1. Trang chủ
  2. » Luận Văn - Báo Cáo

Xây dựng mô hình đánh giá chất lượng cho dữ liệu ẩn danh về sức khỏe sử dụng trong bài toán thống kê

63 108 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 63
Dung lượng 2,17 MB

Nội dung

Ngày đăng: 27/01/2021, 12:50

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[28] A. Machanavajjhala, D. Kifer, J. Gehrke and M. Venkitasubramaniam, l-diversity: Privacy beyond k-anonymity, Transactions on Knowledge Discovery from Data 1 (2007), 24–35 Sách, tạp chí
Tiêu đề: Transactions on Knowledge Discovery from Data
Tác giả: A. Machanavajjhala, D. Kifer, J. Gehrke and M. Venkitasubramaniam, l-diversity: Privacy beyond k-anonymity, Transactions on Knowledge Discovery from Data 1
Năm: 2007
[35] L. Sweeney, Achieving k-anonymity privacy protection using generalization and suppression, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10 (2002), 571–588. ACM Sách, tạp chí
Tiêu đề: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
Tác giả: L. Sweeney, Achieving k-anonymity privacy protection using generalization and suppression, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10
Năm: 2002
[36]V.S. Iyengar, Transforming data to satisfy privacy constraints, International Conference on Knowledge Discovery and Data Mining, ACM, 2002, 279–288 Sách, tạp chí
Tiêu đề: International Conference on Knowledge Discovery and Data Mining
[36] A. De Waal and L. Willenborg, Information loss through global recoding and local suppression, Netherlands Official Statistics 14 (1999), 17–20 Sách, tạp chí
Tiêu đề: Netherlands Official Statistics
Tác giả: A. De Waal and L. Willenborg, Information loss through global recoding and local suppression, Netherlands Official Statistics 14
Năm: 1999
[38]R.J. Bayardo and R. Agrawal, Data privacy through optimal kanonymization, International Conference on Data Engineering, IEEE, 2005, 217–228 Sách, tạp chí
Tiêu đề: International Conference on Data Engineering
[39] M.E. Nergiz and C. Clifton, Thoughts on k-anonymization, International Conference on Data Engineering, IEEE, 2006, 96 Sách, tạp chí
Tiêu đề: International Conference on Data Engineering
[41] T. L. Bailey and C. Elkan, “Estimating the accuracy of learned concepts,” in Proc. 13th International Joint Conference on Artifical Intelligence. San Francisco, CA, USA:Morgan Kaufmann Publishers Inc., 1993, pp. 895–900 Sách, tạp chí
Tiêu đề: Estimating the accuracy of learned concepts,” in "Proc. "13th International Joint Conference on Artifical Intelligence
[42]A. Inan, M. Kantarcioglu, and E. Bertino, “Using anonymized data for classification,” in 25th International Conference on Data Engineering. IEEE, 2009, pp. 429–440 Sách, tạp chí
Tiêu đề: Using anonymized data for classification,” in "25th International Conference on Data Engineering
[43]K. El Emam and B. Malin, “Appendix B: Concepts and methods for de-identifying clinical trial data,” in Sharing clinical trial data: Maximizing benefits, minimizing risk.The National Academies Press, 2015 Sách, tạp chí
Tiêu đề: Appendix B: Concepts and methods for de-identifying clinical trial data,” in "Sharing clinical trial data: Maximizing benefits, minimizing risk
[2] Open data in telecom, https://manypossibilities.net/2017/06/the-case-for-open-data-intelecoms/,10/2017 Link
[4] Canadian Cellular Towers Map, http://sms-sgs.ic.gc.ca/eic/site/sms-sgsprod.nsf/eng/h_00010.html, 10/2017 Link
[11] The home of the U.S. Government‟s open data: https://www.data.gov/ , 10/2017 Link
[17] Vietnam Open Educational Resources – VOER, http://voer.edu.vn/, 05/2018 Link
[6] Zhang, K., Ni, J., Yang, K., Liang, X., Ren, J., & Shen, X. S. (2017). Security and Privacy in Smart City Applications: Challenges and Solutions. IEEE Communications Magazine, 55(1), 122-129 Khác
[7] Rakesh Agrawal, Ramakrishnan Srikant: Privacy-preserving data mining, SIG-MOD, Vol. 29, pp. 439-450, 2000 Khác
[8] Yehuda Lindell, Benny Pinkas: Privacy Preserving Data Mining, Journal of Cryptology, Vol. 15, pp. 177-206, 2002 Khác
[9] Bee-Chung Chen, Daniel Kifer, Kristen LeFevre, Ashwin Machanavajjhala: Privacy- Preserving Data Publishing, Foundations and Trends in Databases, 2(1-2), pp. 1-167, 2009 Khác
[10] Benjamin C. M. Fung, Ke Wang, Rui Chen, Philip S. Yu: Privacy-preserving data publishing: A survey of recent developments, ACM Computing Surveys, 42(4), 2010 Khác
[13] Open Data Institute: Applying blockchain technology in global data infrastructure, Technical report, 2016 Khác
[14] Yuichi Nakamura, Kanae Matsui and Hiroaki Nishi: Anonymization Infrastructure for Secondary Use of Data, The International Conference on Internet Comp. and Big Data, 2014 Khác

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w