Tài liệu tham khảo |
Loại |
Chi tiết |
[2] Chang Y C, Wu JC Y, Chen J M, et al. TEMPTing System: A Hybrid Method of Rule and Machine Learning for Temporal Relation Extraction in Patient Discharge Summaries. Journal of Biomedical Informatics 2013 (in press) |
Sách, tạp chí |
Tiêu đề: |
Journal of Biomedical Informatics 2013 |
|
[3] CRF++: Yet Another CRF toolkit, http://taku910.github.io/crfpp/,2013 [4] Dinh, D., Hoang, K., & Nguyen, T. V. (2001). Vietnamese WordSegmentation. In NLPRS (Vol. 1, pp. 749-756) |
Sách, tạp chí |
Tiêu đề: |
http://taku910.github.io/crfpp/,2013" [4] Dinh, D., Hoang, K., & Nguyen, T. V. (2001). Vietnamese Word Segmentation. In "NLPRS |
Tác giả: |
CRF++: Yet Another CRF toolkit, http://taku910.github.io/crfpp/,2013 [4] Dinh, D., Hoang, K., & Nguyen, T. V |
Năm: |
2001 |
|
[5] Dinh, D.,& Vu, T. (2006). A maximum entropy approach for Vietnamese word segmentation. Proceeding of 4 th IEEE international conference on Computer Science – Research, Innovation and Vision of the future 2006 (RIVF’06). Ho Chi Minh City, Vietnam, 247-252 |
Sách, tạp chí |
Tiêu đề: |
Proceeding of 4"th" IEEE international conference on Computer Science – Research, Innovation and Vision of the future 2006 (RIVF’06) |
Tác giả: |
Dinh, D.,& Vu, T |
Năm: |
2006 |
|
[7] Holmes AB, Hawson A, Liu F, Friedman C, Khiabanian H, Rabadan R. Discovering disease associations by integrating electronic clinical data and medical literature. PLoS One 2011, 6(6):e21132 |
Sách, tạp chí |
|
[8] Jiang M, Chen Y, Liu M, et al. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. J Am Med Inform Assoc (2011). doi:10.1136/amiajnl-2011- 000163 |
Sách, tạp chí |
Tiêu đề: |
J Am Med Inform Assoc |
Tác giả: |
Jiang M, Chen Y, Liu M, et al. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. J Am Med Inform Assoc |
Năm: |
2011 |
|
[9] Joachims T. Text categorization with support vector machines: Learning with many relevant features (1998). Springer Berlin Heidelberg. (pp. 137-142) |
Sách, tạp chí |
Tiêu đề: |
Springer Berlin Heidelberg |
Tác giả: |
Joachims T. Text categorization with support vector machines: Learning with many relevant features |
Năm: |
1998 |
|
[13] Liao KP, Cai T, Gainer V, et al. Electronic medical records for discovery research in rheumatoid arthritis. Arthritis Care Res (Hoboken) 2010;62:1120e7 |
Sách, tạp chí |
Tiêu đề: |
Arthritis Care Res |
|
[14] Pustejovsky J, Hanks P, Sauri R, et al. The timebank corpus. Proceeding of Corpus Linguistics, Lancaster University, UK, 2003, 647–56 |
Sách, tạp chí |
Tiêu đề: |
Proceeding of Corpus Linguistics, Lancaster University, UK |
|
[15] Pustejovsky J, Verhagen M. SemEval-2010 task 13: evaluating events, time expressions, and temporal relations (TempEval-2). Proceedings of the Workshop on Semantic Evaluations: Recent Achievements and Future Directions. Boulder, Colorado: Association for Computational Linguistics, 2009: 112–16 |
Sách, tạp chí |
Tiêu đề: |
Proceedings of the Workshop on Semantic Evaluations: Recent Achievements and Future Directions. Boulder, Colorado: Association for Computational Linguistics |
|
[16] Rong-En F , Kai-Wei C , Cho-Jui H , Xiang-Rui W , Chih-Jen L. LIBLINEAR: A Library for Large Linear Classification. The Journal of Machine Learning Research, 9, p.1871-1874, 6/1/2008 |
Sách, tạp chí |
Tiêu đề: |
The Journal of Machine Learning Research |
|
[19] Sohn S, Wagholikar K, Li D, et al. Comprehensive temporal information discovery from discharge summaries: medical events, time, and TLINK identification. JAm Med Inform Assoc. 2013 (in press) |
Sách, tạp chí |
Tiêu đề: |
JAm Med Inform Assoc |
|
[20] Stanford Parser, http://nlp.stanford.edu/software/lex-parser.shtml#Download [21] Strửtgen J, Armiti A, Van Canh T, Zell J, and Gertz M. HeidelTime: Highquality rule-based extraction and normalization of temporal expressions. In Proceedings of the 5th International Workshop on Semantic Evaluation.321–324 |
Sách, tạp chí |
Tiêu đề: |
Proceedings of the 5th International Workshop on Semantic Evaluation |
|
[23] Sun W, Rumshisky A, Uzuner O. Evaluating temporal relations in clinical text: 2012 i2b2 Challenge. J Am Med Inform Assoc 2013;20:5 806-813 [24] Tang B, Wu Y, Jiang M, et al. A hybrid system for temporal informationextraction from clinical text. J Am Med Inform Assoc 2013 (in press) |
Sách, tạp chí |
Tiêu đề: |
J Am Med Inform Assoc" 2013;20:5 806-813 [24] Tang B, Wu Y, Jiang M, et al. A hybrid system for temporal information extraction from clinical text. "J Am Med Inform Assoc |
|
[26] Wu J, Roy J, Stewart WF. Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches. Med Care 2010; 48(6 Suppl): S106–S113 |
Sách, tạp chí |
|
[27] Xu H, Fu Z, Shah A, et al. Extracting and integrating data from entire electronic health records for detecting colorectal cancer cases. AMIA. Annu.Symp. Proc. 2011;2011:1564-1572 |
Sách, tạp chí |
Tiêu đề: |
AMIA. Annu. "Symp |
|
[28] Xu Y, et al. An end-to-end system to identify temporal relation in discharge summaries: 2012 i2b2 challenge. J Am Med Inform Assoc 2013;0:1–10.doi:10.1136/amiajnl-2012-001607 |
Sách, tạp chí |
Tiêu đề: |
J Am Med Inform Assoc |
|
[29] Wallach, H.M. Conditional random fields: An introduction. Technical Reports (CIS), 2014 |
Sách, tạp chí |
Tiêu đề: |
Technical Reports (CIS) |
|
[30] Zhang R, Cairelli M J, Fiszman M, et al. Using semantic predications to uncover drug—drug interactions in clinical data. Journal of Biomedical Informatics, 2014 |
Sách, tạp chí |
Tiêu đề: |
Journal of Biomedical Informatics |
|
[6] JVnTextPro: A Java-based Vietnamese Text Processing Tool, http://jvntextpro.sourceforge.net/ |
Link |
|
[25] TreeTagger - a language independent part-of-speech tagger http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/ |
Link |
|