o ; MEB =25o Tính HEM BME
Bài 5: (4 điểm)
Cho tam giác ABC cân A có A 20 0, vẽ tam giác DBC (D nằm tam giác ABC) Tia phân giác góc ABD cắt AC M Chứng minh:
a) Tia AD phân giác góc BAC b) AM = BC
ĐÁP ÁN ĐỀ 1TỐN 7 Bài Tìm giá trị n nguyên dương: (4 điểm câu điểm) a)
1
.16
n n
; => 24n-3 = 2n => 4n – = n => n = 1
b) 27 < 3n < 243 => 33 < 3n < 35 => n = 4
Bài Thực phép tính: (4 điểm)
1 1 1 49
( )
4.9 9.14 14.19 44.49 89
=
1 1 1 1 1 (1 49)
( )
5 9 14 14 19 44 49 12
(3)=
1 1 (12.50 25) 5.9.7.89
( )
5 49 89 5.4.7.7.89 28
Bài 3. (4 điểm câu điểm) a) Tìm x biết: |2x+3|=x+2 Ta có: x + ¿ => x ¿ -
+ Nếu x ¿ -
2 |2x+3|=x+2 => 2x + = x + => x = - (Thoả mãn) + Nếu - ¿ x < -
3
2 Thì |2x+3|=x+2 => - 2x - = x + => x = -
3 (Thoả mãn)
+ Nếu - > x Khơng có giá trị x thoả mãn
b) Tìm giá trị nhỏ A = |x−2006|+|2007−x| Khi x thay đổi + Nếu x < 2006 thì: A = - x + 2006 + 2007 – x = - 2x + 4013
Khi đó: - x > -2006 => - 2x + 4013 > – 4012 + 4013 = => A > + Nếu 2006 ¿ x ¿ 2007 thì: A = x – 2006 + 2007 – x =
+ Nếu x > 2007 A = x - 2006 - 2007 + x = 2x – 4013 Do x > 2007 => 2x – 4013 > 4014 – 4013 = => A > Vậy A đạt giá trị nhỏ 2006 ¿ x ¿ 2007
Bài Hiện hai kim đồng hồ 10 Sau kim đồng hồ nằm đối diện đường thẳng (4 điểm mỗi)
Gọi x, y số vòng quay kim phút kim 10giờ đến lúc kim đối đường thẳng, ta có:
x – y =
3 (ứng với từ số 12 đến số đông hồ) x : y = 12 (Do kim phút quay nhanh gấp 12 lần kim giờ) Do đó:
x y=
12 =>
x 12=
y 1=
x−y
11 = 3:11=
(4)=> x = 12
33(vòng) =>x=
11 (giờ)
Vậy thời gian để kim đồng hồ từ 10 đến lúc nằm đối diện
một đường thẳng
11 giờ
Bài Cho tam giác vuông ABC ( A = 1v), đường cao AH, trung tuyến AM Trên tia đối tia MA lấy điểm D cho DM = MA Trên tia đối tia CD lấy điểm I cho CI = CA, qua I vẽ đường thẳng song song với AC cắt đường thẳng AH E Chứng minh: AE = BC (4 điểm mỗi)
Đường thẳng AB cắt EI F Δ ABM = Δ DCM vì:
AM = DM (gt), MB = MC (gt), AMB = DMC (đđ) => BAM = CDM
=>FB // ID => ID ¿ AC
Và FAI = CIA (so le trong) (1) IE // AC (gt) => FIA = CAI (so le trong) (2) Từ (1) (2) => Δ CAI = Δ FIA (AI chung)
=> IC = AC = AF (3) E FA = 1v (4)
Mặt khác EAF = BAH (đđ), BAH = ACB ( phụ ABC)
=> EAF = ACB (5) Từ (3), (4) (5) => Δ AFE = Δ CAB
=>AE = BC ĐÁP ÁN ĐỀ TOÁN 7 Bài 1:(4 điểm):
a) (2 điểm)
D B
A
H C
I F
E
(5) 10
12 10 12 12 10
6 9 3 12 12 9 3
2
12 10
12 3
10 12
12
2 25 49 3 7
2 3 7 125.7 14
2
2
5
2
1 10
6
A
b) (2 điểm)
3n2 2n23n 2n= 3n23n 2n2 2n =
2
3 (3n 1) (2n 1)
=3 10 10 2n n n n110 = 10( 3n -2n)
Vậy 3n2 2n23n 2n 10 với n số nguyên dương
Bài 2:(4 điểm)
a) (2 điểm)
2 3 3
1 4 16
3,
3 5 5
1 14
3 5
1 x x x x x x x
x
b) (2 điểm)
1 11
1 10
7
7
(6)
1 10
10
7
1 ( 7)
7
( 7)
7
10 x x x x x x x x
x x
Bài 3: (4 điểm)
a) (2,5 điểm)
Gọi a, b, c ba số chia từ số A
Theo đề ta có: a : b : c =
2 : : 6 (1)
và a2 +b2 +c2 = 24309 (2)
Từ (1)
2
5
a b c
= k
2
; ;
5
k a k b k c
Do (2)
2( ) 24309 25 16 36
k
k = 180 k =180
+ Với k =180, ta được: a = 72; b = 135; c = 30 Khi ta có số A = a + b + c = 237
+ Với k =180, ta được: a = 72; b =135; c =30 Khi ta có só A =72+( 135) + (30) = 237 b) (1,5 điểm)
Từ
a c
c b suy c2 a b.
2 2
2 2
a c a a b b c b a b
= ( ) ( )
a a b a b a b b
Bài 4: (4 điểm)
a/ (1điểm) Xét AMC EMB có :
(7)AM = EM (gt )
AMC = EMB (đối đỉnh ) BM = MC (gt )
Nên : AMC = EMB (c.g.c ) AC = EB
Vỡ AMC = EMB MAC = MEB
(2 góc có vị trí so le tạo đường thẳng AC EB cắt đường thẳng AE ) Suy AC // BE
b/ (1 điểm )
Xét AMI EMK có :
AM = EM (gt )
MAI = MEK ( vỡ AMCEMB ) AI = EK (gt )
Nên AMI EMK ( c.g.c ) Suy AMI = EMK
Mà AMI + IME = 180o ( tính chất hai góc kề bù ) EMK + IME = 180o
Ba điểm I;M;K thẳng hàng
c/ (1,5 điểm )
Trong tam giác vuông BHE ( H = 90o ) có HBE = 50o
HBE
= 90o - HBE = 90o - 50o =40o
HEM
= HEB - MEB = 40o - 25o = 15o
BME góc ngồi đỉnh M HEM
Nên BME = HEM + MHE = 15o + 90o = 105o ( định lý góc ngồi tam giác )
Bài 5: (4 điểm)
a) Chứng minh ADB = ADC (c.c.c) suy DAB DAC
Do DAB 20 : 100
b) ABC cân A, mà A200(gt) nên
0
(180 20 ) : 80
ABC
ABC nên DBC600
Tia BD nằm hai tia BA BC suy ABD800 600 200. Tia BM phân giác góc ABD
nên ABM 100
Xét tam giác ABM BAD có:
200
M A
B C
(8)AB cạnh chung ; BAM ABD20 ;0 ABM DAB 100 Vậy: ABM = BAD (g.c.g)
suy AM = BD, mà BD = BC (gt) nên AM = BC
ĐỀ SỐ 3: Câu 4: Tìm cặp số (x; y) biết:
x y
a / ; xy=84
3
1+3y 1+5y 1+7y
b/
12 5x 4x
Câu 5: Tìm giá trị nhỏ lớn biểu thức sau : A = |x+1| +5
B =
x2+15
x2+3
Câu 6: Cho tam giác ABC có Â < 900 Vẽ phía ngồi tam giác hai đoạn thẳng AD vng góc AB; AE vng góc AC
a Chứng minh: DC = BE DC BE
b Gọi N trung điểm DE Trên tia đối tia NA lấy M cho NA = NM Chứng minh: AB = ME ABC = EMA
c Chứng minh: MA BC
ĐÁP ÁN ĐỀ TOÁN
Câu 1: Tìm tất số nguyên a biết a 4 0 a 4
=>a = 0; 1; 2; ; * a = => a =
* a = => a = a = - * a = => a = a = - * a = => a = a = - * a = => a = a = -
Câu 2: Tìm phân số có tử biết lớn
9 10
nhỏ
9 11
Gọi mẫu phân số cần tìm x
Ta có:
9
10 x 11
=>
63 63 63 70 9x 77
(9)Vậy phân số cần tìm
7
Câu 3. Cho đa thức
P (x) = x + 2mx + m Q (x) = x + (2m+1)x + m Tìm m biết P (1) = Q (-1)
P(1) = 12 + 2m.1 + m2 = m2 + 2m + 1 Q(-1) = – 2m – +m2 = m2 – 2m
Để P(1) = Q(-1) m2 + 2m + = m2 – 2m ⇔ 4m = -1 ⇔ m = -1/4
Câu 4: Tìm cặp số (x; y) biết:
x y
a / ; xy=84
3 =>
2 84
4 49 3.7 21 x y xy
=> x2 = 4.49 = 196 => x = 14 => y2 = 4.4 = 16 => x = 4 Do x,y dấu nên:
x = 6; y = 14 x = -6; y = -14
1+3y 1+5y 1+7y
b/
12 5x 4x
áp dụng tính chất dãy tỉ số ta có:
1+3y 1+5y 1+7y 7y 5y 2y 5y 3y 2y
12 5x 4x 4x 5x x 5x 12 5x 12
=>
2
5 12
y y
x x
=> -x = 5x -12
=> x = Thay x = vào ta được:
1
12
y y y
=>1+ 3y = -12y => = -15y => y =
1 15
Vậy x = 2, y =
1 15
thoả mãn đề
(10) A = |x+1| +5
Ta có : |x+1| ¿ Dấu = xảy ⇔ x= -1.
⇒ A ¿ 5.
Dấu = xảy ⇔ x= -1.
Vậy: Min A = ⇔ x= -1.
B =
x2+15
x2+3
=
(x2+3)+12
x2
+3 = + 12
x2+3 Ta có: x ¿ Dấu = xảy ⇔ x = 0
⇒ x + ¿ ( vế dương )
⇒
12
x2+3 ¿ 12
3 ⇒
12
x2+3 ¿ ⇒ 1+
12
x2+3 ¿ 1+ 4
⇒ B ¿ 5
Dấu = xảy ⇔ x = 0
Vậy : Max B = ⇔ x =
Câu 6:
a/
Xét ADC BAF ta có: DA = BA(gt)
AE = AC (gt)
DAC = BAE ( 900 + BAC ) => DAC = BAE(c.g.c )
=> DC = BE
Xét AIE TIC I1 = I2 ( đđ)
E1 = C1( DAC = BAE) => EAI = CTI
=> CTI = 900 => DC BE
b/ Ta có: MNE = AND (c.g.c) => D1 = MEN, AD = ME
mà AD = AB ( gt) => AB = ME (đpcm) (1)
(11)=> BAC = AEM ( )
Ta lại có: AC = AE (gt) ( 3) Từ (1),(2) (3) => ABC = EMA ( đpcm) c/ Kéo dài MA cắt BC H Từ E hạ EP MH
Xét AHC EPA có:
CAH = AEP ( phụ với gPAE ) AE = CA ( gt)
PAE = HCA ( ABC = EMA câu b) => AHC = EPA
=> EPA = AHC => AHC = 900
=> MA BC (đpcm)
ĐỀ SỐ 4: Câu ( điểm)
Thực phép tính :
a- [
6.(−1
3)
2
−3.(−1
3)+1]:(− 3−1)
b-
(23)
3
.(−3
4)
2
.(−1)2003
(25)
2
.(−
12)
3
Câu ( điểm)
a- Tìm số nguyên a để
a2+a+3
a+1 số nguyên
b- Tìm số nguyên x,y cho x-2xy+y=0
Câu ( điểm)
a- Chứng minh a+c=2b 2bd = c (b+d)
a b=
c
d với b,d khác 0
b- Cần số hạng tổng S = 1+2+3+… để số có ba chữ số giống
Câu ( điểm)
Cho tam giác ABC có góc B 450 , góc C 1200 Trên tia đối tia CB lấy điểm D cho CD=2CB Tính góc ADE
Câu ( 1điểm)
Tìm số nguyên tố thoả mãn : x2-2y2=1
ĐÁP ÁN ĐỀ
CÂU HƯỚNG DẪN CHẤM ĐIỂM
1.a Thực theo bước kết -2 cho điểm tối đa 1Điểm
1.b Thực theo bước kết 14,4 cho điểm tối đa 1Điểm
2.a
Ta có :
a2+a+3
a+1 =
a(a+1)+3
a+1 =a+
a+1
(12)a số nguyên nên
a2+a+3
a+1 số nguyên
3
a+1 là số nguyên
hay a+1 ước ta có bảng sau :
a+1 -3 -1
a -4 -2
Vậy với a ¿{−4,−2,0,2}
a2+a+3
a+1 số nguyên
0,25 0,25 0,25
2.b Từ : x-2xy+y=0
Hay (1-2y)(2x-1) = -1
Vì x,y số nguyên nên (1-2y)và (2x-1) số nguyên ta có trường hợp sau :
1−2 y=1
2x−⇒1=−1
¿ x=0
y=0
¿
{¿ ¿ ¿ ¿
Hoặc
1−2 y=−1
2x−⇒1=1
¿ x=1
y=1
¿
{¿¿ ¿ ¿
Vậy có cặp số x, y thoả mãn điều kiện đầu
0,25
0,25 0,25 0,25 3.a Vì a+c=2b nên từ 2bd = c (b+d) Ta có: (a+c)d=c(b+d)
Hay ad=bc Suy
a b=
c
d ( ĐPCM)
0,5 0,5 3.b
Giả sử số có chữ số aaa =111.a ( a chữ số khác 0) Gọi số số hạng tổng n , ta có :
n(n+1)
2 =111a=3 37 a Hay n(n+1) =2.3.37.a
Vậy n(n+1) chia hết cho 37 , mà 37 số nguyên tố n+1<74 ( Nếu n = 74 không thoả mãn )
Do n=37 n+1 = 37 Nếu n=37 n+1 = 38 lúc
n(n+1)
2 =703 khơng thoả mãn Nếu n+1=37 n = 36 lúc
n(n+1)
2 =666 thoả mãn
Vậy số số hạng tổng 36
0,25 0,25
(13)4
B C D
H
A
Kẻ DH Vng góc với AC ACD =600 CDH = 300 Nên CH =
CD
2 ⇒ CH = BC
Tam giác BCH cân C ⇒ CBH = 300 ⇒ ABH = 150 Mà BAH = 150 nên tam giác AHB cân H
Do tam giác AHD vng cân H Vậy ADB = 450+300=750
0,5
0,5 1,0 1,0 Từ : x2-2y2=1suy x2-1=2y2
Nếu x chia hết cho x nguyên tố nên x=3 lúc y= nguyên tố thoả mãn Nếu x khơng chia hết cho x2-1 chia hết cho 2y2 chia hết cho 3 Mà(2;3)=1 nên y chia hết cho x2=19 khơng thoả mãn
Vậy cặp số (x,y) tìm thoả mãn điều kiện đầu (2;3)
0,25 0,25
(14)ĐỀ SỐ 5:
Bài (3đ):1, Tính: P =
1 1 2
2003 2004 2005 2002 2003 2004
5 5 3
2003 2004 2005 2002 2003 2004
2, Biết: 13 + 23 + + 103 = 3025 Tính: S = 23 + 43 + 63 + + 203 3, Cho: A =
3 2
2
3 0, 25
x x xy
x y
Tính giá trị A biết
; x y
số nguyên âm lớn Bài (1đ):Tỡm x biết: 3x + 3x + + 3x + = 117
Bài (1đ):
Một thỏ chạy đường mà hai phần ba đường băng qua đồng cỏ đoạn đường cũn lại qua đầm lầy Thời gian thỏ chạy đồng cỏ nửa thời gian chạy qua đầm lầy
Hỏi vận tốc thỏ đoạn đường lớn ? Tính tỉ số vận tốc thỏ hai đoạn đường ?
Bài (2đ):
Cho ∆ABC nhọn Vẽ phía ngồi ∆ABC ∆ ABD ACE Gọi M giao điểm BE CD Chứng minh rằng:
1, ∆ABE = ∆ADC 2, BMC 1200
Bài (3đ):Cho ba điểm B, H, C thẳng hàng, BC = 13 cm, BH = cm, HC = cm Từ H vẽ tia Hx vng góc với đường thẳng BC Lấy A thuộc tia Hx cho HA = cm
1, ∆ABC ∆ gỡ ? Chứng minh điều
(15)ĐỀ SỐ 6:
Bài (4đ):
Cho đa thức:
A(x) = 2x5 – 4x3 + x2 – 2x +
B(x) = x5 – 2x4 + x2 – 5x + 3
C(x) = x4 + 4x3 + 3x2 – 8x +
16 1, Tính M(x) = A(x) – 2B(x) + C(x) 2, Tính giá trị M(x) x = 0, 25 3, Có giá trị x để M(x) = không ? Bài (4đ):
1, Tỡm ba số a, b, c biết:3a = 2b; 5b = 7c 3a + 5b – 7c = 60 2, Tỡm x biết: 2x x 2 x
Bài (4đ):Tỡm giỏ trị nguyên m n để biểu thức 1, P =
2
6 m có giá trị lớn
2, Q =
3 n n
có giá trị nguyên nhỏ
Bài (5đ):Cho tam giác ABC có AB < AC; AB = c, AC = b Qua M trung điểm của BC kẻ đường vng góc với đường phân giác góc A, cắt đường thẳng AB, AC D, E
1, Chứng minh BD = CE 2, Tính AD BD theo b, c
Bài (3đ):Cho ∆ABC cân A, BAC 1000 D điểm thuộc miền ∆ABC cho DBC 10 ,0 DCB 200.
Tính góc ADB ?
ĐỀ SỐ 7:
Bài (3đ): Tính:1,
3
1 1
6 1
3 3
2, (63 + 62 + 33) : 13
3,
9 1 1 1 1
10 90 72 56 42 30 20 12 2
Bài (3đ):1, Cho
a b c
(16)2, Chứng minh từ hệ thức
a b c d a b c d
ta có hệ thức: a c b d
Bài (4đ): Độ dài ba cạnh tam giác tỉ lệ với 2; 3; Ba chiều cao tương ứng với ba cạnh tỉ lệ với ba số ?
Bài (3đ):Vẽ đồ thị hàm số: y =
2 ;
;
x x
x x
Bài (3đ):
Chứng tỏ rằng:
A = 75 (42004 + 42003 + + 42 + + 1) + 25 số chia hết cho 100
Bài (4đ):
Cho tam giác ABC có góc A = 600 Tia phân giác góc B cắt AC D, tia
phân giác góc C cắt AB E Các tia phân giác cắt I Chứng minh: ID = IE
ĐỀ SỐ 8:
Bài (5đ): 1, Tỡm n ¿ N biết (33 : 9)3n = 729
2, Tính : A = |4
9−(
√2
2 )
2
| +
|0,(4)+
1 3−
2 5−
3
3− 5−
6
|
Bài (3đ): Cho a,b,c ¿ R a,b,c ¿ thoả b2 = ac Chứng minh rằng:
a c =
(a+2007b)2 (b+2007c)2
Bài (4đ):
Ba đội công nhân làm công việc có khối lượng Thời gian hồn thành cơng việc đội ², ²², ²²² 3, 5, ngày Biêt đội ²² nhiều đội ²²² người suất công nhân Hỏi đội có cơng nhân ?
Câu (6đ): Cho ∆ABC nhọn Vẽ phía ngồi ∆ABC ∆ ABD ACE. 1, Chứng minh: BE = DC
2, Gọi H giao điểm BE CD Tính số đo góc BHC Bài (2đ): Cho m, n ¿ N p số nguyờn tố thoả món:
p m−1 =
m+n
p .
Chứng minh : p2 = n + 2.
ĐỀ SỐ 9:
Bài 1: (2 điểm)a, Cho A=(0,8 7+0.8
2
).(1,25.7−4
(17)B=
(11,81+8,19).0,02
9:11,25
Trong hai số A B số lớn lớn lần ?
b) Số A=101998−4 có chia hết cho khơng ? Có chia hết cho khơng ?
Câu 2: (2 điểm)Trên quãng đường AB dài 31,5 km An từ A đến B, Bình từ B đến A Vận tốc An so với Bình 2: Đến lúc gặp nhau, thời gian An so với Bình 3:
Tính qng đường người tới lúc gặp ? Câu 3: a) Cho f (x)=ax2+bx+c với a, b, c số hữu tỉ.
Chứng tỏ rằng: f(−2).f(3)≤0 Biết 13a+b+2c=0
b) Tìm giá trị nguyên x để biểu thức A=
6−x có giá trị lớn nhất.
Câu 4: (3 điểm)Cho ABC dựng tam giác vuông cân BAE; BAE = 900, B E nằm
hai nửa mặt phẳng khác bờ AC Dựng tam giác vuông cân FAC, FAC = 900 F và
C nằm hai nửa mặt phẳng khác bờ AB a) Chứng minh rằng: ABF = ACE
b) FB EC
Câu 5: (1 điểm)Tìm chữ số tận A=195
1890
+29
1969
ĐỀ SỐ 10:
Câu 1: (2 điểm)a) Tính
A=(1,5+1−0,75
2,5+5
3−1,25
+
0,375−0,3+
11 + 12
−0,625+0,5−
11− 12 )
:1890 2005+115
b) Cho B= 3+
1 32+
1 33+
1 34+ +
1 32004+
1 32005
Chứng minh B< . Câu 2: (2 điểm)
a) Chứng minh
a b=
c
d
5a+3b
5a−3b=
5c+3d
5c−3d
(giả thiết tỉ số có nghĩa) b) Tìm x biết:
x−1
2004+
x−2
2003−
x−3
2002=
x−4
2001
Câu 3: (2điểm)a) Cho đa thức f (x)=ax2+bx+c với a, b, c số thực Biết rằng
f(0); f(1); f(2) có giá trị nguyên
Chứng minh 2a, 2b có giá trị nguyên
(18)Câu 4: (3 điểm)
Cho tam giác cân ABC (AB = AC0 Trên cạnh BC lấy điểm D, tia đối tia CB lấy điểm E cho BD = CE Các đường thẳng vng góc với BC kẻ từ D E cắt AB, AC M, N Chứng minh rằng:
a) DM = EN
b) Đường thẳng BC cắt MN trung điểm I MN
c) Đường thẳng vuông góc với MN I ln qua điểm cố định D thay đổi cạnh BC
Câu 5: (1 điểm) Tìm số tự nhiên n để phân số
7n−8
2n−3 có giá trị lớn nhất.
ĐỀ SỐ 11:
Câu 1: (2 điểm)a) Tính:A = (0,75−0,6+ 7+
3 13):(
11 +
11
13+2,75−2,2) B = (
10√1,21
7 +
22√0,25 ):(
5
√49+ √225
9 )
b) Tìm giá trị x để: |x+3|+|x+1|=3x
Câu 2: (2 điểm)a) Cho a, b, c > Chứng tỏ rằng: M=
a a+b+
b b+c+
c
c+a không số
nguyên
b) Cho a, b, c thoả mãn: a + b + c = Chứng minh rằng: ab+bc+ca≤0 .
Câu 3: (2 điểm)
a) Tìm hai số dương khác x, y biết tổng, hiệu tích chúng tỉ lệ nghịch với 35; 210 12
b) Vận tốc máy bay, ô tô tàu hoả tỉ lệ với số 10; Thời gian máy bay bay từ A đến B thời gian tô chạy từ A đến B 16
Hỏi tàu hoả chạy từ A đến B ?
Câu 4: (3 điểm) Cho cạnh hình vng ABCD có độ dài Trên cạnh AB, AD lấy điểm P, Q cho chu vi APQ
Chứng minh góc PCQ 450.
Câu 5: (1 điểm)
Chứng minh rằng: 5+
1 15+
1 25+ +
1 1985<
9 20
ĐỀ SỐ 12:
Bài 1: (2 điểm)a) Chứng minh với số n nguyên dương có: A= 5n(5n+1)−6n(3n+2) 91
(19)Bài 2: ( điểm)a) Tìm số nguyên n cho n2+3 n−1
b) Biết
bz−cy
a =
cx−az
b =
ay−bx c
Chứng minh rằng:
a x=
b y=
c z
Bài 3: (2 điểm)
An Bách có số bưu ảnh, số bưu ảnh người chưa đến 100 Số bưu ảnh hoa An số bưu ảnh thú rừng Bách
+ Bách nói với An Nếu cho bạn bưu ảnh thú rừng tơi số bưu ảnh bạn gấp lần số bưu ảnh
+ An trả lời: cịn tơi cho bạn bưu ảnh hoa tơi số bưu ảnh tơi gấp bốn lần số bưu ảnh bạn
Tính số bưu ảnh người Bài 4: (3 điểm)
Cho ABC có góc A 1200 Các đường phân giác AD, BE, CF
a) Chứng minh DE phân giác ngồi ADB
b) Tính số đo góc EDF góc BED Bài 5: (1 điểm)
Tìm cặp số nguyên tố p, q thoả mãn:
52p+1997=52p2+q2
ĐỀ SỐ 13:
Bài 1: (2 điểm)Tính:
(131 4−2
5 27−10
5 6) 230
1 25 +46
3
(1
10+ 10
3 ):(12 3−14
2 7)
Bài 2: (3 điểm)a) Chứng minh rằng: A=3638+4133 chia hết cho 77.
b) Tìm số nguyên x để B=|x−1|+|x−2| đạt giá trị nhỏ
c) Chứng minh rằng: P(x) =ax3+bx2+cx+d có giá trị nguyên với x nguyên
khi 6a, 2b, a + b + c d số nguyên Bài 3: (2 điểm)a) Cho tỉ lệ thức
a b=
c
d Chứng minh rằng:
ab cd=
a2−b2
c2−d2 ( a+b
c+d)
=a
2 +b2
c2 +d2
b) Tìm tất số nguyên dương n cho: 2n−1 chia hết cho Bài 4: (2 điểm)
Cho cạnh hình vng ABCD có độ dài Trên cạnh AB, AD lấy điểm P, Q cho chu vi APQ Chứng minh góc PCQ 450
(20)Chứng minh rằng: 3a+2b17 ⇔10a+b17 (a, b Z )
ĐỀ SỐ 14:
Bài 1: (2 điểm)
a) Tìm số nguyên dương a lớn cho 2004! chia hết cho 7a
b) Tính
P=
1 2+
1 3+
1 4+ .+
1 2005 2004
1 + 2003
2 + 2002
3 + + 2004 Bài 2: (2 điểm)
Cho
x y+z+t=
y z+t+x=
z t+x+y=
t x+y+z
chứng minh biểu thức sau có giá trị nguyên P=
x+y
z+t +
y+z
t+x +
z+t
x+y+
t+x
y+z
Bài 3: (2 điểm)
Hai xe máy khởi hành lúc từ A B, cách 11 km để đến C Vận tốc người từ A 20 km/h Vận tốc người từ B 24 km/h
Tính quãng đường người Biết họ đến C lúc A, B, C thẳng hàng
Bài 4: (3 điểm)
Cho tam giác nhọn ABC Kẻ AH BC (H BC) Vẽ AE AB AE = AB (E
và C khác phía AC) Kẻ EM FN vng góc với đường thẳng AH (M, N
AH) EF cắt AH O
Chứng minh O trung điểm EF Bài 5: (1 điểm)
So sánh: 5255 2579
ĐỀ SỐ 15:
Câu 1: (2 điểm)Tính :
A=
1 6−
1 39+
1 51
8− 52+
1
68 ; B=512− 512
2 − 512
22 − 512
23 − − 512
210 Câu 2: (2 điểm)
a) Tìm x, y nguyên biết: xy + 3x - y = b) Tìm x, y, z biết:
x z+y+1=
y x+z+1=
z
x+y−2=x+y+z (x, y, z ¿0 )
Câu 3: (2 điểm)
(21)S=3n+2−2n+2+3n−2n chia hết cho 10.
b) Tìm số tự nhiên x, y biết: 7(x−2004)2=23−y2
Câu 4: (3 điểm)
Cho tam giác ABC, AK trung tuyến Trên nửa mặt phẳng không chứa B, bờ AC, kẻ tia Ax vng góc với AC; tia Ax lấy điểm M cho AM = AC Trên nửa mặt phẳng không chứa C, bờ AB, kẻ tia Ay vng góc với AB lấy điểm N thuộc Ay cho AN = AB Lấy điểm P tia AK cho AK = KP Chứng minh:
a) AC // BP b) AK MN
Câu 5: (1 điểm)
Cho a, b, c số đo cạnh tam giác vuông với c số đo cạnh huyền Chứng minh rằng:
a2n+b2n≤c2n ; n số tự nhiên lớn 0.
ĐỀ SỐ 16:
Câu 1: (2 điểm) Tính:
A=
83
1 4+3
16 19
1
(214 17−2
1 34 ) 34
: 24
B=1
3− 8−
1 54−
1 108−
1 180−
1 270−
1 378 Câu 2: ( 2, điểm)
1) Tìm số nguyên m để:
a) Giá trị biểu thức m -1 chia hết cho giá trị biểu thức 2m + b) |3m−1|<3
2) Chứng minh rằng: 3n+2
−2n+4+3n+2n chia hết cho 30 với n nguyên
dương
Câu 3: (2 điểm)
a) Tìm x, y, z biết:
x
2=
y
3 ;
y
4=
z
5 x2−y2=−16
b) Cho f (x)=ax2+bx+c Biết f(0), f(1), f(2) số nguyên
Chứng minh f(x) nhận giá trị nguyên với x nguyên Câu 4: (2,5 điểm)
Cho tam giác ABC có ba góc nhọn, đường cao AH Ở miền ngồi tam giác ABC ta vẽ tam giác vuông cân ABE ACF nhận A làm đỉnh góc vng Kẻ EM, FN vng góc với AH (M, N thuộc AH)
(22)b) Chứng minh: EN // FM Câu 5: (1 điểm)
Cho 2n+1 số nguyên tố (n > 2) Chứng minh 2n−1 hợp số
ĐỀ SỐ 17:
ĐỀ THI HỌC SINH GIỎI
(Thời gian làm 120 phút)
Câu 1: (2 điểm) Tính nhanh: A=
(1+2+3+ +99+100)(1
2− 3−
1 7−
1
9)(63 1,2−21 3,6) 1−2+3−4+ .+99−100
B=(
1 14−
√2 +
3√2 35 ) (−
4 15 )
(101 + 3√2
25 −
√2
5 )
Câu 2: (2 điểm)a) Tính giá trị biểu thức A=3x2−2x+1 với |x|=
1 b) Tìm x nguyên để √x+1 chia hết cho √x−3
Câu 3: ( điểm)
a) Tìm x, y, z biết 3x
8 = 3y
64 = 3z
216 2x2+2y2−z2=1
b) Một ô tô phải từ A đến B thời gian dự định Sau nửa quãng đường ô tô tăng vận tốc lên 20 % đến B sớm dự định 15 phút
Tính thời gian tô từ A đến B Câu 4: (3 điểm)
Cho tam giác ABC, trung tuyến AM Trên nửa mặt phẳng chứa đỉnh C bờ đường thẳng AB dựng đoạn AE vng góc với AB AE = AB Trên nửa mặt phẳng chứa đỉnh B bờ đường thẳng AC dựng đoạn AF vng góc với AC AF = AC Chứng minh rằng:
a) FB = EC b) EF = AM c) AM EF
Câu 5: (1 điểm)
Chứng tỏ rằng: 1− 2+
1 3−
1 4+ .+
1 99−
1 200=
1 101+
1
102+ .+ 199 +
1 200
(23)Câu 1: (2 điểm) a) Thực phép tính:
M=
0,4−2
9+ 11 1,4−7
9+ 11
−
1
3−0,25+ 11
6−0,875+0,7 b) Tính tổng: P=1−
1 10− 15− 3− 28− 6− 21 Câu 2: (2 điểm)
1) Tìm x biết: |2x+3|−2|4−x|=5
2) Trên quãng đường Kép - Bắc giang dài 16,9 km, người thứ từ Kép đến Bắc Giang, người thứ hai từ Bắc Giang đến Kép Vận tốc người thứ so với người thứ hai 3: Đến lúc gặp vận tốc người thứ so với người thứ hai 2: Hỏi gặp họ cách Bắc Giang km ?
Câu 3: (2 điểm)
a) Cho đa thức f(x)=ax2+bx+c (a, b, c nguyên)
CMR f(x) chia hết cho với giá trị x a, b, c chia hết cho b) CMR:
a b=
c
d
7a2+5ac 7a2−5ac=
7b2+5bd
7b2−5bd (Giả sử tỉ số có nghĩa).
Câu 4: (3 điểm)
Cho tam giác ABC có AB < AC Gọi M trung điểm BC, từ M kẻ đường thẳng vng góc với tia phân giác góc A, cắt tia N, cắt tia AB E cắt tia AC F Chứng minh rằng:
a) AE = AF b) BE = CF c) AE=
AB+AC
2 Câu 5: (1 điểm)
Đội văn nghệ khối gồm 10 bạn có bạn nam, bạn nữ Để chào mừng ngày 30/4 cần tiết mục văn nghệ có bạn nam, bạn nữ tham gia
Hỏi có nhiều cách lựa chọn để có bạn tham gia
ĐỀ SỐ 19:
Câu 1: (2 điểm)
a) Tính giá trị biểu thức:
A=[
111 31
3
7−(15−6 19) 45 6+ 6(12−5
1 3)
.(−114
93)] 31 50
b) Chứng tỏ rằng: B=1− 22−
1 32−
1
32− −
1 20042>
(24)Câu 2: (2 điểm)
Cho phân số: C=
3|x|+2
4|x|−5 (x Z)
a) Tìm x Z để C đạt giá trị lớn nhất, tìm giá trị lớn
b) Tìm x Z để C số tự nhiên
Câu 3: (2 điểm) Cho
a b=
c
d Chứng minh rằng: ab cd=
(a+b)2 (c+d)2
Câu 4: (3 điểm)
Cho tam giác vuông cân ABC (AB = AC), tia phân giác góc B C cắt AC AB E D
a) Chứng minh rằng: BE = CD; AD = AE
b) Gọi I giao điểm BE CD AI cắt BC M, chứng minh
MAB; MAC tam giác vuông cân
c) Từ A D vẽ đường thẳng vng góc với BE, đường thẳng cắt BC K H Chứng minh KH = KC
Câu 5: (1 điểm)
Tìm số nguyên tố p cho:
3p2+1 ; 24p2+1 số nguyên tố.
ĐỀ SỐ 20:
Câu 1: a) Thực phép tính:
A=
0,75−0,6+3
7+ 13 2,75−2,2+11
7 + 11
3 ;
B=(−251 3+281)+3 251−(1−281)
b) Tìm số nguyên tố x, y cho: 51x + 26y = 2000
Câu 2: a) Chứng minh rằng: 2a - 5b + 6c 17 a - 11b + 3c 17 (a, b, c Z).
b) Biết
bz−cy
a =
cx−az
b =
ay−bx c
Chứng minh rằng:
a x=
b y=
c z
Câu 3: ( điểm)
(25)Câu 4: (2 điểm)
Cho ABC vuông cân A Gọi D điểm cạnh AC, BI phân giác ABD, đường cao IM BID cắt đường vng góc với AC kẻ từ C N
Tính góc IBN ? Câu 5: (2 điểm)
Số 2100 viết hệ thập phân tạo thành số Hỏi số có chữ số ?
ĐỀ SỐ 21:
Bài 1: (2 điểm)
a) Tính giá trị biểu thức
P=2005 : (
0,375−0,3+
11+ 12
−0,625+0,5−
11− 12
2,5+5
3−1,25 1,5+1−0,75) b) Chứng minh rằng:
12 22+
5 22.32+
7
32 42+ +
19
92 102<1 Câu 2: (2 điểm)
a) Chứng minh với số nguyên dương n thì: 3n+3+3n+1+2n+3+2n+2 chia hết cho 6.
b) Tìm giá trị nhỏ biểu thức: D=|2004−x|+|2003−x|
Câu 3: (2 điểm)
Một ô tô phải từ A đến B thời gian dự định Sau nửa quãng đường ô tô tăng vận tốc lên 20 % đến B sớm dự định 10 phút
Tính thời gian tơ từ A đến B Câu 4: (3 điểm)
Cho tam giác ABC, M trung điểm BC Trên nửa mặt phẳng khơng chứa C có bờ AB, vẽ tia Ax vng góc với AB, tia lấy điểm D cho AD = AB Trên nửa mặt phẳng khơng chứa B có bờ AC vẽ tia Ay vng góc với AC Trên tia lấy điểm E cho AE = AC Chứng minh rằng:
a) DE = AM b) AM DE
Câu 5: (1 điểm)
Cho n số x1, x2, …, xn số nhận giá trị -1 Chứng minh x1 x2 +
x2 x3 + …+ xn x1 = n chia hết cho
ĐỀ SỐ 22:
Bài 1: (2 điểm)
(26)A= (
81,624 : 44
3−4,505)
2
+1253
4
{[(1125)
2
:0,88+3,53]
−(2,75)2}:13
25
b) Chứng minh tổng: S=
22−
1 24+
1
26− +
1 24n−2−
1
24n+ +
1 22002−
1 22004<0,2 Bài 2: (2 điểm)
a) Tìm số nguyên x thoả mãn
2005=|x−4|+|x−10|+|x+101|+|x+990|+|x+1000|
b) Cho p > Chứng minh số p, p + d , p + 2d số nguyên tố d chia hết cho
Bài 3: (2 điểm)
a) Để làm xong công việc, số công nhân cần làm số ngày Một bạn học sinh lập luận số cơng nhân tăng thêm 1/3 thời gian giảm 1/3 Điều hay sai ? ?
b) Cho dãy tỉ số nhau: 2a+b+c+d
a =
a+2b+c+d
b =
a+b+2c+d
c =
a+b+c+2d d
Tính M=
a+b c+d+
b+c d+a+
c+d a+b+
d+a b+c
Bài 4: (3 điểm)
Cho tam giác nhọn ABC, AB > AC phân giác BD CE cắt I a) Tính góc DIE góc A = 600
b) Gọi giao điểm BD CE với đường cao AH ABC M
N Chứng minh BM > MN + NC Bài 5: (1 điểm)
Cho z, y, z số dương Chứng minh rằng:
x
2x+y+z+
y
2y+z+x+
z
2z+x+y≤
(27)ĐỀ SỐ 23:
Bài 1: (2 điểm)
a) Tìm x biết: |x2+|6x−2||=x2+4
b) Tìm tổng hệ số đa thức nhận sau bỏ dấu ngoặc biểu thức: A(x) = (3−4x+x2)2004.(3+4x+x2)2005
Bài 2: (2 điểm)
Ba đường cao tam giác ABC có độ dài 4; 12; x biết x số tự nhiên Tìm x ?
Bài 3: (2 điểm) Cho
x y+z+t=
y z+t+x=
z t+x+y=
t
x+y+z
CMR biểu thức sau có giá trị nguyên:
P=x+y
z+t +
y+z
t+x +
z+t
x+y+
t+x
y+z
Bài 4: (3 điểm)
Cho tam giác ABC vuông A có góc B = α Trên cạnh AC lấy điểm E cho
góc EBA=
3α Trên tia đối tia EB lấy điểm D cho ED = BC Chứng minh tam giác CED tam giác cân
Bài 5: (1 điểm)
Tìm số a, b, c nguyên dương thoả mãn : a3+3a2+5=5b a+3=5c
ĐỀ SỐ 24:
Bài 1: (2 điểm)
a) Tính A=3−32+33−34+ +32003−32004
b) Tìm x biết |x−1|+|x+3|=4 Bài 2: (2 điểm)
Chứng minh rằng: Nếu
x a+2b+c=
y
2a+b−c= z
4a−4b+c
Thì
a x+2y+z=
b
2x+y−z=
c
4x−4y+z
(28)Hai xe máy khởi hành lúc từ A B, cách 11km để đến C (ba địa điểm A, B, C đường thẳng) Vận tốc người từ A 20 km/h Vận tốc người từ B 24 km/h
Tính quãng đường người Biết họ đến C lúc Bài 4: (3 điểm)
Cho tam giác ABC có góc A khác 900, góc B C nhọn, đường cao AH Vẽ các
điểm D, E cho AB trung trực HD, AC trung trực HE Gọi I, K giao điểm DE với AB AC
Tính số đo góc AIC AKB ? Bài 5: (1 điểm)
Cho x = 2005 Tính giá trị biểu thức:
x2005−2006x2004+2006x2003−2006x2002+ −2006x2+2006x−1
ĐỀ SỐ 25:
Câu ( 2đ) Cho:
a b =
b c =
c d
Chứng minh: (
a+b+c
b+c+d)
3
= a
d .
Câu (1đ) Tìm A biết rằng: A =
a b+c =
c a+b =
b c+a .
Câu (2đ) Tìm x∈Z để A Z tìm giá trị đó.
a) A =
x+3
x−2 b) A =
1−2x x+3 .
Câu (2đ) Tìm x:
a) |x−3| = b) ( x+ 2) 2 = 81 c) 5 x + 5 x+ 2 = 650
Câu (3đ) Cho ABC vuông cân A, trung tuyến AM E BC,
BH,CK AE, (H,K AE) Chứng minh MHK vuông cân
Đề số 26: Câu 1: (2đ)
Rút gọn A=
2 20 x x
x x
(29)Ba lớp 7A,7B,7C có 94 học sinh tham gia trồng Mỗi học sinh lớp 7A trồng cây, Mỗi học sinh lớp 7B trồng cây, Mỗi học sinh lớp 7C trồng cây, Hỏi lớp có học sinh Biết số lớp trồng Câu 3: (1,5đ)
Chứng minh
2006
10 53
9
là số tự nhiên Câu 4 : (3đ)
Cho góc xAy = 600 vẽ tia phân giác Az góc Từ điểm B Ax vẽ đường
thẳng song song với với Ay cắt Az C vẽ Bh Ay,CM Ay, BK AC.Chứng minh
rằng
a, K trung điểm AC b, BH =
AC
c, KMC đều Câu 5 (1,5 đ)
Trong kỳ thi học sinh giỏi cấp Huyện, bốn bạn Nam, Bắc, Tây, Đông đoạt giải 1,2,3,4 Biết câu câu nửa sai nửa:
a, tây đạt giải 1, Bắc đạt giải b, Tây đạt giải 2, Đông đạt giải c, Nam đạt giải 2, Đông đạt giải
Em xác định thứ tự giải cho bạn
ĐỀ SỐ 27:
Bài 1: (3 điểm): Tính
1 2
18 (0, 06 : 0,38) : 19
6
Bài 2: (4 điểm): Cho
a c
c b chứng minh rằng:
a)
2 2
a c a
b c b
b)
2 2
b a b a
a c a
Bài 3:(4 điểm) Tỡm x biết:
a)
4
5
x
b)
15
12x 5x
(30)Bài 5: (4 điểm) Cho tam giác ABC cân A có A 20 0, vẽ tam giác DBC (D nằm
trong tam giác ABC) Tia phân giác góc ABD cắt AC M Chứng minh: c) Tia AD phân giác góc BAC
d) AM = BC
Bài 6: (2 điểm): Tỡm x y, biết: 25 y2 8(x 2009)2
ĐỀ SỐ 28:
Bài Tính
1 1
1.6 6.11 11.16 96.101
Bài 2. Tìm giá trị nguyên dương x y, cho:
1 1
x y 5
Bài Tìm hai số dương biết: tổng, hiệu tích chúng tỷ lệ nghịch với số 20, 140
Bài Tìm x, y thoả mãn: x 1 x y 3 x = 3
Bài Cho tam giác ABC có góc ABC = 500 ; góc BAC = 700 Phân giác trong
góc ACB cắt AB M Trên MC lấy điểm N cho góc MBN = 400 Chứng minh:
BN = MC
ĐỀ SỐ 29:
Câu 1: Tìm tất số nguyên a biết a 4 Câu 2: Tìm phân số có tử biết lớn
9 10
nhỏ
9 11
Câu 3: Trong số x, y, z có số dương , số âm số Hỏi số thuộc loại biết:
3
x y y z
Câu 4: Tìm cặp số (x; y) biết:
x y
a, ; xy=84
3
1+3y 1+5y 1+7y
b,
12 5x 4x
Câu 5: Tính tổng:
n
*
3
S 14 (n Z )
2
(31)Câu 6: Cho tam giác ABC có Â < 900 Vẽ phía ngói tam giác hai đoạn thẳng AD
vng góc AB; AE vng góc AC
d Chứng minh: DC = BE DC BE
e Gọi N trung điểm DE Trên tia đối tia NA lấy M cho NA = NM
Chứng minh: AB = ME ABCEMA
f Chứng minh: MA BC
ĐỀ SỐ 30:
Câu 1: So sánh số:
a A 2 22 2 50
B =251+
b 2300 3200
Câu 2: Tìm ba số a, b, c biết a tỉ lệ thuận với 11; b c tỉ lệ nghịch với và 5a - 3b + 2c = 164
Câu 3: Tính nhanh:
1 1 761
3
417 762 139 762 417.762 139
Câu Cho tam giác ACE cho B E hai nửa mặt phẳng đối có bờ AC a Chứng minh tam giác AED cân