Xét ΔIBH vuông tại H có IH < IB (Quan hệ giữa đường vuông góc và đường xiên)... Chứng minh ΔAMB = ΔDMC.[r]
(1)ĐỀ ĐỀ KIỂM TRA GIỮA KÌ II Mơn: Tốn
Thời gian làm bài: 90 phút Bài (2 điểm): Chọn chữ đứng trước phương án trả lời
a) Bậc đơn thức 10x y là:
A B C 10 D Kết khác b) Giá trị biểu thức
3x 1 x
A
3
B
3
C
3
D
2
c) Cho ABC DEF có o
AD90 , BCEF ABC DEF (cạnh huyền – góc nhọn) bổ sung thêm điều kiện:
A AB = EF B B E C AC = DF D Đáp án khác d) Cho ABC có o
A 90 Cạnh lớn cạnh
A BC B AC C AB D Đáp án khác Bài (1, điểm):
Thống kê điểm kiểm tra mơn Tốn học sinh lớp 7A ta kết sau:
8 7 8
8 6 9 7
a) Dấu hiệu gì? Số giá trị bao nhiêu? b) Hãy lập bảng tần số tính số trung bình cộng c) Tìm mốt dấu hiệu
Bài (1 điểm): Tính giá trị biểu thức M5xy 10 3y x2; y3 Bài (1, điểm): Cho hai đơn thức 2
A x y xy
3
3
B 3x y 5x y
a) Thu gọn xác định hệ số, phần biến bậc hai đơn thức A B b) Tính A.B
Bài (3, điểm): Cho ABC vuông A Biết AB = 9cm, AC = 12cm a) Tính BC
b) Trên tia đối tia AB lấy điểm D cho AB = AD Chứng minh CBD
cân
(2)d) Chứng minh: HK // BD Bài (0, điểm): Cho A 2n
3 n
Tìm giá trị nguyên n để A số
(3)ĐÁP ÁN – THANG ĐIỂM ĐỀ
Bài Hướng dẫn Điểm
Bài điểm
a A b C c B d A 2đ
Bài
1,5 điểm
a) Dấu hiệu là: Điểm kiểm tra môn Toán học sinh lớp 7A Số giá trị là: 20
b) Bảng tần số:
Các giá trị (x)
Tần số (n) N=20 Số trung bình cộng X5 6 95,
20
c) Mốt dấu hiệu Mo 8
0,5 đ
0,5 đ
0,5 đ Bài
1 điểm
Thay x = 2; y = vào M ta được: M5 10 3 29 đ
Bài
1,5 điểm
a) A 4x y3
5 có hệ số
5, phần biến x y
3 4, bậc A
7
B 15x y4 có hệ số – 15, phần biến x y4 4, bậc B
b) A.B x y x y x y
3 4
4
15 12
5
1 đ
0,5đ
Bài
3,5 điểm
a) (1điểm) Áp dụng định lý Py – ta – go vào ΔABC (
o
A 90 ) ta có:
2 2 2
AB AC BC BC 9 12 225BC 15
b) (1 điểm) Chứng minh ΔCAB=ΔCAD (c.g.c), từ suy CB = CD (hai cạnh tương ứng) Vậy ΔCBD cân C
1đ
1đ
I
K H
D
C B
(4)c) (1điểm)Ta có: ΔCAB=ΔCAD (chứng minh b)
BCA DCA
Từ ta chứng minh ΔAHC=ΔAKC (cạnh huyền - góc nhọn)
d) (0.5điểm) Ta có: ΔAHC=ΔAKC (chứng minh b) HC = KC
ΔCHK cân C
o
180 HCK CHK
2
(1)
Mặt khác ΔCBD cân C (chứng minh b) 180o BCD
CBD
2
(2)
Từ (1) (2) suy CHK CBD , mà hai góc vị trí đồng vị
Vậy HK//BD (đpcm)
1đ
0,5đ
Bài
0,5 điểm
Ta có: A 3( n) 5
3 n n
Để A số nguyên – n thuộc Ư(5)={ - 5; -1; 1; 5} Nếu n 5 n 8 (thỏa mãn)
Nếu n 1 n4 (thỏa mãn) Nếu n 1 n 2 (thỏa mãn) Nếu n 5 n 2 (thỏa mãn) Vậy n={ - 2; 2; 4; 8} A nguyên
0,5đ
(5)ĐỀ ĐỀ KIỂM TRA GIỮA HỌC KỲ II Mơn: Tốn
Thời gian làm bài: 60 phút
Bài (2,5 điểm)
Điểm kiểm tra mơn tốn học kì I 20 học sinh lớp 7A ghi lại bảng sau:
3 8 10
6 10 9
a) Dấu hiệu gì? b) Lập bảng “tần số”
c) Tính điểm số trung bình kiểm tra tìm “mốt” dấu hiệu d) Vẽ biểu đồ đoạn thẳng biểu thị số liệu từ bảng tần số nêu nhận xét Bài (1,5 điểm)
a) Tính tích hai đơn thức
xy
2 2xy xác định bậc đơn thức thu
b) Tính giá trị biểu thức A 4x y3 2x y3 x y3
x = y = -1
Bài (2,0 điểm)
Cho hai đa thức: M x y 2xy xy2
N 2x y 2xy x y 32
a) Thu gọn M N b) Tính M + N
c) Tìm đa thức A biết A + M = N Bài (3 điểm)
Cho tam giác ABC có ACB ABC 90 o Từ A hạ AD vng góc với BC D Gọi M trung điểm AD Trên tia đối tia MB lấy điểm E cho ME = MB Trên tia đối tia MC lấy điểm F cho MF = MC
a) Chứng minh AE = BD b) So sánh BD CD
c) Chứng minh ba điểm E, A, F thẳng hàng
Bài (1 điểm) Tìm số tự nhiên n để phân số 7n 2n
(6)ĐÁP ÁN – THANG ĐIỂM ĐỀ
Bài Hướng dẫn Điểm
Bài 2,5 điểm
a) Dấu hiệu là: Điểm kiểm tra mơn tốn học kì I 20 học sinh lớp 7A
b) Bảng tần số: Các
giá trị (x)
3 10
Tần số
1 4 N=20 c) X7 05, , Mo 6
d) Học sinh tự vẽ
2,5đ
Bài
1,5 điểm
a) 3x y2 3có bậc
b) Thay x = y = -1 vào biểu thức A ta được: (3 )2
A 2 1 24
0,75 đ 0,75đ Bài
2điểm a)
2
M x y 3xy 6 N x y 2xy 32 b) M N xy 3
c) A 2x y 5xy 92 2đ Bài
3điểm
a) Xét ΔAME ΔDMB ta có:
AM = MD ( Vì M trung điểm AD)
AME BMD (hai góc đối đỉnh) BM = ME (gt)
ΔAME = ΔDMB (c.g.c) AE = BD (hai cạnh tương ứng)
b) Ta có ACB ABC (gt) AB < AC ( Quan hệ góc cạnh đối diện ΔABC)
Ta có: AD ⏊BC(gt), AB < AC (cmt)BD < DC (Quan hệ đường xiên – hình chiếu)
c) Vì ΔMAE=ΔMDB (cmt)MAE MDB 90 o
1 đ
1đ
1đ
E F
M D
C B
(7)AE⏊AD(1)
Chứng minh tương tự ta có AF⏊AD(2) Từ (1) (2) ba điểm E, A, F thẳng hàng Bài
1điểm Ta có
( )
( )
7n 7n 14n 16
1
2n 2n 14n 21 14n 21
7n 2n
lớn
5
14n 21 lớn 14n – 21 >
14n – 21 có giá trị nhỏ n 21 14
n nhỏ
n =
(8)Đề ĐỀ KIỂM TRA KSCL GIỮA KÌ II Mơn: Tốn
Thời gian làm bài: 60 phút I Trắc nghiệm (1 điểm)
Khoanh tròn vào chữ đứng trước câu trả lời Câu 1: Thu gọn đơn thức 3 5
4x y 2x y xy ta được: A
8x y
B
8x y C
8x y
D
8x y Câu 2: Điểm kiểm tra tốn học kì I học ính lớp 7A cho bảng sau:
Điểm 10
Tần số (n)
Mốt dấu hiệu là:
A 10 B C D
Câu 3: Cho tam giác ABC có o
A50 , B 70 o Câu sau đúng:
A AC < BC B AB > BC C BC > AB D AC < AB
Câu 4: Tam giác MNP cân M có o
N30 Số đo góc M bằng: A o
30 B o
150 C o
60 D o 120 II Tự luận (9 điểm)
Bài (4 điểm):
Cho đa thức
P(x)x 3x 7x 9x 6x x
4
Q(x)5x x 2x 2x 3x 1
a) Thu gọn xếp hạng tử đa thức theo lũy thừa giảm dần biến
b) Tính P(1); Q(0)
c) Tính P(x) + Q(x) P(x) – Q(x)
Bài (4 điểm): Cho ABC vuông A Trên cạnh BC lấy điểm D cho BD = AB Qua D vẽ đường thẳng vng góc với BC, cắt AC E cắt AB K
a) Tính số đo ACB biết o ABC 35 b) Chứng minh ABE DBE c) Chứng minh EK = EC
d) Chứng minh EBEKCBCK
Bài (1 điểm): Tìm số nguyên dương x, y biết: 2
(9)ĐÁP ÁN – THANG ĐIỂM ĐỀ
Bài Hướng dẫn Điểm
I Trắc nghiệm
Câu B Câu C Câu B Câu D
1đ II Tự
luận Bài
4 điểm a) ( )
5
P x x 7x 9x 3x x;
( )
Q x x 7x 2x 3x 1 b) P(1)= 1; Q(0)= -1
c) P x( )Q x( )14x411x36x2 x 1 ;
( ) ( )
P x Q x 2x 7x x 1
1 đ
1đ 2đ
Bài điểm
a) Xét tam giác vuông ABC A ta có
o o o
ABC ACB 90 ACB 90 35 55
b) Áp dụng định lý Py – ta – go vào hai tam giác vuông ΔABE ΔDBE ta chứng minh ED = EA
Từ chứng minh ΔABE = ΔDBE (c.c.c)
c) Chứng minh ΔCED=ΔKEA (g.c.g), từ suy EK = EC d) Chứng minh EB < CB EK<CK
Xét ΔCKD(vuông D) có ED<KD CE < CK ( Quan hệ đường xiên hình chiếu) mà CE = EK EK < CK (1) Chứng minh tương tự ta có EB < CB (2)
Từ (1) (2) suy EK + EB < CB + CK (đpcm)
1đ 1đ 1đ
1đ
Bài
1điểm Ta có: 25 y2 25 8(x 2005)2 25 (x 2005)2 25
8
Do x nguyên nên (x 2005) số phương Có trường hợp xảy ra:
TH1: (x 2005) 2 0 x 2005 Khi y 5
TH2: (x 2005)2 x 2006 x 2004
Với x = 2004 x = 2006 y217 (loại) Vậy x = 2005, y = x =2005, y = -
0,5đ 0,5đ
K E
D
B C
(10)ĐỀ ĐỀ KIỂM TRA GIỮA HỌC KÌ II Thời gian làm bài: 90 phút Bài (2 điểm): Thời gian làm tập học sinh lớp 7A tính phút thống kê bảng sau
4 7 4 7 10 8 8 10 11 9
a) Dấu hiệu điều tra gì? Số giá trị dấu hiệu bao nhiêu? b) Lập bảng tần số, tìm mốt dấu hiệu tính số trung bình cộng? Bài (1,5 điểm): Cho đơn thức
a)
2xy.3x y z b) 2 xy t x yt
2 c)
3
2
1
x y xy
2
Hãy thu gọn đơn thức xác định hệ số, phần biến bậc đơn thức
Bài (2 điểm): Cho hai đa thức sau
3
3 2
P x y xy x 4x y 2xy Q x y 8xy 2x y 9x 10x
a) Thu gọn đa thức P Q Xác định bậc đa thức P Q sau thu gọn
b) Tính APQ BPQ
c) Tính giá trị đa thức A x 1 y 1 Bài (3,5 điểm): Cho ABC cân A o
A90 Gọi I trung điểm BC Kẻ IHBA HAB, IKAC KAC
a) Chứng minh IHB IKC b) So sánh IB IK
c) Kéo dài KI AB cắt E, kéo dài HI AC cắt F Chứng minh AEF cân
(11)a) Tìm số tự nhiên x, y biết: 2 x2017 23 y
(12)ĐÁP ÁN – THANG ĐIỂM ĐỀ
Bài Hướng dẫn Điểm
Bài 2điểm
a) Dấu hiệu điều tra là: Thời gian làm tập học sinh lớp 7A (tính phút)
Số giá trị dấu hiệu là: 40 b) Bảng tần số:
Các giá trị (x) 10 11 Tần số 10 N=40
o
M 8; X7 15,
1đ
1đ
Bài
1,5 điểm
a) 6x y z3 có hệ số 6, phần biến x y z3 , bậc b) 1x y t3
3 có hệ số
3, phần biến
3
x y t , bậc 10 c) x y8 11
18 có hệ số
18, phần biến
8 11
x y , bậc 19
0,5 đ 0,5đ 0,5đ Bài
2điểm a)
3
P 3x y xy x 1có bậc 4; Q 3x y 8xy x 21
có bậc
b) A 6x y 7xy ; B 9xy 2x 22
c) Thay x = y = -1 vào A ta A =
2đ Bài
3,5điểm
a)Chứng minh ΔIHB=ΔIKC (cạnh huyền – góc nhọn)
b) Từ câu a suy IH = IK
Xét ΔIBH vng H có IH < IB (Quan hệ đường vng góc đường xiên) Suy IB > IK
c) Chứng minh ΔAHI=ΔAKI (cạnh huyền – góc nhọn), suy AH=AK
Chứng minhΔHIE=ΔKIF (g.c.g), suy HE = KF Vậy AH + HE = AK + KF hay AE = AF ΔAEF cân
1đ
1đ
F E
K H
I
C B
(13)d) Ta có AH = AK (cmt) ΔAHK cân A
180o A AHK
2
(1)
Mặt khác theo câu c ta có: ΔAEF cân A nên 180o A
AEF
2
(2)
Từ (1) (2) suy AHKAEF, mà hai góc vị trí đồng vị HK // EF
Bài
1điểm a) Ta có
2
y 0 nên
2 2 23
23 y 23 7(x 2017) 23 (x 2017)
7
Mà (x 2017 )20 x 0(x 2017 )2 4 Nên có trường hợp xảy ra:
TH1: (x 2017)2 0 x 2017
Khi y223(loại) TH2: (x 2017)2 x 2018
x 2016
Với x = 2018 x = 2016 y2 16y 4 Vậy (x; y) (2016; 4) (2018; 4)
b) Thay x = ta được: f 1( )f 1( )2 (1) Thay x = -1 ta được: f 1( ) f( ) 0 (2) Trừ (1) cho (2) ta được: f ( ) 2 f 1( )1 Vậy f(1) =
0,5đ
(14)ĐỀ ĐỀ KIỂM TRA GIỮA HỌC KỲ II Môn: Toán
Thời gian làm bài: 45 phút
Bài (2 điểm):
a) Tính trung bình cộng số: 1; ;1 ; 12
b) Cho biểu thức đại số B4x xy Tính giá trị B x
2
y 1 Bài (3,5 điểm):
a) Cho đơn thức
2x y ; 5x y ;2 1x y ;3
2
x y
Hãy xác định đơn thức đồng dạng
b) Thu gọn, tìm bậc hệ số đơn thức 3 15xy z x yz 2xy
4
c) Thu gọn tìm bậc đa thức
5
f x 3x y 7yx 5x 6yx 4x 8xy 5x x Bài (3, điểm):
Cho ΔABC vuông A, trung tuyến AM Biết AB = 6cm, AC = 8cm a) Trên tia đối tia MA lấy điểm D cho MD = MA
Chứng minh ΔAMB = ΔDMC b) Chứng minh ΔBAC = ΔDCA c) Tính AM
d) Chứng minh AM AB AC
Bài (1 điểm):
Cho đa thức
(15)ĐÁP ÁN – THANG ĐIỂM ĐỀ ĐỀ THI GIỮA KÌ II LỚP
Bài Hướng dẫn Điểm
Bài điểm a)
1 12
b) Thay x
y 1 vào B ta được:
3
2
1
B 1
2 1đ 2đ Bài 3,5 điểm
a) Các đơn thức đồng dạng là: 2x y2 3; 5x y2 3; 1x y2
b) 45 4
x y z
có bậc 12; hệ số 45
c) f x( ) 5x3 3x y2 xy; f(x) có bậc
1,25 đ 1,25 đ 1đ Bài 3,5 điểm
a) ΔAMB = ΔDMC (c.g.c)
b) Chứng minh CD//AB mà AB⏊AC nên AC⏊DC Từ suy ΔBAC = ΔDCA (hai cạnh góc vuông)
c) AM = 5cm
d) Xét ΔABC có BC AB AC , mà BC =2AM nênAM AB AC đ 1đ 1đ 0,5đ Bài điểm
Vì M(x) có giá trị với giá trị x nên ta chọn: Với x = M 0( )a.0b.0 c c ax2bx 0 Với x = M 1( )a 12b.1 c 0a b 0 (1)
Với x = -1 M 1( )a (1)2b.(1) c 0a b 0 (2) Từ (1) (2) suy a = Vậy a = b = c =0 giá trị cần tìm