luận án tiến sĩ nghiên cứu xử lý ảnh spect tim trong hỗ trợ chẩn đoán bệnh động mạch vành

143 28 0
luận án tiến sĩ nghiên cứu xử lý ảnh spect tim trong hỗ trợ chẩn đoán bệnh động mạch vành

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI Nguyễn Thành Trung NGHIÊN CỨU XỬ LÝ ẢNH SPECT TIM TRONG HỖ TRỢ CHẨN ĐOÁN BỆNH ĐỘNG MẠCH VÀNH LUẬN ÁN TIẾN SĨ KỸ THUẬT ĐIỆN TỬ Hà Nội - 2021 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI Nguyễn Thành Trung NGHIÊN CỨU XỬ LÝ ẢNH SPECT TIM TRONG HỖ TRỢ CHẨN ĐOÁN BỆNH ĐỘNG MẠCH VÀNH Ngành: Kỹ thuật Điện tử Mã số: 9520203 LUẬN ÁN TIẾN SĨ KỸ THUẬT ĐIỆN TỬ NGƯỜI HƯỚNG DẪN KHOA HỌC: TS NGUYỄN THÁI HÀ GS TS NGUYỄN ĐỨC THUẬN Hà Nội - 2021 i Lời cam đoan Tác giả xin cam đoan cơng trình nghiên cứu riêng tác giả, không chép người Các số liệu kết nêu luận án hoàn toàn trung thực chưa tác giả khác công bố T/M tập thể giáo viên hướng dẫn TS Nguyễn Thái Hà Hà Nội, ngày tháng Tác giả năm NCS Nguyễn Thành Trung ii Lời cảm ơn Tôi xin chân thành cảm ơn TS Nguyễn Thái Hà GS.TS Nguyễn Đức Thuận, người nhiệt tình hướng dẫn giúp đỡ tơi nhiều q trình nghiên cứu hồn thành Luận án Tơi xin chân thành cảm ơn Bộ môn Công nghệ Điện tử Kỹ thuật Y sinh, Phòng Đào tạo, Viện Điện tử -Viễn thông, Trường Đại học Bách Khoa Hà Nội tạo điều kiện thuận lợi để tơi hồn thành nhiệm vụ nghiên cứu Tơi xin chân thành cảm ơn tới khoa Y học Hạt nhân, bệnh viện Trung ương Quân đội 108; viện Công nghệ Thông tin, viện Khoa học Công nghệ Quân hỗ trợ, cộng tác, tạo điều kiện để tơi hồn thành nhiệm vụ nghiên cứu Tơi bày tỏ lịng biết ơn đến Gia đình tơi, vợ tôi, anh chị em, đồng nghiệp bạn bè người ủng hộ động viên giúp đỡ thời gian làm Luận án MỤC LỤC LỜI CAM ĐOAN………………………………………………………………………………….i LỜI CẢM ƠN………………………………………………………………………………… …ii MỤC LỤC……………………………………………………………………………………… iii DANH MỤC CÁC HÌNH VẼ ………………………………………………………………… vi DANH MỤC CÁC BẢNG BIỂU……………………………………………………………… ix DANH MỤC CÁC TỪ VIẾT TẮT ………………………………………………………… … x MỞ ĐẦU Lý chọn đề tài, mục đích nghiên cứu……………………………………………………… Đối tượng, phương pháp phạm vi nghiên cứu luận án……………………… …… …4 Ý nghĩa khoa học thực tiễn luận án………………………………………………………5 Các đóng góp luận án…………………………… ……………………………………… Bố cục luận án………………………………………………………………… ………… CHƯƠNG TỔNG QUAN VỀ PHƯƠNG PHÁP XẠ HÌNH TƯỚI MÁU CƠ TIM BẰNG MÁY SPECT…………………………………………………………………………………… 1.1 Bệnh lý động mạch vành……………………………………………………………….… 1.1.1 Giải phẫu tim bệnh lý mạch vành………………………………… …….…….8 1.1.2 Các phương pháp chẩn đoán bệnh mạch vành…………………………………….9 1.2 Xạ hình tưới máu tim máy SPECT…………………………………………….… 11 1.2.1 Nguyên lý phương pháp chụp xạ hình tưới máu tim ……………….… 11 1.2.2 Giá trị phương pháp xạ hình tưới máu tim máy SPECT……… ….13 1.2.3 Các yếu tố ảnh hưởng tới độ xác kết chẩn đốn………………… … 15 1.3 Giải pháp xử lý ảnh SPECT tim hỗ trợ chẩn đốn bệnh động mạch vành …… …….17 1.3.1 Tình hình nghiên cứu giải pháp nước …………………………… ….17 1.3.2 Tình hình nghiên cứu giải pháp ngồi nước …………………………….… 18 1.3.3 Nhận xét, đánh giá giải pháp khảo sát đề xuất giải pháp tác giả… 23 1.4 Kết luận chương 1……………………………………………………………… ……… 25 iii CHƯƠNG XÂY DỰNG BỘ CƠ SỞ DỮ LIỆU SPECT TIM…………………………… 27 2.1 Vấn đề nghiên cứu … …………………….……………………………………… 2.2 Quy trình thu thập liệu …………………… ……………………………… … 2.2.1 Cơ sở y học h 2.2.2 Quy trình xạ h 2.2.2.1 Quy tr 2.2.2.2 Quy tr 2.2.3 2.3 Tiêu chuẩn loạ Quy trình xử lý, chuẩn hố liệu………………………………………………… 2.3.1 Quy trình chu 2.3.2 Quy trình chu 2.4 Quy trình gắn nhãn liệu…………………………………………………………… 2.5 Xây dựng tính sở liệu…………………………………………… 2.6 Phân bố liệu, tính cỡ mẫu ……………………………………………………… 2.7 Nhận xét, đánh giá sở liệu………….……………………………………… 2.7 Kết luận chương 2.…………………………………………………………………… CHƯƠNG XÂY DỰNG BỘ LỌC NHIỄU SUY GIẢM SỬ DỤNG MẠNG DEEP 52 LEARNING 3.1 3.2 Vấn đề nghiên cứu … ………………………………………………….…… Xây dựng mơ hình lọc nhiễu suy giảm cho ảnh SPECT MPI…………………… 3.2.1 Các mơ hình C 3.2.2 Các thước đo 3.2.3 Dữ liệu thử ng 3.2.4 Đề xuất mơ hì nhiễu suy giảm ……………………………………………………………………… 3.2.4.1 Mơ hì 3.2.4.2 Thử n 3.2.5 Đề xuất mơ hì 3.2.5.1 Mơ hì 3.2.5.2 Hàm m 3.2.5.3 Thiết 3.2.5.4 Kết qu iv 3.2.6 Kết thực nghiệm……………………………………………………… ……85 3.3 Kết luận chương 3…………………………………………………………………… …88 CHƯƠNG PHÁT TRIỂN GIẢI PHÁP HỖ TRỢ CHẨN ĐOÁN BỆNH MẠCH VÀNH88 4.1 Vấn đề nghiên cứu… …………………………… ……………………………………90 4.2 Đề xuất giải pháp hỗ trợ chẩn đoán nâng cao chất lượng hình ảnh cho máy SPECT thơng thường………………………………………………………………………… …93 4.3 4.4 4.2.1 4.2.2 Thu thập liệu thực nghiệm……………………………………………………93 Hiệu chỉnh suy giảm mơ hình 3D Unet GAN………………………… …94 4.2.3 Tập liệu………………………………………………………………….……95 4.2.4 Phương pháp thực nghiệm………………………………………………….……97 4.2.5 Kết thực nghiệm………………………………………………………… …98 Đề xuất giải pháp hỗ trợ định chẩn đoán……………………………….…… 102 4.3.1 Cơ sở liệu …………………… ……………………………….………… 102 4.3.2 Mơ hình chẩn đoán…………………………………………………………… 104 4.3.3 Thử nghiệm kết quả………………………………………… ………… ….106 Kết luận chương 4………………………………………………………………………110 KẾT LUẬN………………………………………………………………………… …… …111 TÀI LIỆU THAM KHẢO…………………………………………………………….…… …113 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ………………………………… ……….121 v DANH MỤC CÁC HÌNH VẼ Hình 1.1 Bệnh động mạch vành… ………………………………….…………………………8 Hình 1.2 Mạch máu tim Xoang ngang 2.Động mạch vành phải Động mạch vành trái Động mạch mũ tim Động mạch liên thất trước ……………………………………9 Hình 1.3 Đặc trưng hình ảnh khuyết xạ xạ hình tưới máu tim…………………12 Hình 1.4 Chiến thuật điều trị thiếu máu tim cục dựa xạ hình tưới máu tim……15 Hình 1.5 Sự phát triển học máy tim mạch hạt nhân…………………………… …18 Hình 1.6 So sánh đường ROC SVM bác sĩ dị tìm tổn thương tim … …19 Hình 1.7 Độ nhạy, độ đặc hiệu độ xác thuật tốn ML so với TPD phân tích trực quan chuyên gia ……………………………………………………………………20 Hình 1.8 Đường cong ROC cho dự đốn biến cố tim bất lợi MACE…………………………21 Hình 1.9 Mơ hình DL dự đốn tắc nghẽn mạch vành…………………………… ……22 Hình 2.1 Hệ thống máy SPECT: Infinia, Optima, Ventri…………………………………… 30 Hình 2.2 Quy trình xạ hình tưới máu tim máy SPECT………………………………36 Hình 2.3 Ảnh lát cắt ảnh cực trình bày theo protocol chẩn đốn ……………… … 39 Hình 2.4 Protocol chuyên lấy ảnh cho học máy………………………………………………39 Hình 2.5 Sơ đồ chuẩn hóa liệu………………………………………………………… …40 Hình 2.6 File trả lời kết quả…………………………………………………………… ……41 Hình 2.7 Ảnh cực tổng hợp từ lát cắt……………………………………….………43 Hình 2.8 Phần mềm gắn nhãn liệu bệnh nhân………………………………………… …44 Hình 3.1 Ảnh không hiệu chỉnh suy giảm (NC images) ảnh có hiệu chỉnh suy giảm (AC images) bệnh nhân………………………………………………………………54 Hình 3.2 Mạng nơron tích chập CNN…………………………………………………………57 Hình 3.3 Ma trận kích thước 600 * 800……………………………………………….………58 Hình 3.4 Biểu diễn ma trận điểm màu………………………………………………… ……58 Hình 3.5 Ba ma trận biểu diễn ảnh màu……………………………………………….………59 Hình 3.6 Ảnh mầu tensor chiều …………………………………………… …… 59 Hình 3.7 Phép tính tích chập……………………………………………………………… …60 Hình 3.8 Phép tính tích chập cho ảnh màu có kênh red, green, blue………………… ……61 Hình 3.9 Tensor chiều có chiều sâu k………………………………………………….……61 vi Hình 3.10 Lớp gộp kích thước (2,2) …………………………………………………….……62 Hình 3.11 Các loại lớp gộp……………………………………………………………………63 Hình 3.12 Mạng CAE lọc nhiễu…………………………………………………… …63 Hình 3.13 Mơ hình mạng U-net………………………………………………………….……65 Hình 3.14 Phép tính transposed convolution…………………………………………….……66 Hình 3.15 Sơ đồ mạng GAN……………………………………………………………… …67 Hình 3.16 Nhóm ảnh lát cắt thành khối mẫu 3D…………………………………………72 Hình 3.17 Kiến trúc 3D-CAE đề xuất…………………………………………………………73 Hình 3.18 Đầu vào NC, ảnh biến đổi ảnh đích thật ………………………………………76 Hình 3.19 Kiến trúc 3DUnet-GAN……………………………………………………………78 Hình 3.20 Đồ thị hàm Sigmoid……………………………………………………………… 79 Hình 3.21 Đồ thị hàm mục tiêu trường hợp yi = 1…………………………………… 81 Hình 3.21 Đồ thị hàm mục tiêu trường hợp yi = 0………………………………….… 81 Hình 3.23 Ảnh đầu vào, ảnh dự đốn ảnh thật……………………………………… ……84 Hình 4.1 Deep learning neural network, Regression, Random Forests, Support vector machine, Gradient Boosting Machines…………………………………………………………89 Hình 4.2 Trích xuất đặc trưng học máy deep learning …………………………… …89 Hình 4.3 Ảnh dự đốn hiệu chỉnh suy giảm GenAC từ mơ hình 3D Unet GAN ảnh chưa hiệu chỉnh suy giảm NC…………………………………………………………………… …92 Hình 4.4 Thứ tự xếp ảnh…………………………………………………….…………….93 Hình 4.5 Phần mềm hỗ trợ đọc kết thực nghiệm………………………… ……….94 Hình 4.6 Độ xác chẩn đốn…………………………………………………………… 96 Hình 4.7 So sánh độ nhạy độ đặc hiệu…………………………………………… 98 Hình 4.8 Gia tăng tỉ lệ phát bệnh nhân khơng tổn thương dùng GenAC……… … 98 Hình 4.9 Gia tăng tỉ lệ phát nhánh không tổn thương……………………… 99 Hình 4.10 A Ảnh cắt lát; B Ảnh đồ cực……………………………………… … … 100 Hình 4.11 Khuyết xạ tưới máu hình ảnh SPECT tim……………………… …………101 Hình 4.12 Kiến trúc VGG gồm 16 lớp CNN………………………………………… ….102 Hình 4.13 Kiến trúc mạng deep-learning sử dụng để chẩn đoán CAD……… ………… 103 Hình 4.14 Kiểm tra chéo đoạn (5-fold cross validation) …………………………….……105 Hình 4.15 Độ xác mơ hình sử dụng ảnh cắt lát MPI ảnh cực tập con105 vii [11] Huang R, Li F, Zhao Z, Liu B, Ou X, Tian R, et al (2011), ”Hybrid SPECT/CT for attenuation correction of stress myocardial perfusion imaging.“, Clin Nucl Med, Vol 36, pp 344–349 [12] Goetze S, Brown TL, Lavely WC, Zhang Z, Bengel FM (2007),“Attenuation correction in myocardial perfusion SPECT/CT: Effects of misregistration and value of reregistration.“ , J Nucl Med, Vol 48, pp 1090–1095 [13] Leila Saleki, Pardis Ghafarian, Ahmad Bitarafan-Rajabi, Nahid Yaghoobi, Babak Fallahi, Mohammad Reza Ay (2019), “The influence of misregistration between CT and SPECT images on the accuracy of CT-based attenuation correction of cardiac SPECT/CT imaging: Phantom and clinical studies.“, Iranian Journal of Nuclear Medicine, Vol 27, pp 63153 [14] Sharyl Nass (2015), “Improving Diagnosis in Health Care“, Washington, DC: The National Academies Press [15] Saf Graber ML (2013), “The incidence of diagnostic error in medicine.“, BMJ Qual [16] Leonard Berlin (2007), “ Radiologic Errors and Malpractice: A Blurry Distinction“, American Journal of Roentgenology, Vol 189, pp 517-522 [17] Leonard Berlin (2007), “Accuracy of Diagnostic Procedures: Has It Improved Over the Past Five Decades?“, American Journal of Roentgenology, Vol 188, pp 11731178 [18] Lomsky M, Gjertsson P, Johansson L, Richter J, Ohlsson M, Tout D, et al (2008), “Evaluation of a decision support system for interpretation of myocardial perfusion gated SPECT“, Eur J Nucl Med Mol Imaging, Vol 35, pp 1523 –1529 [19] Garcia EV, Klein JL, Taylor AT (2014), “Clinical decision support systems in myocardial perfusion imaging.“, J Nucl Cardiol, Vol 21, pp 427 – 439 [20] Nguyễn Việt Dũng (2015), “ Nghiên cứu, phát triển giải pháp hỗ trợ phát dấu hiệu tổn thương hình khối ảnh chụp x-quang vú“, Luận án tiến sĩ Kỹ thuật Điện tử, Đại học Bách khoa Hà Nội [21] Nguyen Đức Thảo (2015), “ Nâng cao chất lượng nhận dạng tín hiệu điện tim dựa giải pháp loại bỏ ảnh hưởng từ nhịp thở người bệnh,“ Luận án tiến sĩ Kỹ thuật điều khiển Tự động hoá, Trường đại học Bách khoa Hà Nội [22] Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al (2002), “Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association,“ Circulation, Vol 105, pp 539 – 542 [23] Klocke FJ, Baird MG, Lorell BH, Bateman TM, Messer JV, Berman DS, et al (2003), “ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging – executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging),“ Circulation, Vol 108, pp.1404 – 1418 [24] Slomka PJ, Nishina H, Berman DS, Akincioglu C, Abidov A, Friedman JD, et al (2005), “Automated quantification of myocardial perfusion SPECT using simplified normal limits,“ J Nucl Cardiol, Vol 12, pp 66 – 77 114 [25] Sharir T, Germano G, Kang X, Lewin HC, Miranda R, Cohen I, et al (2001), “Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion SPECT: Risk stratification by the amount of stress-induced ischemia and the poststress ejection fraction,“ J Nucl Med, Vol 42, pp 831 – 837 [26] Shaw LJ, Iskandrian AE (2004), “Prognostic value of gated myocardial perfusion SPECT,“ J Nucl Cardiol, Vol.11, pp.171 – 185 [27] Arsanjani R, Xu Y, Dey D, Fish M, Dorbala S, Hayes S, et al (2013), “Improved accuracy of myocardial perfusion SPECT for the detection of coronary artery disease using a support vector machine algorithm,“ J Nucl Med, Vol 54, pp 549 – 555 [28] Arsanjani R, Xu Y, Dey D, Vahistha V, Shalev A, Nakanishi R, et al (2013), “Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population,“ J Nucl Cardiol, Vol.20, pp 553 – 562 [29] Betancur J, Otaki Y, Motwani M, Fish MB, Lemley M, Dey D, et al (2018), “Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning,“ JACC Cardiovasc Imaging, Vol 11, pp 1000 – 1009 [30] Betancur J, Commandeur F, Motlagh M, Sharir T, Einstein AJ, Bokhari S, et al (2018), “Deep learning for Prediction of Obstructive Disease From Fast Myocardial Perfusion SPECT: a multicenter study,“ JACC Cardiovasc Imaging, Vol 11, pp 1654 – 1663 [31] K Suzuki, J Liu, A Zarshenas, T Higaki, W Fukumoto, and K Awai (2017), "Neural network convolution (nnc) for converting ultra-low-dose to “virtual” high-dose ct images," International Workshop on Machine Learning in Medical Imaging, , pp 334-343 [32] M Nishio et al (2017), "Convolutional auto-encoder for image denoising of ultra-low-dose CT," Heliyon, Vol 3, pp e00393 [33] H Chen et al (2017), "Low-dose CT with a residual encoder-decoder convolutional neural network," IEEE transactions on medical imaging, Vol 36, no 12, pp 2524-2535 [34] Akagi M, Nakamura Y, Higaki T, Narita K, Honda Y, Zhou J, Yu Z, Akino N, Awai K (2019), “Deep learning reconstruction improves image quality oabdominal ultrahigh-resolution CT,” Eur Radiol, Vol 29, pp 6163-6171 [35] Arsanjani R, Dey D, Khachatryan T, Shalev A, Hayes SW, Fish M, et al (2015), “Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population,“ J Nucl Cardiol, Vol 22, no 5, pp 877 – 884 [36] Betancur J, Rubeaux M, Fuchs TA, Otaki Y, Arnson Y, Slipczuk L, et al (2017), “Automatic valve plane localization in myocardial perfusion SPECT/CT by machine learning: anatomic and clinical validation,“ J Nucl Med, Vol 58, no 6, pp 961 – 967 [37] Haro Alonso D, Wernick MN, Yang Y, Germano G, Berman DS, Slomka P (2018), “Prediction of cardiac death after adenosine myocardial perfusion SPECT based on machine learning,“ J Nucl Cardiol, Vol 26, no 5, pp 1746-1754 [38] Nakajima K, Kudo T, Nakata T, Kiso K, Kasai T, Taniguchi Y, et al (2017), “Diagnostic accuracy of an artificial neural network compared with statistical quantitation of myocardial perfusion images: a Japanese multicenter study,“ Eur J Nucl Med Mol Imaging, Vol 44, no 13, pp 2280 – 2289 115 [39] Guner LA, Karabacak NI, Akdemir OU, Karagoz PS, Kocaman SA, Cengel A, et al (2010), “An open-source framework of neural networks for diagnosis of coronary artery disease from myocardial perfusion SPECT,“ J Nucl Cardiol, Vol 17, no 3, pp 405 – 413 [40] Gemma Cuberas-Borrós, Santiago Aguadé-Bruix, et al (2010), “ Normal myocardial perfusion spect database for the spanish population,“ Rev Esp Cardiol, Vol 63, no 8, pp 934-942 [41] Kenichi Nakajima (2010), “ Normal values for nuclear cardiology: japanese databases for myocardial perfusion, fatty acid and sympathetic imaging and left ventricular function,“ Ann Nucl Med, Vol 24, no 3, pp 125-135 [42] Karthik Seetharam, Sirish Shresthra, James D Mills, Partho P Sengupta (2019), “ Artificial intelligence in nuclear cardiology: adding value to prognostication,“ Current Cardiovascular Imaging Reports Technavio(2017), “Global SPECT Market 2017-2021,“ , https://www.technavio.com/report/globalmedicalimagingglobalspectmarket2017-2021 [43] [44] Jha AK, Zhu Y, Clarkson E, Kupinski MA, Frey EC (2018), “Fisher information analysis of list-mode SPECT emission data for joint estimation of activity and attenuation distribution,“ arXiv preprint arXiv:180701767 [45] Nishikawa, R M & Gur (2014), “D CADe for early detection of breast cancercurrent status and why we need to continue to explore new approaches,“ Acad Radiol, Vol 21, pp 1320–1321 [46] Doi, K (2007), “Computer-aided diagnosis in medical imaging: Historical review, current status and future potential,“ Comput Med Imaging Graph, Vol 31, pp 198–211 [47] Deng, J et al (2009), “ImageNet: A large-scale hierarchical image database,” in IEEE Conference on Computer Vision and Pattern Recognition, pp 248–255 [48] LeCun, Y., Cortes, C & Burges, C (1998), “MNIST handwritten digit database,” Available at http://yann.lecun.com/exdb/mnist/ [49] Griffin, G., Holub, A & Perona, P (2007), “Caltech-256 object category dataset,” Available at http://www.vision.caltech.edu/ Image_Datasets/ Caltech256/ [50] Karssemeijer, N & te Brake, G M (1996), “Detection of stellate distortions in mammograms,” IEEE Trans Med Imaging, Vol 15, No 5, pp 611–619 [51] Mudigonda, N R., Rangayyan, R M & Desautels, J E L (2001), “Detection of breast masses in mammograms by density slicing and texture flow-field analysis,” IEEE Trans Med Imaging, Vol 20, No 12, pp 1215–1227 [52] Liu, S., Babbs, C F & Delp, E J (2001), “Multiresolution detection of spiculated lesions in digital mammograms,” IEEE Trans IMAGE Process, Vol 10, No 6, pp 874– 884 [53] Li, L., Clark, R A & Thomas, J A (2002), “Computer-aided diagnosis of masses with full-field digital mammography,” Acad Radiol, Vol 9, No 1, pp 4–12 [54] Baum, F., Fischer, U., Obenauer, S & Grabbe, E (2002),” Computer-aided detection in direct digital full-field mammography: initial results,” Eur Radiol, Vol 12, No 12, pp 3015–3017 116 [55] Kim, S J et al (2006), “Computer-aided detection in digital mammography: Comparison of craniocaudal, mediolateral oblique, and mediolateral views,” Radiology, Vol 241, No 3, pp 695–701 [56] Yang, S K et al (2007), “Screening mammography—detected cancers: Sensitivity of a computer-aided detection system applied to fullfield digital mammograms,” Radiology, Vol 244, No 1, pp 104–111 [57] The, J S., Schilling, K J., Hoffmeister, J W & Mcginnis, R (2009), “Detection of breast cancer with full-field digital mammography and computer-aided detection,” Am J Roentgenol, Vol 192, No 2, pp 337–340 [58] Sadaf, A., Crystal, P., Scaranelo, A & Helbich, T (2011), “Performance of computer-aided detection applied to full-field digital mammography in detection of breast cancers,” Eur J Radiol, Vol 77, No 3, pp 457–461 [59] Chu, J., Min, H., Liu, L & Lu, W (2015), “A novel computer aided breast mass detection scheme based on morphological enhancement and SLIC superpixel segmentation,” Med Phys, Vol 42, No 7, pp 3859–3869 [60] Heath, M., Bowyer, K., Kopans, D., Moore, R & Kegelmeyer, W P (2001),” The Digital Database for Screening Mammography,” Proceedings of the Fifth International Workshop on Digital Mammography (2001), pp 212–218 [61] Suckling, J et al (1994), “The Mammographic Image Analysis Society digital mammogram database,” Exerpta Medica, pp 375–378 [62] Lehmann, T M et al (2004), ”Content-based image retrieval in medical applications,” Methods Inf Med, Vol 43, No 4, pp 354–361 [63] Hesse B, et al (2005), “EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology,“ European journal of nuclear medicine and molecular imaging, Vol 32, no 7, pp 855-897 [64] Holly T A., et al (2010), “Single photon-emission computed tomography,“ J Nucl Cardiol, Vol 17, no 5, pp 941-973 [65] Slomka PJ, Nishina H, Berman DS, et al 2005, “Automated quantification of myocardial perfusion SPECT using simplified normal limits,“ J Nucl Cardiol, Vol 12, pp 66–77 [66] Tilkemeier Peter L, et al (2009.)," ASNC Imaging Guidelines for Nuclear Cardiology Procedures: Standardized reporting of radionuclide myocardial perfusion and function." Am Soc Nucl Cardiol doi, 10: p 1007 [67] Karen Simonyan, Andrew Zisserman (2014), “Very Deep Convolutional Networks for Large-Scale Image Recognition,” arXiv:1409.1556 [68] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna (2015), “Rethinking the Inception Architecture for Computer Vision,” arXiv:1512.00567 [69] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun (2015), “Deep Residual Learning for Image Recognition,” arXiv:1512.03385 [70] Mingxing Tan, Quoc V Le (2019), “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” arXiv:1905.11946 117 [71] M Beister, D Kolditz, and W A Kalender (2012), “Iterative reconstruction methods in X-ray CT,” Physica Medica, Vol 28, no 2, pp 94–108 [72] Lu Liu Honours BSc (2014), “Model-based Iterative Reconstruction: A Promising Algorithm for Today's Computed Tomography Imaging,“ Journal of Medical Imaging and Radiation Sciences, Vol 45, pp 131-136 [73] S Ramani and J A Fessler (2012), “A splitting-based iterative algorithm for accelerated statistical X-ray CT reconstruction,” IEEE Transactions on Medical Imaging, vol 31, no 3, pp 677–688 [74] E Y Sidky and X Pan (2008), “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Physics in Medicine and Biology, vol 53, no 17, pp 4777–4807 [75] S Singh, M.K Kalra, S Do, et al (2012), “Comparison of hybrid and pure iterative reconstruction techniques with conventional filtered back projection: dose reduction potential in the abdomen,“ J Comput Assist Tomogr, Vol 36, pp 347-353 [76] K Bahrami, F Shi, I Rekik, D Shen (2016), “Convolutional neural network for reconstruction of 7T-like images from 3T MRI using appearance and anatomical features,“ International Conference On Medical Image Computing and Computer Assisted Intervention, pp 39-47 [77] O Oktay, W Bai, M.C.H Lee, R Guerrero, K Kamnitsas, J Caballero, A de Marvao, S.A Cook, D.P O’Regan, D Rueckert (2016), “Multi-input cardiac image super-resolution using convolutional neural networks,“ International Conference On Medical Image Computing and Computer Assisted Intervention [78] J.L Rodgers, J L and W.A Nicewander (1995), “Thirteen Ways to Look at the Correlation Coefficient”, American Statistician, Vol 42, pp 59-66 [79] M Jenkin, A.D Jepson, and J.L Tsotsos (1991), “Techniques for Disparity Measurement”, CVGIP: Image Understanding, Vol 53, pp 14-30 [80] R.Y Wong, E.L Hall, and J Rouge (1976), “Hierarchical Search for Image Matching”, Proceedings of the IEEE Conference on Decision Control, pp 405-408 [81] M James (1988), “Pattern Recognition“ , John Wiley and Sons, New York, pp 36-40 [82] D.I Barnea and H.F Silverman (1972), “A class of Algorithms for Fast Digital Image Registration”, IEEE Transactions on Computers C-21, pp 179-186 [83] E.H Hall (1979),“Computer Image Processing and Recognition“ , York, pp 480-485 [84] W.H Press, B.P Flannery, S.A Teukolsky, and W.T Vetterling (1989), Recipes in Pascal,“ Cambridge University Press, New York, pp 532-534 [85] J Lee (1992), “A Cautionary Note on the Use of the Correlation-Coefficient”, British Journal of Industrial Medicine 49, 526-527 [86] Zhou Wang, Student Member, IEEE, and Alan C Bovik (2002),“ A Universal Image Quality Index,“ Ieee signal processing letters, Vol 9, no 3, pp 81-84 [87] Masci J., Meier U., Cireşan D., Schmidhuber J (2011), “Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction In: Honkela T., Duch W., Girolami M., Kaski 118 S (eds) Artificial Neural Networks and Machine Learning – ICANN 2011 ICANN 2011,” Lecture Notes in Computer Science, Vol 6791, pp 52-59 [88] A Borji (2018), “Pros and Cons of GAN Evaluation Measures,” Computer Vision and Pattern Recognition [89] Kirch W (2008), “Pearson’s Correlation Coefficient,” Encyclopedia of Public Health Springer, Dordrecht [90] Z Wang, A.C Bovik, H.R Sheikh, E.P Simoncelli (2004), “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, Vol 13, pp 600-612 [91] Olaf Ronneberger, Philipp Fischer, “Thomas Brox U-Net: Convolutional Networks for Biomedical Image Segmentation,“ arXiv:1505.04597 [92] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A Efros (2016), “Image-toImage Translation with Conditional Adversarial Networks,” arXiv:1611.07004 [93] A Borji (2018), “Pros and Cons of GAN Evaluation Measures,” Computer Vision and Pattern Recognition [94] Einstein AJ (2012), “Effects of radiation exposure from cardiac imaging: how good are the data?,” J Am Coll Cardiol, Vol 59, pp 553–565 [95] LeCun Y, Bengio Y, Hinton G (2015), “Deep learning,” Nature, Vol 521, pp 436–444 [96] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M Blau & Sebastian Thrun (2017), “Derma-tologist-level classification of skin cancer with deep neural networks,” Nature, Vol 542, pp 115–118 [97] Varun Gulshan, Lily Peng, Marc Coram, Martin C Stumpe, Derek Wu, Arunachalam Narayanaswamy, Subhashini Venugopalan, Kasumi Widner, Tom Madams, Jorge Cuadros, Ramasamy Kim, Rajiv Raman, Philip C Nelson, Jessica L Mega, Dale R Webster (2016), “Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs,” JAMA, Vol 316, pp 2402–2410 [98] Greenspan H, Ginneken BV, Summers RM (2016), “Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique,” IEEE Trans Med Imaging, Vol 35, pp 1153–1159 [99] Shen D, Wu G, Suk H-I (2017), “Deep learning in medical image analysis,” Annu Rev Biomed Eng, Vol 19, pp 221–248, [100] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen A.W.M.van der Laak, Bramvan Ginneken, Clara I.Sánchez (2017), “A survey on deep learning in medical image analysis,” Med Image Anal, Vol 42, pp 60–88 [101] Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T (2017), “Artificial intelligence in precision cardiovascular medicine,” J Am Coll Cardiol, Vol 69, pp 2657– 2664 [102] Krittanawong C, Tunhasiriwet A, Zhang H, Wang Z, Aydar M, Kitai T (2017), “Deep learning with unsupervised feature in echocardiographic imaging,” J Am Coll Cardiol, Vol 69, pp 2100–2101 119 [103] Narula S, Shameer K, Salem Omar AM, Dudley JT, Sengupta PP (2017), “Reply: deep learning with unsupervised feature in echocardiographic imaging,” J Am Coll Cardiol, Vol 69, pp 2101 – 2102 [104] Ryo Nakazato, Balaji K Tamarappoo, Xingping Kang, Arik Wolak, Faith Kite1, Sean W Hayes, Louise E.J Thomson, John D Friedman, Daniel S Berman and Piotr J Slomka (2010), “Quantitative Upright–Supine High-Speed SPECT Myocardial Perfusion Imaging for Detection of Coronary Artery Disease: Correlation with Invasive Coronary Angiography”, Journal of Nuclear Medicine, Vol 51, no 11, pp 1724-1731 [105] Peter L Tilkemeier MD, C David Cooke MSEE, Gabriel B Grossman MD, PhD, Benjamin D McCallister Jr MD & R Parker Ward MD (2009), “Standardized reporting of radionuclide myocardial perfusion and function”, Journal of Nuclear Cardiology [106] Bateman TM, Dilsizian V, Beanlands RS, DePuey EG, Heller GV, Wolinsky DA (2016), “American society of nuclear cardiology position statement”, Journal of Nuclear Cardiology [107] Matthew D Zeiler and Rob (2014) , “Visualizing and Understanding Convolutional Networks,” ECCV 2014: Computer Vision – ECCV, pp 818-833 [108] Karen Simonyan, Andrew Zisserman (2015), “Very Deep Convolutional Networks for Large-Scale Image Recognition”, ICLR [109] Luyao Shi, John A Onofrey, Hui Liu, Yi-Hwa Liu, Chi Liu (2020), “Deep learning based attenuation map generation for myocardial perfusion SPECT”, European Journal of Nuclear Medicine and Molecular Imaging [110] Mingxing Tan, Quoc V Le (2019), “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks”, Proceedings of the 36 th International Conference on Machine Learning [111] Kenichi Nakajima, Koichi Okuda, Masaya Kawano, Shinro Matsuo (2009), “The importance of population-specific normal database for quantification of myocardial ischemia: comparison between Japanese 360 and 180-degree databases and a US database”, J Nucl Cardiol, Vol 16, no 3, pp 422-430 [112] Dianfu Li, Dong Li, Jianlin Feng, Donglan Yuan, Kejiang Cao (2010),” Quantification of myocardial perfusion SPECT studies in Chinese population with Western normal databases”, J Nucl Cardiol, Vol 17, no 3, pp 486-493 120 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CÔNG BỐ CỦA LUẬN ÁN [1] Nguyen Thanh Trung, Nguyen Thai Ha, Nguyen Duc Thuan, Dang Hoang Minh (2020) A Deeplearning Method for Diagnosing Coronary Artery Disease using SPECT Images of Heart Journal of Science and Technology No 144, 2020, ISSN: 2354-1083 [2] Nguyễn Thành Trung, Nguyễn Chí Thành , Đặng Hoàng Minh, Nguyễn Thái Hà , Nguyễn Đức Thuận (2020) Về liệu xạ hình tưới máu tim phục vụ việc xây dựng, đánh giá mơ hình học máy dị tìm tổn thương tim Tạp chí nghiên cứu khoa học cơng nghệ quân sự, số 67, 6-2020, ISSN: 1859-1043 [3] Nguyễn Thành Trung, Nguyễn Chí Thành , Đặng Hồng Minh, Nguyễn Thái Hà , Nguyễn Đức Thuận (2020) 3D Unet Generative Adversarial Network For Attenuation Correction Of Spect Images Proceedings of the 2020 4th International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom2020), Vietnam, Aug 2020 [4] Nguyễn Thành Trung, Nguyễn Chí Thành , Đặng Hồng Minh, Nguyễn Thái Hà , Nguyễn Đức Thuận (2021) 3D Convolutional Auto-Encoder for Attenuation Correction of Cardiac SPECT Images Proceedings of the 2020 IEEE Eighth International Conference on Communications and Electronics (ICCE2020), Vietnam, Jan 2021 121 ... trưng hình ảnh SPECT tim người Việt Nam Đây không phục vụ cho nghiên cứu tác giả mà phục vụ nghiên cứu khác xử lý ảnh, hỗ trợ chẩn đoán bệnh động mạch vành ảnh SPECT tim sau  Vấn đề xử lý nhiễu... 2 .Động mạch vành phải Động mạch vành trái Động mạch mũ Động mạch liên thất trước 1.1.2 Các phương pháp chẩn đoán bệnh mạch vành Trong thời gian qua, ngành tim mạch có bước tiến lớn chẩn đoán, ... xạ 1.4 Kết luận chương Bài toán nghiên cứu xử lý ảnh SPECT tim hỗ trợ chẩn đốn bệnh động mạch vành có ý nghĩa thực tiễn lớn độ xác chẩn đoán định tới chiến lược điều trị mạch vành, ảnh hướng lớn

Ngày đăng: 03/02/2021, 06:28

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan