Tài liệu tham khảo |
Loại |
Chi tiết |
[1] P. Castro Jorge, F.M.F. Simões, A. Pinto da Costa. Dynamics of beams on non-uniform nonlinear foundations subjected to moving loads. Computers &Structures, Volume 148, February 2015, Pages 26–34 |
Sách, tạp chí |
Tiêu đề: |
Dynamics of beams on non-uniform nonlinear foundations subjected to moving loads |
|
[3] Eisenberger, M. (1994). “Vibration frequencies for beams on variable one- and two-paramter elastic foundations.” Journal of Sound and Vibration, 176(5), pp. 577-584, doi:10.1006/jsvi.1994.1399 |
Sách, tạp chí |
Tiêu đề: |
Vibration frequencies for beams on variable one- and two-paramter elastic foundations |
Tác giả: |
Eisenberger, M |
Năm: |
1994 |
|
[5] Eisenberger, M., Clastornik, J. (1987). “Vibrations and buckling of a beam on a variable Winkler elastic foundation.” Journal of Sound and Vibration, 115, pp.233-241, doi:10.1016/0022-460X(87)90469-X |
Sách, tạp chí |
Tiêu đề: |
Vibrations and buckling of a beam on a variable Winkler elastic foundation |
Tác giả: |
Eisenberger, M., Clastornik, J |
Năm: |
1987 |
|
[6] Kacar, A., Tan, H. T., and Kaya, M. O. (2011). “A note free vibration analysis of beams on variable winkler elastic foundation by using the differential transform method.” Mathematical and Computational Applications, 16(3), pp.773-783 |
Sách, tạp chí |
Tiêu đề: |
A note free vibration analysis of beams on variable winkler elastic foundation by using the differential transform method |
Tác giả: |
Kacar, A., Tan, H. T., and Kaya, M. O |
Năm: |
2011 |
|
[12] Frỳba L. Vibration of solids and structures under moving loads. Prague: Research Institute of Transport; 1972 |
Sách, tạp chí |
Tiêu đề: |
Vibration of solids and structures under moving loads |
|
[13] UtkanMutman. Free Vibration Analysis of an Euler Beam of Variable Width on the Winkler Foundation Using Homotopy Perturbation Method. Hindawi Publishing Corporation Mathematical Problems in Engineering. Volume 2013, Article ID 721294 |
Sách, tạp chí |
Tiêu đề: |
Free Vibration Analysis of an Euler Beam of Variable Width on the Winkler Foundation Using Homotopy Perturbation Method". Hindawi Publishing Corporation |
|
[14] Mohammad Amin Rashidifar et al. Analysis of Vibration of a Pipeline Supported on Elastic Soil Using Differential Transform Method. American Journal of Mechanical Engineering, 2013, Vol. 1, No. 4, 96-102 |
Sách, tạp chí |
Tiêu đề: |
Analysis of Vibration of a Pipeline Supported on Elastic Soil Using Differential Transform Method |
|
[15] Hetenyi M. Beams on elastic foundation. Ann Arbor: The University of Michigan Press; 1946 |
Sách, tạp chí |
Tiêu đề: |
Beams on elastic foundation |
|
[16] Timoshenko S, Young D, Weaver W. Vibration problems in engineering. New York: John Wiley; 1974 |
Sách, tạp chí |
Tiêu đề: |
Vibration problems in engineering |
|
[19] Chen Y, Huang Y. Dynamic characteristics of infinite and finite railways to moving loads. J Eng Mech(ASCE) 2003;129(9):987–95.http://dx.doi.org/10.1061/(ASCE)0733-9399(2003)129:9(987) |
Sách, tạp chí |
Tiêu đề: |
Dynamic characteristics of infinite and finite railways to moving loads |
|
[20] Mallik A, Chandra S, Singh A. Steady-state response of an elastically supported infinite beam to a moving load. J Sound Vib 2006;291(3–5):1148– |
Sách, tạp chí |
Tiêu đề: |
Steady-state response of an elastically supported infinite beam to a moving load |
|
[21] Younesian D, Kargarnovin M. Response of the beams on random Pasternak foundations subjected to harmonic moving loads. J Mech Sci Technol 2009;23(11):3013–23. http://dx.doi.org/10.1007/s12206-009-0816-3 |
Sách, tạp chí |
Tiêu đề: |
Response of the beams on random Pasternak foundations subjected to harmonic moving loads |
|
[24] Muscolino G, Palmeri A. Response of beams resting on viscoelastically damped foundation to moving oscillators. Int J Solids Struct 2007;44(5):1317– |
Sách, tạp chí |
Tiêu đề: |
Response of beams resting on viscoelastically "damped" foundation to moving oscillators |
|
[18] Sun L. A closed-form solution of a Bernoulli–Euler beam on a viscoelastic foundation under harmonic line loads. J Sound Vib 2001;242(4):619–27.http://dx.doi.org/10.1006/jsvi.2000.337 |
Link |
|
[26] Thambiratnam D, Zhuge Y. Dynamic analysis of beams on an elastic foundation subjected to moving loads. J Sound Vib 1996;198(2):149–69.http://dx.doi.org/10.1006/jsvi.1996.0562 |
Link |
|
[28] Andersen L, Nielsen S, Kirkegaard P. Finite element modelling of infinite Euler beams on Kelvin foundations exposed to moving loads in convected coordinates. J Sound Vib 2001; 241(4):587–604.http://dx.doi.org/10.1006/jsvi.2000.3314 |
Link |
|
[32] Nguyen V, Duhamel D. Finite element procedures for nonlinear structures in moving coordinates. Part 2: Infinite beam under moving harmonic loads.Comput Struct 2008 ;86(21-22):2056–63.http://dx.doi.org/10.1016/j.compstruc.2008.04.010 |
Link |
|
[33] Senalp A, Ozkol I, Arikoglu A, Dogan V. Dynamic response of a finite length Euler–Bernoulli beam on linear and nonlinear viscoelastic foundations to a concentrated moving force. J Mech Sci Technol 2010;24(10):1957–61.http://dx.doi.org/10.1007/s12206-010-0704-x |
Link |
|
[54] A.s. Kanani, H. Niknam, A.R. Ohadi, M.M.Aghdam, Effect of nonlinear elastic foundation on large amplitude free and forced vibration of functionallygraded beam, Composite Structures,http://dx.doi.org/10.1016/j.compstruct.2014.04.003(2014) |
Link |
|
[55] H. Matsunaga, Vibration and buckling of deep beam-columns on two- parameter elastic foundations, Department of Architecture, Setsunan University, 17-8, Ikeda-naka-machi, Neyagawa, Osaka, 572-8508, Japan Composite Structures, http://dx.doi.org/10.1006/jsvi.1999.2415 |
Link |
|