Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 180 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
180
Dung lượng
3,52 MB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CƠNG NGHỆ -*** - Hồng Thu Trang NGHIÊN CỨU, THIẾT KẾ CẤU TRÚC TINH THỂ QUANG TỬ 1D VÀ 2D ỨNG DỤNG CHO LINH KIỆN LƯỠNG TRẠNG THÁI ỔN ĐỊNH LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU Hà Nội - 2020 BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ -*** - Hoàng Thu Trang NGHIÊN CỨU, THIẾT KẾ CẤU TRÚC TINH THỂ QUANG TỬ 1D VÀ 2D ỨNG DỤNG CHO LINH KIỆN LƯỠNG TRẠNG THÁI ỔN ĐỊNH Chuyên ngành: Vật liệu quang học, quang điện tử quang tử Mã số: 9.44.01.27 LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS Ngô Quang Minh GS.TS Arnan Mitchell Hà Nội - 2020 i LỜI CAM ĐOAN Tôi xin cam đoan cơng trình nghiên cứu tơi, hướng dẫn PGS.TS Ngô Quang Minh GS.TS Arnan Mitchell Các số liệu, kết nêu luận án trung thực chưa công bố công trình khác NGHIÊN CỨU SINH HỒNG THU TRANG ii LỜI CẢM ƠN Trước tiên, xin bày tỏ lời cảm ơn sâu sắc hướng dẫn tận tình hai thầy giáo hướng dẫn: PGS.TS Ngô Quang Minh GS.TS Arnan Mitchell Các thầy ln tận tình hướng dẫn, định hướng kịp thời tạo điều kiện thuận lợi để tơi hồn thành luận án Tơi xin cảm ơn giúp đỡ khích lệ GS.TS Vũ Đình Lãm, TS Lê Quang Khải dành cho năm qua Tôi xin chân thành cảm ơn cộng tác giúp đỡ anh chị đồng nghiệp Phòng Vật liệu Ứng dụng Quang sợi, Viện Khoa học Vật liệu, Viện Hàn lâm Khoa học Công nghệ Việt Nam, nơi tơi hồn thành luận án Tơi xin trân trọng cảm ơn giúp đỡ tạo điều kiện thuận lợi sở đào tạo Học viện Khoa học Công nghệ Viện Khoa học Vật liệu – Viện Hàn lâm Khoa học Công nghệ Việt Nam, quan mà tơi cơng tác, q trình thực luận án Sau cùng, muốn gửi lời cảm ơn tới người thân gia đình bạn bè động viên, giúp đỡ tạo điều kiện để tơi hồn thành luận án NGHIÊN CỨU SINH HOÀNG THU TRANG iii MỤC LỤC LỜI CAM ĐOAN LỜI CẢM ƠN MỤC LỤC Danh mục chữ viết tắt Danh mục ký hiệu Danh mục hình vẽ, đồ thị Danh mục bảng MỞ ĐẦU CHƯƠNG TỔNG QUAN 1.1 Cấu trúc tinh thể quang tử 1.1.1 Tổng quan cấu trúc tinh thể quang tử 1.1.2 Cấu trúc tinh thể quang tử chiều cách tử dẫn sóng 1.1.2.1 Khái niệm cấu trúc tinh thể quang tử chiều 1.1.2.2 Giản đồ vùng cấm quang 1.1.2.3 Buồng cộng hưởng 1.1.2.4 Cấu trúc cách tử dẫn sóng 1.1.3 Cấu trúc tinh thể quang tử hai chiều 1.1.3.1 Khái niệm 1.1.3.2 Vùng Brillouin 1.1.3.3 Mode dẫn sóng: điện trường ngang (TE) từ trường ngang (TM) 1.1.3.4 Giản đồ lượng iv 1.1.3.5 Giam giữ ánh sáng cấu trúc tinh thể quang tử hai chiều 1.1.4 Ứng dụng cấu trúc tinh thể quang tử 1.2 Linh kiện lưỡng trạng thái quang ổn định 1.2.1 Khái niệm chung chuyển mạch quang 1.2.2 Nguyên lý lưỡng ổn định quang học 1.2.3 Ứng dụng linh kiện lưỡng trạng thái quang ổn định 1.3 Kết luận chương CHƯƠNG PHƯƠNG PHÁP TÍNH TỐN VÀ MƠ PHỎNG 2.1 Lý thuyết ghép cặp mode theo thời gian 2.2 Phương pháp khai triển sóng phẳng 2.3 Phương pháp đạo hàm hữu hạn miền thời gian 2.4 Kết luận chương CHƯƠNG TỐI ƯU HÓA HỆ SỐ PHẨM CHẤT VÀ PHỔ CỘNG HƯỞNG CỦA CẤU TRÚC CÁCH TỬ DẪN SĨNG 3.1 Cộng hưởng dẫn sóng cấu trúc cách tử lý thuyết dẫn sóng cộng hưởng 3.1.1 Cộng hưởng dẫn sóng cấu trúc cách tử 3.1.2 Lý thuyết dẫn sóng cộng hưởng 3.2 Cộng hưởng bất đối xứng dạng Fano 3.2.1 Cơ sở lý thuyết 3.2.2 Cộng hưởng dạng Fano cấu trúc quang tử 3.3 Tối ưu hóa hệ số phẩm chất phổ cộng hưởng cấu trúc cách tử dẫn sóng 3.3.1 Cấu trúc đơn cách tử dẫn sóng kết hợp với màng mỏng kim loại v 3.3.1.1 Đặc trưng phản xạ màng mỏng kim loại cấu trúc đơn cách tử dẫn sóng 3.3.1.2 Đặc trưng cộng hưởng cấu trúc đơn cách tử dẫn sóng nhờ có mặt hiệu ứng cộng hưởng plasmon bề mặt 3.3.2 Cấu trúc ghép hai đơn cách tử dẫn sóng 3.3.3 Cấu trúc cách tử dẫn sóng dựa màng mỏng đa lớp 3.4 Kết luận chương CHƯƠNG LƯỠNG TRẠNG THÁI QUANG ỔN ĐỊNH TRONG CẤU TRÚC CÁCH TỬ DẪN SÓNG 4.1 Lưỡng trạng thái quang ổn định cấu trúc cách tử dẫn sóng kết hợp với màng mỏng kim loại 4.1.1 Hiệu ứng tăng cường phản xạ màng mỏng kim loại 4.1.2 Hiệu ứng cộng hưởng plasmon bề mặt 4.2 Lưỡng trạng thái quang ổn định cấu trúc ghép hai đơn cách tử dẫn sóng 4.3 Lưỡng trạng thái quang ổn định cấu trúc cách tử dẫn sóng dựa màng mỏng đa lớp 4.4 Kết luận chương CHƯƠNG LƯỠNG TRẠNG THÁI QUANG ỔN ĐỊNH DỰA TRÊN SỰ TƯƠNG TÁC GIỮA CỘNG HƯỞNG VÀ DẪN SÓNG KHE HẸP TRONG CẤU TRÚC TINH THỂ QUANG TỬ HAI CHIỀU 5.1 Linh kiện quang tử cấu trúc tinh thể quang tử hai chiều vật liệu silic 5.1.1 Vật liệu quang tử silic 5.1.2 Sự cần thiết vật liệu lai silic hữu 5.2 Kênh dẫn sóng buồng cộng hưởng dạng khe hẹp 5.2.1 Kênh dẫn sóng dạng khe hẹp 5.2.2 Buồng cộng hưởng dạng khe hẹp vi 5.2.2.1 Thể tích mode cộng hưởng 5.2.2.2 Buồng cộng hưởng dạng khe hẹp 5.3 Sự tương tác buồng cộng hưởng kênh dẫn sóng dạng khe hẹp 5.3.1 Cấu trúc ghép trực tiếp nhiều buồng cộng hưởng qua kênh dẫn sóng dạng khe hẹp 5.3.1.1 Mơ hình lý thuyết 5.3.1.2 Kết mô 5.3.2 Cấu trúc ghép gián tiếp nhiều buồng cộng hưởng qua kênh dẫn sóng dạng khe hẹp 5.3.2.1 Mơ hình lý thuyết 5.3.2.2 Kết mơ 5.4 Lưỡng trạng thái quang ổn định 5.5 Kết luận chương KẾT LUẬN CHUNG HƯỚNG NGHIÊN CỨU TIẾP THEO DANH MỤC CÁC CƠNG TRÌNH CƠNG BỐ CỦA LUẬN ÁN TÀI LIỆU THAM KHẢO vii DANH MỤC CÁC CHỮ VIẾT TẮT Tiếng Anh Auxiliary Differential Equation Available Highly Effective Boundary Conditions Carbon Nanotubes Complementary Metal Oxide Semiconductor Coupled Mode Theory in Time Cross Phase Modulation Distributed Bragg Reflectors Figure of Merit Finite-Difference Time-Domain Four Wave Mixing Free Carrier Absorption Full-Width at Half-Maximum One Dimensional Perfect Matched Layer Photonic Band Gap Photonic Crystals Photonic Integrated Circuits Plane Wave Expansion Recursive Convolution Rigorous Coupled-Wave Theory Self Phase Modulation Silicon Organic Hybrid Silicon On Insulator Surface Plasmon Polaritons viii Stimulated Raman Scattering Three Dimensional Transverse Electric Two Dimensional Transverse Magnetic Two Photon Absorption 127 [32] J D Joannopoulos, S G Johnson, MIT (2003), Introduction to Photonic ’ Crystals: Bloch s Theorem, Band Diagrams, and Gaps [33] R D Meade, A Devenyi, J D Joannopoulos, O L Alerhand, D A Smith, and K Kash (1994), Novel applications of photonic bandgap materials: Low-loss bands and high Q cavities, Journal of Applied Physics, 75: pp 4753–4755 [34] J D Jackson (1975), Classical electrodynamics [35] O Painter, R K Lee, A Scherer, A Yariv, J D O’Brien, P D Dapkus, and I Kim (1999), Two-dimensional photonic band-gap defect mode laser, Bibliography, 158: pp 1819-1821 [36] O J Painter, A Husain, A Scherer, J D O’Brien, I Kim, and P D Dapkus (1999), Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP, Journal of Lightwave Technology, 17: pp 2082–2088 [37] A A Siraji, Y Zhao (2015), High-sensitivity and high-Q-factor glass photonic crystal cavity and its applications as sensors, Optics Letters, 40: pp 1508-1511 [38] Z L Bushell, M Florescu, S J Sweeney (2017), High-Q photonic crystal cavities in all-semiconductor photonic crystal heterostructures, Physical Review B, 95: p 235303 [39] D Dodane, J Bourderionnet, S Combrié, and A D Ross (2017), Fully embedded photonic crystal cavity with Q=0.6 million fabricated within a fullprocess CMOS multiproject wafer, Optics Express, 26: pp 20868-20877 [40] T Asano, Y Ochi, Y Takahashi, K Kishimoto, and S Noda (2017), Photonic crystal nanocavity with a Q factor exceeding eleven million, Optics Express, 25: p 1769 [41] Z Zhang and M Qiu (2004), Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs, Optics Express, 12: pp 3988–3995 [42] K Srinivasan, P E Barklay, O Painter, J Chen, A Y Cho, and C Gmachl (2003), Experimental demonstration of a high quality factor photonic crystal microcavity, Applied Physics Letters, 83: pp.1915–1917 128 [43] K Srinivasan, O Painter (2003), Fourier space design of high-Q cavities in standard and compressed hexagonal lattice photonic crystals, Optics Express, 11: pp 579–593 [44] (2014), U P Dharanipathy, M Minkov, M Tonin, V Savona, and R Houdré High-Q silicon photonic crystal cavity for enhanced optical nonlinearities, Applied Physics Letters, 105: p 101101 [45] H Y Ryu, M Notomi, and Y H Lee (2003), High-quality-factor and smallmode-volume hexapole modes in photonic-crystal-slab nanocavities, Applied Physics Letters, 83: pp 4294–4296 [46] Y Akahane, T Asano, B S Song, and S Noda (2003), High-Q photonic nanocavity in a two-dimensional photonic crystal, Nature, 425: pp 944–947 [47] B S Song, S Noda, T Asano, and Y Akahane (2005), Ultra-high-Q photonic double-heterostructure nanocavity, Nature Materials, 4: pp 207–210 [48] V R Almeida, Q Xu, C A Barrios, and M Lipson (2004), Guiding and confining light in void nanostructure, Optics Letters, 29: p 1209 [49] J T Robinson, C Manolatou, L Chen, and M Lipson (2005), Ultrasmall Mode Volumes in Dielectric Optical Microcavities, Physics Review Letters, 95: p 143901 [50] T Yamamoto, M Notomi, H Taniyama, E Kuramochi, Y Yoshikawa, Y Torii, and T Kuga (2008), Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab, Optics Express, 16: p 13809 [51] A Di Falco, L O’Faolain, and T F Krauss (2009), Chemical sensing in slotted photonic crystal heterostructure cavities, Applied Physics Letters, 94: p 63503 [52] K Li, J Li, Y Song, G Fang, C Li, Z Feng, R Su, B Zeng, X Wang, and C Jin (2014), L n Slot Photonic Crystal Microcavity for Refractive Index Gas Sensing, IEEE Photonics Journal, 6: p 6802509 [53] S Y Lin, E Chow, S G Johnson, and J G Joannopoulos (2000), Demonstration of highly efficient waveguiding in photonic crystal slab at the 1.5 µm wavelength, Optics Letters, 25: pp 1297-1299 129 [54] S Y Lin, E Chow, S G Johnson, and J G Joannopoulos (2000), Demonstration of highly efficient waveguiding in photonic crystal slab at the 1.5 µm wavelength, Optics Letters, 25: pp 1297-1299 [55] M Loncar, D Nedeljkovic, T Doll, and J Vuˇckovi´c (2000), Waveguiding in planar photonic crystals, Applied Physics Letters, 77: pp 1937–1939 [56] K Tsuruda, M Fujita, and T Nagatsuma (2015), Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab, Optics Express, 23: pp 3197731990 [57] A E Erol, H S Sozuer (2015), High transmission through a 90 bend in a polarization-independent single-mode photonic crystal waveguide, Optics Express, 23: pp 32690-32695 [58] T T Zhu, M R C Mahdy, Y Y Cao, H LV, F Sun, Z Jiang, and W Ding (2016), Optical pulling using evanescent mode in subwavelength channels, Optics Express, 24: pp 9:18437 [59] A Di Falco, L O’Faolain, and T F Krauss (2008), Photonic crystal slotted slab waveguides, Photonics Nanostructures - Fundam Applied, 6: pp 38–41 [60] Y Xu, C Caer, D Gao, E Cassan, and X Zhang (2014), High efficiency asymmetric directional coupler for slow light slot photonic crystal waveguides, Optics express, 22: pp 11021-11028 [61] M Zahravi, H Alipour, Banaei, A Andalib (2015), Design of optical band pass filter based on photonic crystal with resonance cavity, IJCSI International Journal of Computer Science Issues, 4: pp 127-132 [62] A Karim, S O Hassan, A S A Mohamed, M M T Maghrabi, and N H Rafat (2015), Optimal design of one-dimensional photonic crystal filters using minimax optimization approach, Applied Optics, 54: pp 1399-1409 [63] Y Long and J Wang (2015), All-optical tuning of a nonlinear silicon microring assisted microwave photonic filter: theory and experiment, Optics Express, 23: pp 17758-17771 [64] B Chen, T Tang, and H Chen (2009), Study on a compact flexible photonic crystal waveguide and its bends, Optics Express, 17: pp 5033-5038 130 [65] A E Erol and H S Sozuer (2015), High transmission through a 90◦ bend in a polarization-independent single-mode photonic crystal waveguide, Optics Express, 23: pp 32690 (6pp) [66] A Ghaffari, M Djavid, and M S Abrishamian (2009), Power splitters with different ouput power levels based on directional coupling, Applied Optics, 48: pp 1606-1609 [67] A Bakhatazad, and A G Kirk (2006), First-band S-vector photonic crystal superism demultiplexer bends, Optics Letter, 31: pp 745-747 (2006) [68] Y Xiong, Z Liu, S Durant, H Lee, C Sun, and X Zhang (2007), Tuning the far-field superlens: from UV to visible, Optics Express, 15: pp 7095-7102 [69] S Kim, I Park, H Lim, C.S Kee (2004), Highly efficient photonic crystalbased multichannel drop filters of three-port system with reflection feedback, Optical Society of America, 12: pp 5518-5525 [70] C M Soukoulis, M Kafesaki, and E N Economou (1998), Temperature effect on the roughness of the formation interface of p-type porous silicon, Journal of Applied Physics, 84: p 3129 [71] T Stomeo, F Vanlaere, M Ayre (2008), Integration of grating couplers with a compact photonic crytal demultilexer on an InP membrance, Optics Letters, 33: pp 884-886 [72] Y Xu, C Caer, D Gao, E Cassan, and X Zhang1 (2014), High efficiency asymmetric directional coupler for slow light slot photonic crystal waveguides, Optics Express, 22: pp 11021-11028 [73] Y Geng, L Wang, Y Xu, A G Kumar, X Tan, and X Li (2018), Wavelength multiplexing of four-wave mixing based fiber temperature sensor with oil-filled photonic crystal fiber, Optics Express, 26: pp 27907-27916 [74] E Lamilla, M S Faria, I Aldara, P F Jarschel, J L Pita, and P Dainese (2018), Characterization of surface-states in a hollow core photonic crystal fiber, Optics Express, 26: pp 32554-32564 131 [75] D N Christodoulides, and N K Efremidis (2002), Discrete tempotal solitions along a chain of nonlinear coupled microcavities embedded in photonic crystals, [76] K Nozaki, A Lacraz, A Shinya, S Matsuo, T Sato, K Takeda, E Kuramochi, and M Notomi (2015), All-optical switching for 10-Gb/s packet data by using an ultralow-power optical bistability of photonic-crystal nanocavities, Optics Express, 23: pp 30379-30392 [77] J Li, R Yu, C Ding, and Y Wu (2014), Optical bistability and four-wave mixing with a single nitrogen-vacancy center coupled to a photonic crystal nanocavity in the weak-coupling regime, Optics Express, 22: pp 15024-15038 [78] J Guo, L Jiang, Y Jia, X Dai, Y Xiang, and D Fan (2017), Low threshold optical bistability in one-dimensional gratings based on graphene plasmonics, Optics Express, 25: pp 5972-5981 [79] J P Vasco, and V Savona (2019), Slow-Light Frequency Combs and Dissipative Kerr Solitions in Coupled-Cavity Waveguides, Physical Review Applied, 12: pp 064065 [80] T F Khalkhali, R Shiri, H Shahrokhabadi, and A Bananej (2019), Complete photonic band gap characteristics of two-dimensional Kerr nonlinear plasma photonic crystals, Indian Journal of Physics, 93: pp 1537-1544 [81] M R J Azizpour, M Sorooch, N Dalvand, and Y S Kavian (2019), AllOptical Ultra-Fast Graphene-Photonic Crystal Switch, Crystals, 9: p 461 [82] F Azadpour, and A Bahari (2019), All-optical bistability bassed on cavity resonances in nonlinear photonic crystal slab-reflector-based Fabry-Perot cavity, Optics Communications, 437: pp 297-302 [83] G Yan, Z Jianfeng, Z Han, F Yunpeng, C Haobo (2020), Research on Alloptical Switch Based on Nonlinear Effect of Photonic Crystal, Imaging Science and Photochemistry, 38: pp 15-21 132 [84] A Rode, M Samoc, B L Davies (2006), Photo-structuring of As2S3 glass by femtosecond irradiation, Optics Express, 14:pp 7751-7756 [85] B E A Saleh, M C Teich (2001), Fundamentals of Photonics [86] (1983), J L Jewell, H M Gibbs, A C Gossard, A Passner, and Wiegmann Fabrication of GaAs bistable optical devices, Materials Letters, 1: pp 148-151 [87] Light H M Gibbs (1985), Optical bistability: Controlling Light with [88] E Garmire, S D Allen, J Marburger, and C M Verber (1978), Multimode Integrated Optical Bistable Switch, Optics Letters, 3: p 69 [89] M Notomi, A Shinya, K Nozaki, T Tanabe, S Matsuo, E Kuramochi, T Sato, H Taniyama, and H Sumikura (2011), Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip, IET Circuits Device Systems, 5: pp.84-93 [90] K Srinivasan, P E Barclay, and O Painter (2004), Fabrication-tolerant high quality factor photonic crystal microcavities, Optics Express, 12: pp 1458–1463 [91] Q M Ngo, S Kim, J Lee, and H Lim (2012), All-optical switches based on multiple cascaded resonators with reduced switching intensity-response time products, Journal of Lightwave Technology, 30: pp 3525-3531 [92] Q M Ngo, S Kim, S H Song, and R Magnusson (2009), Optical bistable devives based on guided-mode resonance in slab waveguide grattings, Optics Express, 17:pp 23459-23467 [93] Cliffs, H A Haus (1984), Waves and Fields in optoelectronics (Englewood NJ: Prentice-Hall [94] M Plihal, and A A Maradudin (1991), Photonic band structure of twodimensional systems: The triangular lattice, Physics Review B, 44: pp 8565-8571 [95] P R Villeneuve, and M Piché (1992), Photoinc band gaps in two-dimensional square and hexagonal lattices, Physics Review B, 46: pp 4969-4972 [96] (1992), R D Meade, K D Brommer, A M Rappe, and J D Joannopoulos Existence of a photonic band gap in two dimensions, Applied Physics Letters, 61: pp 495-497 133 [97] K M Ho, C T Chan, and C M Soukoulis (1990), Existence of a photonic gap in periodic dielectric structures, Physic Review Letters, 65: pp 3152-3155 [98] H S Sözüer and J W Haus (1992), Photonic bands: Convergence problems with the plane-wave method, Physics Review B, 45: pp 13962-13972 [99] M Plihal and A A Maradudin (1991), Photonic band structure of twodimensional systems: The triangular lattice, Physics Review B, 44: pp 8565-8571 (1991) [100] K Sakoda (2001), Optical Properties of Photonic Crystals [101] A Barra, D Cassagne, and C Jouanin (1998), Existence of two-dimensional absolute photonic band gaps in the visible, Applied Physics Letters, 72: pp 627629 [102] N Yokouchi, A J Danner, and K D Choquette (2002), Effective index model of 2D photonic crystal confined VCSELs, presented at LEOS VCSEL Summer Topical, Mont Tremblant, Quebec [103] J C Knight, T A Birks, R F Cregan, P Russell and J.-P de Sandro (1998), Photonic crystals as optical fibres - physics and applications, Optical Materials, 11: pp 143-151 [104] K Yee (1966), Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Transactions on Antennas and Propagation, 14: pp 302-307 [105] A Deinega, S Belousov and I Valuev (2009), Hybrid transfer-matrix FDTD method for layered periodic structures, Optics Letters, 34: pp 860 [106] Y Hao and R Mittra (2009), FDTD Medeling of Metamaterials: Theory and Applications [107] J D Jackson (1998), Classical Electrodynamics Wiley, New York, rd edn [108] S Fan, P R Villeneuve, J D Joannopoulos, and H A Haus (1998), Channel drop filters in photonic crystals, Optics Express, 3: pp 4-11 134 [109] S Kim, I Park, H Lim, and C S Kee (2004), Highly efficient photonic crystal-based multichanel drop filters of three-port system with reflection feedback, Optics Express, 12: pp 5518-25 [110] H S Bark and T I Jeon (2018), Tunable terahertz guided-mode resonance filter with a variable grating period, Optics Express, 26: pp 29353 -29362 [111] D A Bykov, L L Doskolovich, and V A Soifer (2017), Coupled mode theory and Fano resonances in guided mode resonant gratings: the conical diffraction mounting, Optics Express, 25: pp 1151 – 1164 [112] W K Kuo, and C J Hsu (2017), Two dimensional grating guided mode resonance tunable filter, Optics Express, 25: pp 29642 – 29649 [113] H Ahmadpanahi, R Vismara, O Isabella, and M Zeman (2018), Distinguishing Fabry Perot from guided resonances in thin periodically textured silicon absorbes, Optics Express, 26: pp 737-749 [114] H A Lin, H Y Hsu, C W Chang, and C S Huang (2016), Compact spectrometer system based on a gradient grating period guide mode resonance filter, Optics Express, 24: pp 10972-10979 [115] C P Stumberg, K B Dossou, L C Botten, R C Mcphedran, and C Martijn (2015), Fano resonances of dielectric gratings: symmetries and broadband filtering, Optics Express, 23: pp 1672-1686 [116] Z Wang, R Zhang, and J Guo (2018), Quadrupole mode plasmon resonance enabled subwavelength metal dielectric grating optical reflection filters, Optics Express, 26: pp 496-504 [117] Y Liang, W Peng, M Lu, and S Chu (2015), Narrow band wavelength tunable filter based on asymmetric double layer metallic grating, Optics Express, 23: pp 14434-14445 135 [118] H S Bark and T I Jeon (2018), Dielectric film sensing with TE mode of terahertz guided mode resonance, Optics Express, 26: pp 34547-34556 [119] R Magnusson, and S S Wang (1992), New principle for optical filters, Applied Physics Letters, 61: pp 1022-1024 [120] A E Miroshnichenko, S Flach, and Y S Kivshar (2009), Fano resonances in nanoscale structures [121] Breit, G., and E Wigner (1936), Capture of Slow Neutrons, Physical Review Journals, 49: pp 519–531 [122] U Fano (1935), Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro d’arco, Nuovo Cimento, 12: pp 154–161 [123] U Fano (1961), Effects of Configuration Interaction on Intensities and Phase Shifts, Physical Review, 124: pp 1866–1878 [124] M F Limonov, M V Rybin, A N Poddubny, and Y S Kivshar (2017), Fano resonances in photonics, Nature Photonics, 11: pp 543-554 [125] J Fransson, and A V Balatsky (2007), Exchange interaction and Fano resonances in diatomic molecular systems, Physical Review B, 75: pp 153309 [126] P Kolorenc, V Brems, and J Horacek (2005), Computing resonance positions, widths, and cross sections via the Feshbach-Fano R-matrix method, Application to potential letter, 53: pp 710-713 [127] wave R Soref and J Larenzo (1986), All-silicon active and passive guide- components for λ = 1.3 and 1.6 μm, IEEE Journal of Quantum Electronics, 22: pp 873-879 [128] Y A Vlasov (2008), Silicon photonics for next generation computing systems 136 [129] B G Lee and K Bergmann (2008), Silicon nano-photonic interconnection networks in multicore processor systems [130] W Bogaerts, R Baets, P Dumon, V Wiaux, S Beckx, D Taillaert, B Luyssaert, J VanCampenhout, P Bienstman, and D Van Thourhout (2005), Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology, Journal of Lightwave Technology, 23: pp 401-412 [131] Wong J Gao, J F McMillan, M.-C Wu, J Zheng, S Assefa, and C W (2010), Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes, Applied Physics Letters, 96: p 051123 [132] J Jágerská, H Zhang, Z Diao, N Le Thomas, and R Houdré (2010), Refractive index sensing with an air-slot photonic crystal nanocavity, Optics Letters, 35: pp 2523-2525 [133] A H Safavi-Naeini, T P M Alegre, M Winger, O Painter (2010), Optomechanics in an ultrahigh-Q slotted 2D photonic crystal cavity, Applied Physics Letters, 97: p 181106 [134] C Caër, X Le Roux, and E Cassan (2012), Enhanced localization of light in slow wave slot photonic crystal waveguides, Optics Letters, 37: p 3660 [135] C Caër, X Le Roux, and E Cassan (2013), High-Q silicon-on-insulator slot photonic crystal cavity infiltrated by a liquid, Applied Physics Letters, 103: p 251106 [136] Y Liu, S Wang, D Zhao, W Zhou, and Y Sun (2017), High quality factor photonic crystal filter at k ≈ and its application for refractive index sensing, Optics Express, 25: pp 10536-10545 [137] H K Tsang and Y Liu (2008), Nonlinear optical properties of silicon waveguides, Semiconductor Science and Technology, 23: p 64007 [138] H K Tsang, C S Wong, T K Liang, I E Day, S W Roberts, A Harpin, J Drake, and M Asghari (2002), Optical dispersion, two-photon absorption and selfphase modulation in silicon waveguides at 1.5 μm wavelength, Applied Physics Letters, 80: pp 416–418 137 [139] J Leuthold, C Koos and W Freude (2010), Nonlinear silicon photonics, Nature photonics, 4: pp 535-543 [140] A Khilo, S J Spector, M E Grein, A H Nejadmalayeri, C W Holzwarth, M Y Sander, M S Dahlem, M Y Peng, M W Geis, N A DiLello, J U Yoon, A Motamdi, J S Orcutt, J P Wang, C M Sorace-Agaskar, M A Popović, J Sun (2012), Overcoming the bottleneck of electronic jitter 13, Optics Express, 20: pp 4454 [141] Q Lin, O J Painter, and G P Agrawal (2007), Nonlinear optical phenonmena in silcon waveguides: modeling and applications, Optics express, 15: pp 16604-16644 [142] T Vallaitis (2009), Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries, Optics Express, 17: pp 17357–17368 [143] H K Tsang and Y Liu (2008), Nonlinear optical properties of silicon waveguides, Semiconductor Science and Technology, 23: p 064007 [144] R Salem, M A Foster, A C Turner, D F Geraghty, M Lipson, and A L Gaeta (2007), Signal regeneration using low-power four-wave mixing on silicon chip, Natures Photonics, 2: pp 35–38 [145] V Mizrahi, K W DeLong, G I Stegeman, M A Saifi, and M J Andrejco (1989), Two photon absorption as a limitation to all-optical switching, Optics Letters, 14: pp 1140-1142 [146] K W DeLong, K B Rochford, and G I Stegeman (1989), Effect of twophoton absorption on all-optical guidedwave devices, Applied Physics Letters, 55: pp 1823–1825 [147] H Park, A W Fang, S Kodama, and J E Bowers (2005), Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells, Optics Express, 13: pp 9460– 9464 [148] G Roelkens, D Van Thourhout, R Baets, R Nötzel, and M Smit (2006), Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit, Optics Express, 14: pp 8154– 8159 138 [149] A W Fang, H Park, O Cohen, R Jones, M J Paniccia, and J E Bowers (2006), Electrically pumped hybrid AlGaInAs-silicon evanescent laser, Optics Express, 14: pp 9203–9210 [150] A W Fang, R Jones, H Park, O Cohen, O Raday, M J Paniccia, and J E Bowers (2007), Integrated AlGaInAs-silicon evanescent racetrack laser and photodetector, Optics Express, 15: pp 2315–2322 [151] J Van Campenhout, P Rojo-Romeo, P Regreny, C Seassal, D Van Thourhout, S Verstuyft, L Di Cioccio, J M Fedeli, C Lagahe, and R Baets (2007), Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on- insulator waveguide circuit, Optics Express, 15: pp 6744– 6749 [152] P E Barclay, K Srinivasan, and O Painter (2005), Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper, Optics Express, 13: pp 801–820 [153] E M Purcell (1946), Spontaneous emission probabilities at radio frequencies, Physics Review Journals, 69: p 681 [154] L C Andreani and G Panzarini (1999), Strong-coupling regime for quantum boxes in pillar microcavities: Theory Lucio, Physics Review B, 60: pp 13276– 13279 [155] J T Robinson, C Manolatou, L Chen, and M Lipson (2005), Ultrasmall Mode Volumes in Dielectric Optical Microcavities, Physics Review Letters, 95: pp 143901 [156] D Yang, H Tian, Y Ji (2011), Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays, Optics Express, 19: pp 20023-20034 [157] M Mendez-Astudillo, H Okayama,and H Nakajima (2018), Silicon optical filter with transmission peaks in wide stopband obtained by anti-symmetric photonic crystal with defect in multimode, Optics Express, 26: pp 1841-1850 139 [158] Y Liu, F Zhou, and Q Mao (2013), Analytical theory for the nonlinear optical response of a Kerr-type standing-wave cavity side-coupling to a MIM waveguide, Optics Express, 21: pp 23687-23694 [159] D Fitsios, T Alexoudi, A Bazin, P Monnier, R Raj, A Miliou, G.T Kanellos, N Pleros, F Raineri (2016), Ultra-compact III‒V-on-Si photonic crystal memory for flip-flop operation at Gb/s, Optics Express, 24: pp 4270-4277 [160] A E Miroshnichenko, S Flach, and Y S Kivshar (2010), Fano resonances in nanoscale structures, Reviews of Modern Physics, 82: pp 2257 [161] B Maes, P Bienstman, and R Baets (2005), Switching in coupled nonlinear photonic-crystal resonators, Journal of the Optical Society of America, 22: pp 1778-1784 [162] C Husko, A D Rossi, S Combrié, Q V Tran, F Raineri, and C W Wong, (2009), Ultrafast all-optical modulation in GaAs photonic crystal cavities, Applied Physics Letters, 94: pp 021111 (4 pp) [163] Y Yu, M Heuck, H Hu, W Xue, C Peucheret, Y Chen, L K Oxenlowe, K Yvind, and J Mork (2014), Fano resonance control in a photonic crystal structure and its application to ultrafast switching, Applied Physics Letters, 105: pp 061117 [164] H Y Song, S Kim, and R Magnusson (2009), Tunable guided-mode resonances in coupled gratings, Optics Express, 17: pp 23544-23555 [165] H M Nguyen, and T B Thanh (2020), Electroslatic modulation of a photonic crystal resonant filter, Journal of Nanophotonics, 14: pp 026014 [166] S M A Mostaan, and H R Saghai (2019), Optical bistable switch based on the nonlinear Kerr effect of chalcogenide glass in a rectangular defect of a photonic crystal, Journal of Computational Electronics, 18: pp 6785 ... CHƯƠNG TỔNG QUAN 1.1 Cấu trúc tinh thể quang tử 1.1.1 Tổng quan cấu trúc tinh thể quang tử 1.1.2 Cấu trúc tinh thể quang tử chiều cách tử dẫn sóng 1.1.2.1 Khái niệm cấu trúc tinh thể quang tử chiều... sáng cấu trúc tinh thể quang tử hai chiều 1.1.4 Ứng dụng cấu trúc tinh thể quang tử 1.2 Linh kiện lưỡng trạng thái quang ổn định 1.2.1 Khái niệm chung chuyển mạch quang 1.2.2 Nguyên lý lưỡng ổn định. .. xuất cấu trúc, tính tốn mơ linh kiện lưỡng trạng thái quang ổn định sử dụng cấu trúc PhCs 1D 2D Ảnh hưởng cấu hình tham số cấu trúc PhCs lên đặc tính hiệu làm việc linh kiện lưỡng trạng thái quang