1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nhận dạng motif và bất thường trên dữ liệu chuỗi thời gian dựa vào kỹ thuật băm

87 16 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 87
Dung lượng 5,45 MB

Nội dung

Ngày đăng: 27/01/2021, 13:50

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[22] E. Keogh, X. Xi, L. Wei, & C.A. Ratanamahatana. The UCR Time series Classification/Clustering Homepage: www.cs.ucr.edu/~eamonn/time_series_data,2006 Sách, tạp chí
Tiêu đề: Homepage: www.cs.ucr.edu/~eamonn/time_series_data
[23] Web page for Analysis of Financial Time Series http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts/ Link
[1] M. Kontaki, A. N. Papadopoulos, Y. Manolopoulos, Similarity search in time series database, Data Enginering Lab, Department of Informatics, Aristotle University, 54124 Thessaloniki, Greece, 2005 Khác
[2] Yi Lin, M. D. McCool, A. A. Ghorbani, Motif and Anomaly Discovery of Time Series Based on Subseries Join, Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, 2010 Khác
[3] P. G. Ferreira, P. J. Azevedo, C. G. Silva, R. M.M. Brito, Mining Approximate Motifs in Time Series, Proceedings of the 9 th International Conference on Discovery Science, Barcelonas Spain, 2006 Khác
[4] Y. Lin, Subseries Join and Compression of Time Series Data Based on Non- uniform Segmentation, Ph.D. Dissertation, School of Computer Science, University of Waterloo, 2008 Khác
[5] B. Chiu, E. Keogh, and S. Lonardi, Probabilistic Discovery of Time Series Motifs, Proceedings of the 9 th International Conference on Knowledge Discovery and Data Mining (KDD'03), 2003, pp. 493-498 Khác
[6] J. Lin, E. Keogh, S. Lonardi, P. Patel, Finding Motifs in Time Series, Proceedings of 2 nd Workshop on Temporal Data Mining, at the 8 th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2002 Khác
[7] A. Mueen, E. Keogh, Q. Zhu, S. Cash, and B.West-over, Exact Discovery of Time Series Motifs, SIAM International Conference on Data Mining (SDM'09), 2009 Khác
[8] D. Yankov, E. Keogh, J. Medina, B. Chiu, and V. Zordan, Detecting Time Series Motifs under Uniform Scaling, Proceedings of the 13rd Inter-national Conference on Knowledge Discovery and Data Mining (SIGKDD'07), 2007, pp. 844-853 Khác
[9] E. Keogh, T. Palpanas, V. Zordan, D. Gunopulos, and M. Cardle, Indexing large human-motion databases, Proceedings of the 30th International Conference on Very Large Data Bases (VLDB'04), 2004, pp. 780-791 Khác
[10] R. Agrawal, C. Faloutsos, A. Swami, Efficient similarity search in sequence databases, in Proceedings of the 4th International Conference on Foundation of Data Orgnization and Algorithms (FODO „93), Chicago Illinois, USA, October 13- 15, 1993, pp. 69-84 Khác
[11] K. Chan, J. Clifford, Efficient time series matching by wavelets, in Proceeding of 15 th IEEE International Conference on Data Engineering (ICDE1999), March 23-26, 1999, pp. 126-133 Khác
[12] E. Keogh, K. Chakrabarti, M. Pazzani, S. Mehrotra, Dimensionality reduction for fast similarity search in large time series databases, in Knowledge and Information Systems, vol. 3, no. 3, 2000, pp. 263-286 Khác
[13] E. Keogh, K. Chakrabarti, M. Pazzani, S. Mehrotra, Locally adaptive dimensionality reduction for indexing large time series databases, in Proceedings of 2001 ACM SIGMOD Conference on Management of Data, May 21-24 2001, pp. 151-162 Khác
[14] E. Keogh, M. Pazzani, An enhanced representation of time series with allows fast and accurate classification, clustering and relevance feedback, in Proceedings of 4 th International Conference on Knowledge Discovery and Data Mining, New York, USA, Aug 27-31, 1998, pp. 239-241 Khác
[15] E. Keogh, S. Chu, D. Hart, M. Pazzani, An online algorithm for segment time series, in Proceedings of IEEE International Conference on Data Mining (ICDM‟01), San Jose, Califonia, USA, 29 Nov 2001 – 02 Dec 2001, pp. 289-296 Khác
[16] M. Tompa, J. Buhler, Finding motifs using random projections, In proceedings of the 5th Int‟l Conference on Computational Molecular Biology.Montreal, Canada, Apr 22-25 2001, pp 67-74 Khác
[17] P. Perona, J. Malik, Scale-space and Edge Detection using Anisotropic Diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.12, No. 7, 1990, pp. 629-639 Khác
[18] J. Canny, A Computational Approach to Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, No. 6, 1986, pp. 679-698 Khác

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN