Phát biểu định nghĩa tam giác cân, tính chất về góc của tam giác cân3. Nêu các cách chứng minh một tam giác là tam giác cân.[r]
(1)TRƯỜNG THCS KIM SƠN GV: Dương Thị Ngọc
NỘI DUNG ƠN TẬP MƠN:TỐN KHỐI:
TUẦN 2 I. Lý thuyết
1 Cách lập bảng “tần số” vẽ biểu đồ đoạn thẳng
2 Bảng “tần số” có thuận lợi so với bảng số liệu thống kê ban đầu?
3 Phát biểu định nghĩa tam giác cân, tính chất góc tam giác cân Nêu cách chứng minh tam giác tam giác cân
4 Phát biểu định nghĩa tam giác đều, tính chất góc tam giác Nêu cách chứng minh tam giác tam giác
II. Bài tập
Bài Cho ABC cân A, kẻ BH vng góc với AC Biết AH = 3cm, HC = 2cm. Tính độ dài BC
Bài Cho ABC vuông cân A, biết AB = AC = 4cm a Tính BC
b Từ A kẻ AD vng góc với BC Chứng minh D trung điểm BC c Từ D kẻ DE vng góc với AC E Chứng minh AED vuông cân
Bài Cho tam giác ABC cân A Lấy M, N cạnh AB, AC cho
AM AN Gọi P trung điểm NC Lấy Q cho P trung điểm BQ Chứng minh:
a) MN//BC
b) M, N, Q thẳng hàng
Bài Cho ABC có AB = AC Lấy điểm D cạnh AB, điểm E AC cho AD = AE, gọi O giao điểm BE CD
a Chứng minh ABE = ACD b Chứng minh BE = CD
c Chứng minh OD = OE, OB = OC
Bài Cho ABC có B C Tia phân giác BD CE góc B C cắt O. Chứng minh:
a BCD = CBE b OB = OC
Bài Cho tam giác ABC cân A có A20 ,0 BC2cm, tia AB dựng điểm D cho ACD 100 Trong tam giác ABC lấy điểm E cho tam giác BCE a) Chứng minh EACDCA