(Luận án tiến sĩ) nghiên cứu biến tính than hoạt tính làm vật liệu xử lý một số chất độc tồn tại dưới dạng ion trong nước

200 59 0
(Luận án tiến sĩ) nghiên cứu biến tính than hoạt tính làm vật liệu xử lý một số chất độc tồn tại dưới dạng ion trong nước

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ - PHẠM THỊ HẢI THỊNH NGHIÊN CỨU BIẾN TÍNH THAN HOẠT TÍNH LÀM VẬT LIỆU XỬ LÍ MỘT SỐ CHẤT ĐỘC TỒN TẠI DƯỚI DẠNG ION TRONG NƯỚC LUẬN ÁN TIẾN SỸ CHUYÊN NGÀNH KĨ THUẬT MÔI TRƯỜNG HÀ NỘI – 2020 BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ - Phạm Thị Hải Thịnh NGHIÊN CỨU BIẾN TÍNH THAN HOẠT TÍNH LÀM VẬT LIỆU XỬ LÍ MỘT SỐ CHẤT ĐỘC TỒN TẠI DƯỚI DẠNG ION TRONG NƯỚC Chuyên ngành: Kĩ thuật môi trường Mã số: 52 03 20 LUẬN ÁN TIẾN SỸ CHUYÊN NGÀNH KĨ THUẬT MÔI TRƯỜNG NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS TS Trần Hồng Côn TS Phương Thảo Hà Nội – 2020 LỜI CAM ĐOAN Tôi xin cam đoan cơng trình nghiên cứu riêng tơi khơng trùng lặp với cơng trình khoa học khác Các số liệu, kết nêu luận án trung thực chưa sử dụng để bảo vệ học vị nào, chưa cơng bố cơng trình nghiên cứu Tác giả luận án Phạm Thị Hải Thịnh LỜI CẢM ƠN Tôi xin bày tỏ lời cảm ơn chân thành, sâu sắc, kính trọng tới PGS.TS Trần Hồng Côn - người Thầy tận tâm hướng dẫn khoa học, định hướng nghiên cứu, động viên tạo điều kiện thuận lợi cho tơi suốt q trình thực luận án Tôi xin chân thành cảm ơn TS Phương Thảo tận tình dẫn, giúp đỡ khoa học định hướng nghiên cứu suốt q trình tơi thực luận án Tơi xin chân thành cảm ơn Lãnh đạo Viện Công nghệ mơi trường, Lãnh đạo phịng Cơng nghệ xử lí nước đồng nghiệp phịng Cơng nghệ xử lí nước – Viện Công nghệ môi trường tạo điều kiện mặt, động viên đóng góp ý kiến q báu chun mơn suốt q trình thực bảo vệ Luận án Tôi xin trân trọng cảm ơn tập thể cán Phòng thí nghiệm Hóa mơi trường – Khoa Hóa học – Trường Đại học Khoa học tự nhiên quan tâm giúp đỡ tạo điều kiện thuận lợi sở vật chất cho suốt trình nghiên cứu Tơi xin trân trọng cảm ơn Lãnh đạo cán Khoa Công nghệ môi trường, Học viện Khoa học Công nghệ giúp đỡ thủ tục cần thiết q trình hồn thành Luận án Cuối xin bày tỏ lời cảm ơn sâu sắc đến gia đình, người thân chia sẻ, động viên giúp đỡ vượt qua khó khăn suốt q trình thực Luận án MỤC LỤC MỤC LỤC v DANH MỤC CHỮ VIẾT TẮT viii DANH MỤC BẢNG ix DANH MỤC HÌNH xi MỞ ĐẦU CHƯƠNG TỔNG QUAN 1.1 Hiện trạng ô nhiễm amoni, asen, kim loại nặng trongnước ngầm nghiên cứu, ứng dụng nước xử lí amoni, asen 1.1.1 Hiện trạng ô nhiễm amoni, asen kim loại nặng nước ngầm 1.1.2 Các nghiên cứu, ứng dụng nước xử lí amoni, asen nước ngầm 1.1.2.1 Các nghiên cứu, ứng dụng xử lí amoni nước ngầm 1.1.2.2 Các nghiên cứu, ứng dụng xử lí asen nước ngầm 11 1.2 Tổng quan than hoạt tính 14 1.2.1 Khái niệm chung than hoạt tính tiềm ứng dụng môi trường 14 1.2.2 Đặc tính than hoạt tính 16 1.2.2.1 Cấu trúc xốp bề mặt than hoạt tính 16 1.2.2.2 Cấu trúc hóa học bề mặt than hoạt tính 18 1.2.3 Biến đổi bề mặt than hoạt tính 21 1.2.4 Các nghiên cứu ngồi nước biến tính than hoạt tính tác nhân oxi hóa 26 1.3 Tổng quan hấp phụ trao đổi ion 36 1.3.1 Tổng quan hấp phụ 36 1.3.1.1 Phân loại đường đẳng nhiệt hấp phụ 36 1.3.1.2 Kĩ thuật hấp phụ động 38 1.3.2 Tổng quan trao đổi ion 41 1.3.2.1 Cơ sở lí thuyết q trình trao đổi ion .41 1.3.2.2 Nguyên tắc phản ứng trao đổi ion 42 CHƯƠNG PHƯƠNG PHÁP NGHIÊN CỨU 44 2.1 Đối tượng nghiên cứu 44 2.2 Hóa chất, dụng cụ thiết bị thí nghiệm 44 2.3 Phương pháp thực nghiệm 45 2.3.1 Phương pháp oxi hóa than hoạt tính 45 2.3.1.1 Oxi hóa than hoạt tính HNO3 trung hòa bề mặt NaOH 45 2.3.1.2 Oxi hóa than KMnO4 47 2.3.1.3 Oxi hóa than K2Cr2O7 47 2.3.2 Nghiên cứu khả hấp phụ than biến tính điều kiện tĩnh .48 2.3.3 Nghiên cứu khả trao đổi ion /hấp phụ than oxi hóa mơ hình động 49 2.3.4 Nghiên cứu khả tái sinh than sau hấp phụ 50 2+ 3+ 2.3.5 Phương pháp gắn Mn Fe than biến tính 50 2.4 Các phương pháp xác định đặc trưng bề mặt vật liệu 51 2.5 Phương pháp phân tích 53 2.6 Phương pháp tính tốn 54 CHƯƠNG KẾT QUẢ NGHIÊN CỨU VÀ THẢO LUẬN .56 3.1 Kết oxi hóa than hoạt tính tác nhân oxi hóa khác 56 3.1.1 Các vật liệu thu sau oxi hóa xử lí bề mặt 56 3.1.2 Đặc trưng bề mặt vật liệu trước sau oxi hóa 58 3.1.2.1 Kết hình thái học thành phần ngun tố than hoạt tính than oxi hóa 58 3.1.2.2 Kết xác định phổ hồng ngoại (FTIR) 60 3.1.2.3 Kết xác định diện tích bề mặt riêng 64 3.1.2.4 Kết chuẩn độ Boehm xác định giá trị pHpzc 67 3.1.2.5 Định lượng dung lượng khử than oxi hóa KMnO4 K2Cr2O7 71 3.2 Khả trao đổi ion than oxi hóa HNO3, KMnO4, K2Cr2O7 với + NH4 73 + 3.2.1 Khả trao đổi than oxi hóa HNO3 với NH4 .73 3.2.1.1 Ảnh hưởng điều kiện biến tính than đến khả trao đổi với + NH4 73 + 3.2.1.2 Khả trao đổi ion than OAC14 OAC10-4Navới NH4 76 + 3.3.2 Khả trao đổi ion than oxi hóa KMnO4 với NH4 .78 + 3.3.3 Khả trao đổi ion than oxi hóa K2Cr2O7 với NH4 79 3.3 Khả trao đổi ion than oxi hóa HNO3và xử lí bề mặt NaOH cation hóa trị mơ hình tĩnh 81 3.3.1 Ảnh hưởng thời gian tiếp xúc 81 3.3.2 Ảnh hưởng pH đến trình hấp phụ/trao đổi .84 3.3.3 Ảnh hưởng nồng độ ion đầu vào đến khả hấp phụ/trao đổi 88 + 3.4 Khả trao đổi than biến tính với NH4 mơ hình động .96 3.4.1 Ảnh hưởng nồng độ amoni đầu vào 97 3.4.2 Ảnh hưởng lưu lượng dòng vào 97 3.4.3 Ảnh hưởng chiều cao cột than 98 3.4.4 Động học trao đổi theo mơ hình hấp phụ động .101 + 3.5 Khả tái sinh than hoạt tính sau trao đổi với NH4 101 3.5.1 Tái sinh mô hình tĩnh 101 3.5.2 Tái sinh mơ hình động 103 3.6 Gắn kim loại lên than oxi hóa ứng dụng xử lí As nước .105 3.6.1 Đặc trưng than oxi hóa sau gắn Mn Fe 106 3.6.2 Kết hấp phụ As vật liệu than oxi hóa gắn Mn Fe .110 3.6.2.1 Ảnh hưởng pH đến khả hấp phụ As(III) As(V) 110 3.6.2.2 Ảnh hưởng nồng độ As đầu vào hàm lượng Mn, Fe mang lên than oxi hóa đến khả hấp phụ As(III) 111 3.6.2.3 Ảnh hưởng nồng độ As đầu vào hàm lượng Fe, Mn gắn than đến khả hấp phụ As(V) 114 3.7 Ứng dụng xử lí nước chứa Cr(VI), amoni 116 3.7.1 Khả xử lí Cr(VI) than hoạt tính mơ hình động 116 3.7.2 Ứng dụng xử lí amoni nước cấp 120 KẾT LUẬN 123 NHỮNG ĐÓNG GÓP MỚI CỦA LUẬN ÁN 124 DANH MỤC CÁC CƠNG TRÌNH CƠNG BỐ 125 TÀI LIỆU THAM KHẢO 126 DANH MỤC CHỮ VIẾT TẮT Chữ viết tắt AC SEM IR BET ASTM EDX pHpzc TLTK QCVN BYT DANH MỤC BẢNG Bảng 1.1 Đặc tính than hoạt tính sản xuất từ nguồn gốc khác [24] 15 Bảng 1.2 Thuận lợi bất lợi phương pháp biến tính than hoạt tính .22 Bảng 1.3 Mối tương quan RL dạng mơ hình [94] 37 Bảng 3.1 Bảng tổng kết mẫu than thu sau oxi hóa HNO3 xử lí bề mặt NaOH 56 Bảng 3.2 Thành phần nguyên tố than hoạt tính than oxi hóa 58 Bảng 3.3 Kết phân tích phổ hồng ngoại than hoạt tính than biến tính 61 Bảng 3.4 Bề mặt riêng đặc trưng mao quản than trước sau oxi hóa 64 Bảng 3.5 Bề mặt riêng đặc trưng mao quản than trước sau oxi hóa tác nhân khác 65 Bảng 3.6 Kết chuẩn độ Boehm than oxi hóa HNO3 .67 Bảng 10 3.7 Kết chuẩn độ Boehm pHpzc than oxi hóa .69 + Bảng 11 3.8 Các thông số đẳng nhiệt hấp phụ NH4 mẫu than oxi hóa HNO3 với thời gian khác theo Langmuir 74 + Bảng 12 3.9 Các thông số đẳng nhiệt hấp phụ NH4 mẫu than OAC10-4 OAC10-4Na theo Langmuir 78 + Bảng 13 3.10 Các thông số đẳng nhiệt hấp phụ NH4 mẫu than ACKMnO4 OACKMnO4-Na theo Langmuir 79 + Bảng 14 3.11 Các thông số đẳng nhiệt hấp phụ NH4 mẫu than ACK2Cr2O7 than OACK2Cr2O7-Na theo Langmuir 80 + Bảng 15 3.12 Các thông số đẳng nhiệt hấp phụ NH4 theo Langmuir Freundlich 91 + Bảng 16 3.13 Một số nghiên cứu khả hấp phụ NH4 than hoạt tính 92 2+ theo Langmuir Freundlich 3+ theo Langmuir Freundlich Bảng 17 3.14 Các thông số đẳng nhiệt hấp phụ Ca 93 Bảng 18 3.15 Các thông số đẳng nhiệt hấp phụ Cr 95 + Bảng 19 3.16 Bảng tính tốn thơng số cột trao đổi với NH4 96 + Bảng 20 3.17 Tổng kết thơng số thí nghiệm trao đổi với NH4 100 + Bảng 21 3.18 Tổng kết tham số hấp phụ NH4 theo phương trình động học hấp phụ Bohart – Adam Thomas 101 Bảng 22 3.19 Thành phần nguyên tố than biến tính sau gắn Mn 7%, Fe 5% 108 Bảng 23 3.20 Hàm lượng Fe, Mn than hoạt tính, than biến tính, than gắn Fe, Mn 108 Bảng 24 3.21 Các thông số đẳng nhiệt Langmuir hấp phụ As(III), As(V) 115 Bảng 25 3.22 Tổng kết thông số hấp phụ Cr(VI) 119 Bảng 26 3.23 Tổng kết tham số khử/hấp phụ Cr(VI) theo mô hình Bohart – Adam, Yoon Nelson Thomas 120 Lago, “Tailoring activated carbon by surface chemical modification with O, S and N containing molecule,” Mater Res., vol 6, no 2, pp 129–135, 2003 [56] A Aburub and D E Wurster, “Phenobarbital interactions with derivatized activated carbon surfaces,” J Colloid Interface Sci., vol 296, no 1, pp 79– 85, 2006 [57] H Ma, X Ji, Z Tian, G Fang, and G Yang, “Adsorption removal of inhibiting compounds by modified activated carbon,” J Energy Nat Resour., vol 6, no 2, pp 24–30, 2017 [58] E A Emam, “Modified Activated Carbon and Bentonite Used to Adsorb Petroleum Hydrocarbons Emulsified in Aqueous Solution,” Am J Environ Prot., vol 2, no 6, p 161, 2013 [59] A Allwar, R Hartati, and I Fatimah, “Effect of nitric acid treatment on activated carbon derived from oil palm shell,” in AIP Conference Proceeding, 2017, vol 1823 [60] J P Chen and S Wu, “Acid/Base-Treated Activated Carbons: Characterization of Functional Groups and Metal Adsorptive Properties,” Langmuir, vol 20, no 6, pp 2233–2242, 2004 [61] W H Cheung, S S Y Lau, S Y Leung, A W M Ip, and G McKay, “Characteristics of chemical modified activated carbons from bamboo scaffolding,” Chinese J Chem Eng., vol 20, no 3, pp 515–523, 2012 [62] A Edwin Vasu, “Surface Modification of Activated Carbon for Enhancement of Nickel(II) Adsorption,” E-Journal Chem., vol 5, no 4, pp 814–819, 2008 [63] N Soudani, S Souissi-najar, and A Ouederni, “Influence of Nitric Acid Concentration on Characteristics of Olive Stone Based Activated Carbon,” Chinese J Chem Eng., vol 21, no 12, pp 1425–1430, 2013 [64] T Bohli and A Ouederni, “Improvement of oxygen-containing functional groups on olive stones activated carbon by ozone and nitric acid for heavy metals removal from aqueous phase,” Environ Sci Pollut Res., vol 23, no 16, pp 15852–15861, 2016 [65] W Qiao, Y Korai, I Mochida, Y Hori, and T Maeda, “Preparation of an activated carbon artifact: Oxidative modification of coconut shell-based 131 carbon to improve the strength,” Carbon N Y., vol 40, no 3, pp 351–358, 2002 [66] M F R Pereira, S F Soares, J J M Órfão, and J L Figueiredo, “Adsorption of dyes on activated carbons: Influence of surface chemical groups,” Carbon N Y., vol 41, no 4, pp 811–821, 2003 [67] B K Pradhan and N K Sandle, “Effect of different oxidizing agent treatments on the surface properties of activated carbons,” Carbon N Y., vol 37, pp 1323–1332, 1999 [68] A M Youssef and T El-nabarawy, “Modified Activated Carbons from Olive Stones for the Removal of Heavy Metals,” vol 7, no 1, pp 1–8, 2006 [69] R Tsunoda, T Ozawa, and J Ando, “Ozone Treatment of Coal- and Coffee Grounds-Based Active Carbons : Water Vapor Adsorption and Surface Fractal Micropores,” J Colloid Interface Sci., vol 205, pp 265–270, 1998 [70] R Considine, R Denoyel, P Pendleton, R Schumann, and S Wong, “The influence of surface chemistry on activated carbon adsorption of 2methylisoborneol from aqueous solution,” Colloids Surfaces A Physicochem Eng Asp., vol 179, pp 271–280, 2001 [71] H L Chiang, P C Chiang, and C P Huang, “Ozonation of activated carbon and its effects on the adsorption of VOCs exemplified by methylethylketone and benzene,” Chemosphere, vol 47, no 3, pp 267–275, 2002 [72] H.Vandés, M Sánchez-Polo, J Rivera-Utrilla, C A Zaror, “Effect of Ozone Treatment on Surface Properties of Activated Carbon,” Langmuir, vol 18, pp 2111–2116, 2002 [73] Kunio Kawamoto, Kengo Ishimaru, Yuji Imamura, “Reactivity of wood charcoal with ozone,” Japan Wood Res Soc., vol 51, pp 66–72, 2005 [74] S Park and S Jin, “Effect of ozone treatment on ammonia removal of activated carbons,” Sci Direct, vol 286, pp 417–419, 2005 [75] A A M Daifullah, S M Yakout, and S A Elreefy, “Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw,” J Hazard Mater., vol 147, no 1–2, pp 633– 643, 2007 132 [76] S Mopoung and T Bunterm, “KMnO4 modified carbon prepared from waste of pineapple leaf fiber production processing for removal of ferric ion from aqueous solution,” Am J Appl Sci., vol 13, no 6, pp 814–826, 2016 [77] N chuan Feng, W Fan, M lin Zhu, and G X Yi, “Adsorption of Cd2+ in aqueous solutions using KMnO4-modified activated carbon derived from Astragalus residue,” Trans Nonferrous Met Soc China (English Ed., vol 28, no 4, pp 794–801, 2018 [78] J Zhang, “Phenol Removal from Water with Potassium Permanganate Modified Granular Activated Carbon,” J Environ Prot (Irvine, Calif)., vol 4, no May, pp 411–417, 2013 [79] E Deliyanni, T J Bandosz, and K A Matis, “Impregnation of activated carbon by iron oxyhydroxide and its effect on arsenate removal,” J Chem Technol Biotechnol., vol 88, no 6, pp 1058–1066, 2013 [80] T Raychoudhury, F Schiperski, and T Scheytt, “Distribution of iron in activated carbon composites: Assessment of arsenic removal behavior,” Water Sci Technol Water Supply, vol 15, no 5, pp 990–998, 2015 [81] M R Yu, Y Y Chang, and J K Yang, “Application of activated carbon impregnated with metal oxides to the treatment of multicontaminants,” Environ Technol (United Kingdom), vol 33, no 14, pp 1553–1559, 2012 [82] C K Ahn, D Park, S H Woo, and J M Park, “Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants,” J Hazard Mater., vol 164, no 2–3, pp 1130–1136, 2009 [83] B Agarwal, P K Thakur, and C Balomajumder, “Use of Iron- Impregnated Granular Activated Carbon for Co-Adsorptive Removal of Phenol and Cyanide: Insight Into Equilibrium and Kinetics,” Chem Eng Commun., vol 200, no 9, pp 1278–1292, 2013 [84] R Sandoval, A M Cooper, K Aymar, A Jain, and K Hristovski, “Removal of arsenic and methylene blue from water by granular activated carbon media impregnated with zirconium dioxide nanoparticles,” J Hazard Mater., vol 193, pp 296–303, 2011 [85] S Wang et al., “Manganese oxide-modified biochars: Preparation, 133 characterization, and sorption of arsenate and lead,” Bioresour Technol., vol 181, pp 13–17, 2015 [86] Lê Văn Khu, Đặng Văn Cử, Lương Thị Thủy, “Nghiên cứu tính chất than hấp phụ BTX than hoạt tính Trà Bắc,” Tạp chí hóa học, vol 53, no 4E2, pp 74–80, 2015 [87] Nguyễn Thị Thanh Hải, “Nghiên cứu chế tạo vật liệu hấp phụ sở biến tính than hoạt tính ứng dụng xử lý thủy ngân mơi trường nước, khơng khí.” Học viện Khoa học Công nghệ - Viện Hàn lâm Khoa học Công nghệ Việt Nam, Hà Nội, 2017 [88] Trịnh Xuân Đại, “Nghiên cứu biến tính than hoạt tính làm vật liệu hấp phụ xử lý amoni kim loại nước.” Trường Đại học Khoa học tự nhiên - Đại học Quốc gia Hà Nội, Hà Nội, 2011 [89] Nguyễn Vân Hương, “Nghiên cứu biến tính bề mặt than hoạt tính Trà Bắc khảo sát khảo sát khả hấp phụ số phẩm màu nước thải dệt nhuộm,” Quản lý tài nguyên rừng môi trường, vol 1, pp 56–60, 2017 [90] Thu Thuy Luong Thi, Le Van Khu, “Adsorption behavior of Pb (II) in aqueous solution using coffee husk-based activated carbon modified by nitric acid,” Am J Eng Res., vol 5, no 4, pp 120–129, 2016 [91] Bùi Minh Quý, “Nghiên cứu tổng hợp compozit PANi phụ phẩm nông nghiệp để xử lý kim loại nặng Pb(II), Cr(VI) Cd(II),” Luận án tiến sỹ Học viện Khoa học Công nghệ - Viện Hàn lâm Khoa học Công nghệ Việt Nam, Hà Nội, 2015 [92] Y S Ho and G Mckay, “A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents,” Trans IChemE, vol 76, pp 332–340, 1998 [93] G P Jeppu and T P Clement, “A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects,” J Contam Hydrol., vol 129–130, pp 46–53, 2012 [94] Y Ho and A E Ofomaja, “Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber,” J Hazard Mater., vol B129, pp 137–142, 2006 134 [95] Z Aksu and F Gönen, “Biosorption of phenol by immobilized activated sludge in a continuous packed bed: Prediction of breakthrough curves,” Process Biochem., vol 39, no 5, pp 599–613, 2004 [96] Lê Văn Cát, Hấp phụ trao đổi ion kĩ thuật xử lí nước nước thải Hà Nội: Nhà xuất thống kê, 2002 [97] P Vassileva, P Tzvetkova, and R Nickolov, “Removal of ammonium ions from aqueous solutions with coal-based activated carbons modified by oxidation,” Fuel, vol 88, no 2, pp 387–390, 2008 [98] F Liu et al., “Efficient static and dynamic removal of Sr(II) from aqueous solution using chitosan ion-imprinted polymer functionalized with dithiocarbamate,” J Environ Chem Eng., vol 3, no 2, pp 1061–1071, 2015 [99] M Goyal and M Bhagat, “Dynamic adsorption of Pb(II) ions from aqueous solution using activated carbon beds,” Indian J Eng Mater Sci., vol 17, no 5, pp 367–372, 2010 [100] Inamuddin, Mohammad Luqman, Ion Exchange Technology - Theory and Materials 2012 [101] W Wu et al., “Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments,” Environ Sci Pollut Res., vol 23, no 22, pp 22890– 22896, 2016 [102] S M Yakout, A E H M Daifullah, and S A El-reefy, “Pore Structure Characterization of Chemically Modified Biochar Derived From Rice Straw,” Environ Eng Manag J., vol 14, no 2, pp 473–480, 2015 [103] N Fiol and I Villaescusa, “Determination of sorbent point zero charge: Usefulness in sorption studies,” Environ Chem Lett., vol 7, no 1, pp 79–84, 2009 [104] M Kosmulski, “The pH-dependent surface charging and points of zero charge,” J Colloid Interface Sci., vol 253, pp 77–87, 2002 [105] A S L Goertzen, K D Thériault, A M Oickle, A C Tarasuk, and H Andreas, “Standardization of the Boehm titration Part I CO2expulsion and endpoint determination,” Carbon N Y., vol 48, no 4, pp 1252–1261, 2010 135 [106] R B Fidel, D A Laird, and M L Thompson, “Evaluation of Modified Boehm Titration Methods for Use with Biochars,” J Environ Qual., vol 42, no 6, p 1771, 2013 [107] M Eichelbaum, A B Siemer, R J Farrauto, and M J Castaldi, “The impact of urea on the performance of metal-exchanged zeolites for the selective catalytic reduction of NOx-Part II Catalytic, FTIR, and NMR studies,” Appl Catal B Environ., vol 97, no 1–2, pp 98–107, 2010 [108] L Wang et al., “Nitric acid-treated carbon fibers with enhanced hydrophilicity for Candida tropicalis immobilization in xylitol fermentation,” Materials (Basel)., vol 9, no 3, pp 119–123, 2016 [109] B Saha, M H Tai, and M Streat, “Study of activated carbon after oxidation and subsequent treatment Characterization,” Trans IChemE, vol 79, pp 211– 217, 2001 [110] G Huang, J X Shi, and T A G Langrish, “Removal of Cr(VI) from aqueous solution using activated carbon modified with nitric acid,” Chem Eng J., vol 152, no 2–3, pp 434–439, 2009 [111] J Jaramillo, P M Álvarez, and V Gómez-Serrano, “Oxidation of activated carbon by dry and wet methods surface chemistry and textural modifications,” Fuel Process Technol., vol 91, no 11, pp 1768–1775, 2010 [112] X Lu, J Jiang, K Sun, X Xie, and Y Hu, “Surface modification, characterization and adsorptive properties of a coconut activated carbon,” Appl Surf Sci., vol 258, no 20, pp 8247–8252, 2012 [113] D Borah, S Satokawa, S Kato, and T Kojima, “Surface-modified carbon black for As(V) removal,” J Colloid Interface Sci., vol 319, no 1, pp 53– 62, 2008 [114] Z L Deng, M N Liang, H H Li, and Z J Zhu, “Advances in preparation of modified activated carbon and its applications in the removal of chromium (VI) from aqueous solutions,” IOP Conf Ser Earth Environ Sci., vol 39, no 1, 2016 [115] L Y Zhang, H Y Zhang, W Guo, and Y L Tian, “Sorption characteristics and mechanisms of ammonium by coal by-products: Slag, honeycomb-cinder 136 and coal gangue,” Int J Environ Sci Technol., vol 10, no 6, pp 1309– 1318, 2013 [116] N Salgado-Gómez, M G Macedo-Miranda, and M T Olguín, “Chromium VI adsorption from sodium chromate and potassium dichromate aqueous systems by hexadecyltrimethylammonium-modified zeolite-rich tuff,” Appl Clay Sci., vol 95, pp 197–204, 2014 [117] L M Le Leuch and T J Bandosz, “The role of water and surface acidity on the reactive adsorption of ammonia on modified activated carbons,” Sci Direct, vol 45, pp 568–578, 2007 [118] A A Halim, M T Latif, and A Ithnin, “Ammonia Removal from Aqueous Solution Using Organic Acid Modified Activated Carbon,” World Appl Sci J., vol 24, no 1, pp 1–6, 2013 [119] X Cui, H Hao, C Zhang, Z He, and X Yang, “Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars,” Sci Total Environ., vol 539, pp 566–575, 2016 [120] T M Vu et al., “Removing ammonium from water using modified corncob-biochar,” Sci Total Environ., vol 579, pp 612–619, 2017 [121] J Rivera-Utrilla and M Sánchez-Polo, “Adsorption of Cr(III) on ozonised activated carbon Importance of Cπ - Cation interactions,” Water Res., vol 37, no 14, pp 3335–3340, 2003 [122] D Karadag, E Akkaya, A Demir, A Saral, M Turan, and M Ozturk, “Ammonium Removal from Municipal Landfill Leachate by Clinoptilolite Bed Columns : Breakthrough Modeling and Error Analysis,” Ind Eng Chem Res., vol 47, pp 9552–9557, 2008 [123] S Kizito, S Wu, S Mdondo, L Guo, and R Dong, “Evaluation of ammonium adsorption in biochar- fi xed beds for treatment of anaerobically digested swine slurry : Experimental optimization and modeling,” Sci Total Environ., vol 563–564, pp 1095–1104, 2016 [124] S H Hasan, D Ranjan, and M Talat, “Agro-industrial waste ‘wheat bran’ for the biosorptive remediation of selenium through continuous up-flow fixed-bed column,” J Hazard Mater., vol 181, no 1–3, pp 1134–1142, 137 2010 [125] K B Payne and T M Abdel-Fattah, “Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: Effects of pH, temperature, and ionic strength,” J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng., vol 40, no 4, pp 723–749, 2005 [126] M Jang, W F Chen, F S Cannon, “Preloading Hydrous Ferric Oxide into Granular Activated Carbon for Arsenic Removal,” Environ Sci Technol, vol 42, pp 3369–3374, 2008 [127] D W Oscarson, P M Huang, and W K Liaw, “Role of manganese in the oxidation of arsenite by freshwater lake sediments,” Clays Clay Miner., vol 29, no 3, pp 219–225, 1981 [128] Y Y Chang, K S Kim, J H Jung, J K Yang, and S M Lee, “Application of iron-coated sand and manganese-coated sand on the treatment of both As(III) and As(V),” Water Sci Technol., vol 55, no 1–2, pp 69–75, 2007 [129] Y Y Chang, K H Song, and J K Yang, “Removal of As(III) in a column reactor packed with iron-coated sand and manganese-coated sand,” J Hazard Mater., vol 150, no 3, pp 565–572, 2008 [130] E Deliyanni and T J Bandosz, “Importance of carbon surface chemistry in development of iron-carbon composite adsorbents for arsenate removal,” J Hazard Mater., vol 186, no 1, pp 667–674, 2011 [131] L Zeng, “A method for preparing silica-containing iron(III) oxide adsorbents for arsenic removal,” Water Res., vol 37, pp 4351–4358, 2003 [132] P Mondal, C B Majumder, and B Mohanty, “Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+impregnated activated carbon,” J Hazard Mater., vol 150, no 3, pp 695–702, 2008 [133] D Mohan and C U Pittman, “Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water,” vol 137, pp 762– 811, 2006 [134] K K Krishnani and S Ayyappan, “Heavy Metals Remediation of Water Using Plants and Lignocellulosic Agrowastes,” Rev Env Contam Toxicol, 138 vol 188, pp 59–84, 2006 [135] J Lee, M Kim, and Y Lee, “Selective Removal of Cr ( VI ) and Cr ( III ) in Aqueous Solution by Surface Modified Activated Carbon,” Carbon Lett., vol 9, no 1, p pp 23-27, 2008 [136] M Owlad, M K Aroua, and W M A Wan Daud, “Hexavalent chromium adsorption on impregnated palm shell activated carbon with polyethyleneimine,” Bioresour Technol., vol 101, no 14, pp 5098–5103, 2010 [137] S Babel and T A Kurniawan, “Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan,” Chemosphere, vol 54, no 7, pp 951–967, 2004 [138] S X Liu, X Chen, X Y Chen, Z F Liu, and H L Wang, “Activated carbon with excellent chromium(VI) adsorption performance prepared by acid-base surface modification,” J Hazard Mater., vol 141, no 1, pp 315–319, 2007 [139] M Pang, L Xu, N Kano, and H Imaizumi, “Adsorption of chromium (VI) onto activated carbon modified with KMnO4,” J Chem Eng., vol 9, pp 280–287, 2015 [140] R Leyva Ramos, A Juarez Martinez, R M Guerrero Coronado, “Adsorption of chromium(VI) from aqueous solutions on activated carbon,” Water Sci Technol., vol 30, no 9, pp 191–197, 1994 [141] P L C Z Reddad, C Gerente, Y Andres, “Mechanisms of Cr(III) and Cr(VI) removal from aqueous solutions by sugar beet pulp,” Environ Technol., vol 24, pp 257–264, 2008 [142] J Lakatos, S D Brown, and C E Snape, “Coals as sorbents for the removal and reduction of hexavalent chromium from aqueous waste streams,” Fuel, vol 81, pp 691–698, 2002 139 ... luận án Từ lí chúng tơi chọn đề tài: ? ?Nghiên cứu biến tính than hoạt lí tính làm vật liệu xử số chất độc tồn dạng ion nước? ?? Mục tiêu luận án: Nghiên cứu chế tạo xác định đặc trưng vật liệu than hoạt. .. Thị Hải Thịnh NGHIÊN CỨU BIẾN TÍNH THAN HOẠT TÍNH LÀM VẬT LIỆU XỬ LÍ MỘT SỐ CHẤT ĐỘC TỒN TẠI DƯỚI DẠNG ION TRONG NƯỚC Chuyên ngành: Kĩ thuật môi trường Mã số: 52 03 20 LUẬN ÁN TIẾN SỸ CHUYÊN... độ biến tính thích hợp 700 C d Biến tính kĩ thuật ngâm tẩm (gắn vật liệu) 25 Gắn vật liệu kĩ thuật biến tính than hoạt tính quan trọng Một số nhà nghiên cứu [48], [49] cho than hoạt tính biến tính

Ngày đăng: 25/12/2020, 05:40

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan